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Abstract
Message-passing is an attractive thread coordination mechanism
because it cleanly delineates points in an execution when threads
communicate, and unifies synchronization and communication: a
sender is allowed to proceed only when a receiver willing to accept
the data being sent is available and vice versa. To enable greater
performance, however, asynchronous or non-blocking extensions
are usually provided that allow senders and receivers to proceed
even if a matching partner is unavailable. Lightweight threads with
synchronous message-passing can be used to encapsulate asyn-
chronous message-passing operations, although such implementa-
tions have greater thread management costs that can negatively im-
pact scalability and performance.

This paper introduces parasitic threads, a novel mechanism for
expressing asynchronous computation, that combines the efficiency
of a non-declarative solution with the ease of use provided by lan-
guages with first-class channels and lightweight threads. A par-
asitic thread is a lightweight data structure that encapsulates an
asynchronous computation using the resources provided by a host
thread. Parasitic threads need not execute cooperatively, impose no
restrictions on the computations they encapsulate, or the commu-
nication actions they perform, and impose no additional burden on
thread scheduling mechanisms.

We describe an implementation of parasitic threads in MLton, a
whole-program optimizing compiler and runtime for Standard ML.
Benchmark results indicate parasitic threads enable construction of
scalable and efficient message-passing parallel programs.

Categories and Subject Descriptors D.3.3 [Language Con-
structs and Features]: Concurrent programming structures; D.1.3
[Concurrent Programming]: Parallel programming; D.3.1 [For-
mal Definitions and Theory]: Semantics

General Terms Design, Experimentation, Languages, Measure-
ment, Performance

Keywords Lightweight threading, Message passing, Asynchronous
communication, MLton

1. Introduction
Many parallel programs are constructed using message passing
primitives to coordinate communication and synchronization ac-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
DAMP’10, January 19, 2010, Madrid, Spain.
Copyright c© 2010 ACM 978-1-60558-859-9/10/01. . . $5.00.

tivities among a collection of concurrently executing threads. Mes-
sage passing explicitly delineates which data is transmitted from
one thread to another, and identifies the points where communi-
cation takes place. Message passing systems also explicitly define
synchronization points through synchronous data exchange primi-
tives. These properties alleviate the need to reason about data-races,
simplify program structure, and reduce algorithmic complexity.

Despite the semantic simplicity of synchronous message passing,
performance requirements often entail the need for non-blocking
or asynchronous communication. By allowing communication to
overlap with computation, overall throughput can be increased.
However, the performance gains afforded by performing commu-
nication asynchronously comes at a price. If the semantics of com-
munication primitives is expressed in terms of non-declarative lan-
guage with explicit buffer management and point to point com-
munication between processors, correctly using non-blocking vari-
ants requires care to ensure previous operations on send or receive
buffers have completed before the buffers are reused. Because com-
munication is defined with respect to how buffered data is transmit-
ted from one processor to another, messages must provide appropri-
ate metadata to allow receivers to distinguish between various mes-
sage types and senders. Thus, implementations of asynchronous
communication defined in terms of buffer movement requires com-
municating threads to be aware of each other’s internal semantics,
limiting abstraction and composability. To illustrate, consider the
following code fragment:

1 void worker (master , workSize) {
2 int tag = 0;
3 for (int i=0; i < workSize; i++) {
4 tag = 0; /* Data request */
5 send (buf , master , tag);
6 r e c v (buf , master );
7 Data* data = parse (buf);
8 HashBucketID b = classify (data);
9 tag = 1; /* Update */

10 writeBuf (buf , b);
11 send (buf , master , tag);
12 }
13 }

This code fragment outlines the worker’s side of a concurrent pro-
gram to plot a histogram. The master partitions an input dataset
into chunks to distribute among its workers. Each worker sends a
request to the master for the next data element (lines 5-6), clas-
sifies the data (line 8), and sends back an identifier indicating the
bucket to which the element belongs (line 11); the histogram is then
updated by the master. Due to the absence of dynamic channel cre-
ation, the request for the next data element and update has to be
multiplexed on the same static channel, with explicit tags. The un-
availability of typed channels places the onus on the programmer
to parse the byte buffer.



Without dynamic channel creation and lightweight threading, the
opportunities for exploiting fine grained concurrency is difficult.
Although there exists an opportunity to send results to the master
in the current iteration (line 11) concurrently with the request of
the data element in the next iteration (line 5), there is no convenient
means of expressing this fact. Simply using a non-blocking send
call on line 11 would not help. While that would allow the write of
the data to the send buffer to proceed concurrently with initiating
the next iteration, it would not allow the send to take place concur-
rently with the next request since both send operations are directed
to the same receiver.

In contrast to defining communication semantics in terms of
data movement among buffers, languages such as Erlang (3),
Haskell (8; 7), Concurrent ML (21; 20), and F# (24) allow threads
to communicate via first-class channels. This allows encoding of
abstract communication protocols and alleviates explicit message
management. For instance, a private channel can be allocated be-
tween two communicating threads to be used as a unique ves-
sel for communication. Combined with lightweight threads, these
languages can express asynchronous computation by creating a
new thread of control that communicates over shared channels.

1 fun doWork (master , workSize) =
2 l e t fun worker () =
3 l e t v a l data = r e c v (master)
4 v a l hashBucket = classify (data)
5 i n send (hashBucket , ())
6 end
7 fun loop (workSize) =
8 i f workSize = 0 t h e n ()
9 e l s e ( spawn (worker );

10 loop(workSize -1))
11 i n loop(workSize)
12 end
13

14 fun categoryServer (ch, c) =
15 ( r e c v (ch); c := !c + 1;
16 categoryServer (ch, c))

Consider the non-declarative program shown earlier expressed
above in Concurrent ML, a dialect of ML that defines synchronous
first-class communication channels. Here, the master spawns a
server for each category (a categoryServer ) in the histogram
and associates each with a unique channel. The classify func-
tion categorizes the data and returns a channel corresponding to
the category. Workers can now directly communicate with these
servers to update the bucket, instead of communicating with the
master. The servers waits for a communication from a worker, and
increments a counter that holds the value of their category.

This solution is more abstract than the first, and potentially ex-
hibits greater concurrency: updates to different categories by differ-
ent workers can happen simultaneously without the need for a cen-
tralized master to mediate and parse message data. Unfortunately,
the solution also places a large burden on the language runtime be-
cause the number of threads created is a function of the categories
desired in the histogram. While a language runtime can be config-
ured to use thread pools to limit the number of underlying threads,
such a solution does not lead to improved scalability. This occurs
because each category server repeatedly blocks waiting for a re-
sponse from a worker; depending upon the number of categories
used, the number of available threads in a thread pool can be easily
exhausted.

In this paper, we investigate an application-transparent technique
for creating and managing asynchronous computation which re-
tains the high-level abstraction afforded by first-class channels and
lightweight threads for expressing asynchrony, without imposing

additional thread management and scheduling overheads. To do
this, we introduce a new construct called a parasitic thread. The ex-
pression: parasite(e) creates a new parasitic thread to evaluate
expression e . Unlike a regular thread, a parasitic thread executes
using the execution context of the parent which creates the para-
site. The parent, or host, thread can support an arbitrary number
of parasites. When a parasite is preempted, another parasite on the
host can be chosen for execution: switching between parasites is
a thread-local operation, and in the common case, entails no stack
movement. This results in a zero-copy context switch with low ex-
ecution overheads.

A parasite no longer becomes schedulable on a host when it per-
forms a blocking action (e.g., a synchronous communication oper-
ation, or I/O). Such parasites can resume execution once the con-
ditions that caused it block no longer hold. Thus, parasitic threads
are not scheduled using the language runtime; instead they self-
schedule in a demand-driven style based on flow properties dictated
by the communication and I/O actions they perform. For example,
consider a parasite that performs a communication action such as a
synchronous send on a channel c that would cause it block. When
a matching operation occurs on c, the parasite is notified that it can
resume execution. Notably, there is no locking required to effect
this state change, and no involvement from a global thread sched-
uler. Thus, a thread stack now contains a number of continuations,
one for each parasitic thread. A thread’s metadata structure is aug-
mented to allow indexing into the stack to access any housed para-
sitic thread.

In the above example, each category server would be imple-
mented as a parasite, and each worker would be implemented as
a regular lightweight thread. Category servers are allocated on
the master thread, but become blocked once they perform a syn-
chronous receive operation that is waiting for data from a worker.
When a worker performs a matching send because it classifies its
current data as belonging to that category, the category server para-
site resumes execution, increments its counter, and loops. The par-
asite can continue to execute provided there are additional commu-
nication requests from other workers available.

The remainder of this paper describes the operational behav-
ior of parasitic threads, and their implementation in MLton, a
whole-program optimizing compiler for Standard ML. Section
2 describes the overall system design, and presents a formal
operational semantics. Implementation details are provided in
Section 3. Benchmark results, presented in Section 4, on both
communication-intensive micro-benchmarks and well-studied (un-
balanced) parallel benchmarks validate the scalability and effi-
ciency of our technique.

2. System Design and Semantics

In this section, we formalize our system design. Our system sup-
ports two types of threads: hosts and parasites. Host threads map
directly to the threading model provided by the language runtime,
whereas parasitic threads are implemented as raw frames living
within the stack space of a given host thread. A host thread can
hold an arbitrary number of parasitic threads. In this sense, a par-
asitic thread views its host in much the same way as a user-level
thread might view a kernel-level one that it executes on. The key
characteristic that distinguishes parasitic threads from lightweight
ones is that blocking synchronization actions performed by a para-
sitic thread does not cause the host to block in turn. Because para-
sites do not require cooperative scheduling, and can be preempted,
there is substantial flexibility to avoid deadlocks, ensure fairness,
etc. regardless of the hosts they are allocated on.



In the following figures, host threads are depicted as rounded
rectangles, parasitic threads are represented as blocks within their
hosts, and each processor as a queue of host threads. The parasite
which is currently executing on a given host and its stack is rep-
resented as a block with solid edges; suspended parasites and their
stacks are represented as blocks with dotted edges.

Host threads can be viewed as a collection of parasitic threads all
executing within the same stack space. When a thread is initially
created it contains one such parasitic computation, namely the ex-
pression it was given to evaluate when it was spawned. Threads and
parasites communicate with one another via synchronous message
passing. Communication actions on the same channel are paired
non-deterministically.

Our system supports synchronous message passing over channels
as well as user-defined blocking events. During synchronous com-
munication, the parasite which initiates the synchronous communi-
cation blocks (either sending or receiving on a channel), if a match-
ing communication is not already available. It is subsequently un-
blocked by the parasite that terminates the protocol by perform-
ing the opposite communication action (i.e. a matching send or re-
ceive). Similarly, a parasite may block on an event (such as I/O).
This parasite is available to execute once the event is triggered.
Once the conditions that prevent continued execution of the par-
asite becomes resolved, the parasite enters a suspended state, and
can be resumed on the host.

Fig. 1 shows the steps involved in such a communication, or
blocking event. Initially, the parasite S1 performs a blocking action
on a channel or event, abstractly depicted as a circle. Hence, S1
blocks. Part 2 of the figure shows that thread T1 which hosts
S1 continues execution by switching to a suspended (runnable)
parasite Sm . Notice that although S1 is blocked, the thread hosting
the parasite is not. S1 becomes unblocked by a synchronizing
send on the same channel. Part 3 of the figure shows parasite S1
on processor Pn invoking a send action on the channel. Since a
blocked receiver is already present on the channel, sender S1 does
not block. The value is sent to the blocked parasite which unblocks
the parasite. We envision parasites to be communication intensive,
spending most of their time in the blocked state waiting for a
synchronization action. When unblocked, parasites are implicitly
rescheduled for re execution on their host.

2.1 Formal Semantics

We define our system formally through the use of a formal opera-
tional semantics and model host threads in terms of sets of stacks
and parasites as stacks. Transitions in our formalism are defined
through stack based operations. Our semantics is defined in terms
of a core call-by-value functional language with threading and
communication primitives. New threads of control, or host threads,
are explicitly created through a spawn primitive. To model para-
sitic thread creation we extend this simple language with a prim-
itive parasite. Therefore, computation in our system is split be-
tween host threads, which behave as typical threads in a language
runtime, and parasitic threads, which behave as asynchronous op-
erations with regard to their host.

We formalize the behavior of parasitic threads in terms of an op-
erational semantics expressed using a CEK machine (14). A typical
CEK machine is small-step operational definition that operates over
program states. A state is composed of an expression being evalu-
ated, an environment, and the continuation (the remainder of the
computation) of the expression. The continuation is modeled as a
stack of frames.
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Figure 1. The block and unblocking of parasitic threads via syn-
chronous communication.

2.1.1 Language

In the following, we write k̄ to denote a set of zero or more elements
and /0 as the empty set. We write x : l to mean the concatenation of
x to a sequence l where . denotes an empty sequence. Evaluation
rules are applied up to commutativity of parallel composition (‖).
Relevant domains and meta-variables used in the semantics are
shown in Fig. 2.

In our semantics, we use stack frames to capture intermediate
computation state, to store environment bindings, to block com-
putations waiting for synchronization, and to define the order of
evaluation. We define eight unique types of frames: return frames,
argument frames, function frames, receive frames, send frames,
send value frames, and receive and send blocked frames. The re-
turn frame pushes the resulting value from evaluating an expres-
sion on to the top of the stack. The value pushed on top of the stack
gets propagated to the frame beneath the return frame (see Fig. 3
Return Transitions ). The receive and send blocked frames sig-
nify that a thread is blocked on a send or receive on a global chan-
nel. They are pushed on top of the stack to prevent further eval-
uation of the given parasitic computation. Only a communication
across a global channel can pop a blocked frame. Once this occurs,
the parasitic thread can resume its execution. Argument and func-
tion frames enforce left-to-right order of evaluation. order. Simi-
larly, the send and send value frames define the left to right evalua-
tion of the send primitive.

Our semantics is defined with respect to a global mapping (T )
from thread identifiers (t) to thread states (s). A thread is a pair
composed of a thread identifier and a thread state. A thread state (s)
is a CEK machine state extended with support for parasitic threads.
Therefore, a thread is a collection of stacks, one for each parasitic
thread. A concrete thread state can be in one of three configurations:
a control state, a return state, or a halt state. A control state is
composed of an expression (e), the current environment (r) - a
mapping between variables and values, the current stack (k), as
well as a set of parasitic computations (k̄). A return state is simply
a collection of parasitic computations (k̄). The halt state is reached
when all parasitic threads in a given thread have completed. A
thread, therefore, is composed of a collection of parasitic threads
executing within its stack space. When a thread transitions to a
control state, one of the thread’s parasites is chosen to be evaluated.



e ∈ Exp ::= x | v | e(e) | spawn(e) | parasite(e)
| Chan() | send(e,e) | recv(e)

v ∈ Val ::= unit | (λx.e,r) | c | κ

κ ∈ Constant
c ∈ Channel
x ∈ Var
t ∈ ThreadID
r ∈ Env = Var → Value
k ∈ Cont = Frame∗
v ∈ Value = Unit +Closure+Channel+Constant

(λx.e,r) ∈ Closure = LambdaExp×Env

retdve ∈ RetFrame = Value
argde,re ∈ ArgFrame = Exp×Env

f undve ∈ FunFrame = Value
recvde ∈ RecvFrame = Empty

svalde,re ∈ SValFrame = Exp×Env
senddve ∈ SendFrame = Value

rblockdve ∈ RBlockFrame = Value
sblockdv1,v2e ∈ SBlockFrame = Channel×Value

T ∈ GlobalMap = ThreadID → ThreadState
s ∈ ThreadState = ControlState+ReturnState+HaltState

〈e,r,k, k̄〉 ∈ ControlState = Exp×Env×Cont×Cont∗
〈k̄〉 ∈ ReturnState = Cont∗

halt(v) ∈ HaltState = Value

Figure 2. Domains for the CEK machines extended with threads and parasites.

A thread switches evaluation between its various parasitic threads
non-deterministically when it transitions to a return state.

2.1.2 CEK Machine Semantics

The rules given in Fig. 3 and Fig. 4 define the transitions of the
CEK machine. There are three types of transitions: control transi-
tions, return transitions, and global transitions. Control and return
transitions are thread local actions, while global transitions affect
global state. We utilize the two types of local transitions to distin-
guish between states in which an expression is being evaluated from
those in which an expression has already been evaluated to a value.
In the latter case, the value is propagated to its continuation. Global
transitions are transitions which require global coordination, such
as the creation of a new channel or thread, or a communication ac-
tion.

There are four rules which define global transitions given in
Fig. 4. Rule (Local Evaluation) states that a thread with thread
state s can transition to a new state s′ if it can take a local transition
from s to s′. This rule subsumes thread and parasite scheduling,
and defines global state change in terms of operations performed
by individual threads. The second rule, (Channel), defines the cre-
ation of a new global channel. The (Spawn) rule governs the cre-
ation of a new thread; this rule generates a unique thread identifier
and begins the evaluation of the spawned expression (e) in the par-
ent thread’s (t) environment (r).

The last global rule, (Communication), deals with communica-
tion across a shared channel (c) by two threads. The rule finds two
threads, one blocked sending on the channel and the other blocked
receiving. The blocked frames are popped off of each thread’s stack
and return frames are pushed in their place. The sender will contain
a return frame with the unit value and the receiver will contain a
return frame with the value transmitted across the channel (see step
3 of Fig. 1).

There are seven rules which define local control transitions. Be-
cause the definition of these rules are standard, we omit their ex-
planation here, with the exception of the last rule (Parasite). This
rule models the creation of a new parasitic thread within the cur-
rent thread. The currently evaluating parasitic thread is added back
to the set of parasites with a unit return value pushed on its stack.
The expression is evaluated in a new parasitic thread constructed
with the environment of the parent and an empty stack. Thread ex-

ecution undertakes evaluation of the expression associated with this
new parasite.

There are eight rules which define local return transitions. These
rules, like local control transitions, are mostly standard. We com-
ment on the three rules that involve thread and parasite manage-
ment. Rule (Halt Thread) defines thread termination via a transi-
tion to a halt state. A thread transitions to a halt state if it has no
active parasites and its stack is empty except for a return frame. Par-
asites themselves are removed by the (Parasite Halt) rule. The
return value of a thread is thus defined as the last value produce by
its last parasite. The lifetime of a thread is bounded by the para-
sites which inhabit it. Rule (Local Communication) is similar to
the global communication rule, but is defined as a local transition
when both communicating parties reside in the same thread. The
transition pops off both blocked frames for the communicating par-
asitic threads. It also pushes new return frames, the value being sent
on to the receiver’s stack and the unit value on top of the sender’s
stack.

2.1.3 Safety

Consider a replacement function R which transforms a program
containing parasite(e) expressions into an equivalent program in
which these expressions are replaced by spawn(e) expressions. We
can now define a Safety theorem that states the equivalence between
these two programs.

Theorem[Safety] If
T [t0 7→ 〈e0,r, ., /0〉]→∗ T [t0 7→ halt(v0)...tn 7→ halt(vn)] then
there exists an evaluation sequence
T [t0 7→ 〈R (e0),r, ., /0〉]→∗ T [t0 7→ halt(v′0)...tn 7→ halt(v′n)...
tm 7→ halt(v′m)] where m ≤ n and v0 ∼= v′0...vn ∼= v′n. (v ∼= v′ de-
fines standard value equivalence up to alpha-renaming of identifiers
for channels and bound variables.)

Note that the transformed program can have more threads than
the original since the (ParasiteHalt) rule removes halted para-
sites from their host threads.

3. System Implementation
We have implemented our system in Multi-MLton,a parallel ex-
tension of MLton (16), a whole-program optimizing compiler for



Control Transitions

(Constant) 〈κ,r,k, k̄〉 −→ 〈retdκe : k‖k̄〉
(Variable) 〈x,r,k, k̄〉 −→ 〈retdr(x)e : k‖k̄〉
(Closure) 〈λx.e,r,k, k̄〉 −→ 〈retdλx.e,re : k‖k̄〉
(Application) 〈(e1e2),r,k, k̄〉 −→ 〈e1,r,argde2,re : k, k̄〉
(Send) 〈send(e1,e2),r,k, k̄〉 −→ 〈e1,r,svalde2,re : k, k̄〉
(Receive) 〈recv(e),r,k, k̄〉 −→ 〈e,r,recvde : k, k̄〉
(Parasite) 〈parasite(e),r,k, k̄〉 −→ 〈e,r, .,(retdunite : k)‖k̄〉

Return Transitions

(ThreadHalt) 〈retdve : .‖ /0〉 −→ halt(v)
(ParasiteHalt) 〈retdve : .‖k̄〉 −→ 〈k̄〉
(Argument) 〈retdve : argde,re : k‖k̄〉 −→ 〈e,r, f undve : k, k̄〉
(Function) 〈retdve : f undλx.e,re : k‖k̄〉 −→ 〈e,r[x 7→ v],k, k̄〉
(SendValue) 〈retdce : svalde,re : k‖k̄〉 −→ 〈e,r,senddce : k, k̄〉
(SendBlock) 〈retdve : senddce : k‖k̄〉 −→ 〈sblockdc,ve : k‖k̄〉
(ReceiveBlock) 〈retdce : recvde : k‖k̄〉 −→ 〈rblockdce : k‖k̄〉
(LocalCommunication) 〈(rblockdce : k1)‖(sblockdc,ve : k2)‖k̄〉 −→ 〈(retdve : k1)‖(retdunite : k2)‖k̄〉

Figure 3. Local evaluation defining both control and return transitions.

Global Transitions

(LocalEvaluation)
s−→ s′

〈T [t 7→ s]〉 −→ 〈T [t 7→ s′]〉

(Channel)
c fresh

〈T [t 7→ 〈Chan(),r,k, k̄〉]〉 −→ 〈T [t 7→ 〈retdce : k‖k̄〉]〉

(Spawn)
t′ fresh

〈T [t 7→ 〈spawn(e),r,k, k̄〉]〉 −→ 〈T [t 7→ 〈retdunite : k‖k̄〉,t′ 7→ 〈e,r, ., /0〉]〉

(Communication)

s1 = 〈rblockdce : k1‖k̄1〉,s2 = 〈sblockdc,ve : k2‖k̄2〉
s′1 = 〈retdve : k1‖k̄1〉,s′2 = 〈retdunite : k2‖k̄2〉
〈T [t1 7→ s1t2 7→ s2]〉 −→ 〈T [t1 7→ s′1t2 7→ s′2]〉

Figure 4. Global evaluation rules defined in terms of thread states (T ).

Standard ML (SML) (15). MLton compiles ML programs to both
native code as well as C; the results described in this paper are
based on code compiled to C and then passed to gcc version 4.1.2.
Code compiled with MLton exhibits excellent runtime perfor-
mance, often on par, if not superior to, optimized implementations
of other managed languages like Java or Haskell (7).

Multi-MLton extends MLton with multi-core support, library
primitives for efficient lightweight thread creation and manage-
ment, as well as CML (21), an optimized synchronous message
passing extension to SML. In this section, we present the runtime
details of parasitic threads and their implementation within MLton.

3.1 Host threads

Our implementation is targeted at high performance SMP plat-
forms. The implementation supports m host threads running on top
of n processors, where m ≥ n. Each processor runs a single Posix
thread which maintains a queue of host threads. Each thread has a
contiguous stack, allocated on the MLton heap, which can dynami-
cally grow and shrink during execution. The information associated
with the currently executing host thread is cached in the runtime
state associated with each processor to improve performance. On a
context switch, this information is written back to the host thread.

The code to accomplish the context switch is generated by the com-
piler and is highly optimized.

A new host thread, created using spawn , is placed in a processor
queue, implemented as a lock-free data structure, in a round-robin
fashion. When there are no host threads in a processor queue, the
pthread is suspended, to be woken up when a new host thread is
added.

3.2 Parasitic threads

Unlike host threads, parasitic threads are implemented as raw stack
frames. The expression parasite(e) pushes a new frame to
evaluate expression e , similar to a function call. We capture the
stack top at the point of invocation. This corresponds to the caller’s
continuation and is a de facto boundary between the parasite and its
host (or potentially another parasite). If the parasite is not blocked
or preempted, the computation runs to completion and control
returns to the caller, just as if the caller made a non-tail procedure
call. In our implementation, parasite scheduling is round-robin,
with the parasite at the bottom of the host thread the next to run,
but there is no restriction on the specific local scheduling policy
adopted by a host thread.



A stack of parasites occupy each host thread. At any given point,
there is one running parasite, and a number of suspended and
blocked parasites on a host. The running parasite need not be at
the top of the host thread stack, as we explain below. When a new
host thread is created to evaluate an expression, a new parasite is
generated to evaluate the expression. When the parasite bound to a
host completes and there are no other parasite executing on the host
thread, the host thread is reclaimed.

3.3 Compiler support

As mentioned above, when a parasite blocks or preempted, we
resume the parasite at the bottom of the stack. Since this parasite
has other parasites surrounding it, care must be taken to ensure
that it does not overwrite context information associated with these
other parasites; this can happen if it pushes a new stack frame on a
non-tail call or requires additional space for temporaries that cause
its local context to overflow onto the context of some other active
parasite. We utilize the facilities provided by the MLton compiler to
implement highly optimized context switching among the parasites
that takes these issues into account.

MLton emits information associated with every stack frame in-
cluding the size of frames, the location of pointers, etc. This in-
formation is utilized by the garbage collector when it walks the
host thread stack during garbage collection. Hence, for every stack
frame we statically know the maximum size it can grow during
execution. We leverage this information to overcome the problem
of overwriting parasites when a suspended or blocked parasite re-
sumes execution.

When a parasite is created, we insert a new frame associated with
the computation it encapsulates with a maximum frame size offset
from the bottom of the current frame; this frame size is determined
by the compiler, and ensures sufficient space for all temporaries
allocated by the procedure associated with the frame. In addition,
each parasite has extra stack space allocated to it for non-tail calls
it may perform; such calls requires a new frame to be pushed onto
the stack. Compiler analysis of the frame’s continuation provides
a handle on possible non-tail calls the parasite may execute, and
the storage requirements of these calls. The extra stack space al-
located to a parasite provides a coarse approximation to the actual
storage required, up to a predefined limit. When the parasite in-
serts a new frame that would cause an overflow of available stack
space, its frames are copied to the top of the stack. If the new frame
fits into existing space allocated for it, it is inserted at the current
position. We can find out if a frame fits in available space since
the compiler provides the maximum size for this frame. It is pos-
sible even with overflow to not have to copy the parasite. This is
because stack storage above the parasite may be free because the
parasite that previously occupied that space has been moved; in
this case, that space can be immediately reused if needed. MLton
also employs aggressive inlining and loop unrolling optimizations
on computations known to be encapsulated within a parasite to re-
duce additional stack growth. Of course, parasites executing on top
of the stack can insert new frames with no additional overhead.

3.4 Thread Metadata

A host thread’s metadata is augmented with information about the
parasites it holds. We maintain a linked list of parasites with the
head of the list pointing to the parasite on the bottom of the host
thread’s stack and the tail to the top parasite. Hence, resuming the
parasite at the bottom of a host thread’s stack entails a single pointer
indirection. If the parasite at the bottom runs to completion, it
resumes the parasite immediately on top of it, traversing the linked
list. When a parasite is moved to the top of the stack, we update the
host’s metadata to reflect the change.

S4 S1 T1S2

S4 S1 T1S2 S3

S3

Figure 5. Stack with holes and the result of stack compaction
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Figure 6. Preemption and parasite context switch

Each parasite also maintains a small amount of state informa-
tion. Specifically, a parasite maintains a flag indicating whether it
is runnable or blocked waiting for a synchronization action. When a
blocked parasite is encountered during traversal, we skip it and con-
tinue to execute the next suspended parasite. Thus, a host thread’s
stack may be interspersed with holes as shown in Fig. 5 that arise
when parasites requiring more storage than available at their current
location in the host thread’s stack move to the top of the stack. The
figure shows parasite S4 running on top of the stack; S2 and S3 are
in suspended states. Moreover, S1 is in a blocked state waiting for
a synchronization action. Holes are represented as shaded blocks
with no labels. Holes are not repaired as they occur since that may
entail a full stack copy. Instead, they are fixed during garbage col-
lection, or when the stack is grown or shrunk. The latter operation
is performed by the MLton runtime when the stack requirements of
the host thread exceed its initial allocation. When a stack is com-
pacted, we walk the host thread’s metadata and copy the parasites
to the new location. Figure 5 shows the result of compaction where
the stack has no holes.

3.5 Preemption

A parasitic thread represents asynchronous computation from the
perspective of the host which created it. We impose no restriction
on the kinds of computations encapsulated within a parasitic thread;
indeed, as described above, spawn ed computations are themselves
represented as parasites. Cooperative scheduling would enable par-
asites to share a host’s resources, but with increased program com-
plexity, and loss of fairness guarantees due to deadlock or livelock.
To avoid these issues, parasites are scheduled preemptively on a
host.

To preempt a parasite, the stack top register is updated to point to
the top of the next parasite waiting to be run. We leverage compiler
support to restore other registers. Thus, the preempted parasite
becomes suspended. Notably, this context switch operation does
not involve any copying. If the newly scheduled parasite performs
a non-tail call that causes its execution context to overflow its
allocated region on the host thread’s stack, the parasite is copied
to the top of the host thread stack; the hole it leaves behind is
compacted as described earlier.

Fig. 6 shows the steps involved in preempting a parasite. Initially,
the figure shows parasite S1 is running with suspended parasites
below it on the stack. On a timer interrupt, S1 is suspended and
parasite S4 is resumed, skipping the blocked parasite S5 . As long
as S4 does not insert a new frame, it continues to run. If S4 grows
and moves to top, it leaves in its wake a hole, which is eventually
compacted.
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3.6 Synchronous communication

Parasites interact by sending messages synchronously to each other
over typed channels. A synchronous communication is satisfied
only when it pairs up with a matching communication action.
If there is no matching communication available on the channel,
the parasite becomes blocked, and resumes only once a matching
communication becomes available.

Fig. 7 shows the effect of performing a send on a channel with
no blocked receivers. The channel C1 has a queue of blocked
senders waiting for matching receive operations. Each element on
the channel is a value that is being sent and a reference to the
blocked parasite. There are no blocked receivers on this channel.
Part 1 of the figure shows the parasite S1 invoking a send on this
channel with a value v . Since there are no blocked receivers, we
add the value v and the reference to S1 on the channel, as shown
in part 2 of the figure. Host T1 ’s stack top is updated to point to
the next parasite in the linked list of parasites as maintained by the
host thread. Here, the next parasite is the parasite at the bottom,
S3 . T1 can continue to run other parasites on the stack as long as
suspended parasites are available. The host thread blocks when all
its parasites are blocked. S1 is unblocked when it pairs up with a
matching receive operation. Fig. 8 shows parasite S4 receiving a
value on the channel C1 . S4 unblocks S1 and receives the value v
sent by S1 .

For a receive operation with no senders already available on
the channel, the parasite enqueues a reference to itself and a ref-
erence to the as-of-yet unknown value. A matching sender para-
site changes the state of the blocked parasite to suspended from
blocked, and stores the value of the communication on the pro-
vided reference. When the parasite resumes, it uses the values of
the reference as the argument to its continuation.

Notably, unblocking a blocked parasite on a matching commu-
nication does not involve locking the target thread and can concur-
rently be performed without affecting the execution of target thread.
If the parasites were extended to support CML style selective com-
munication, an atomic memory operation would be necessary and
sufficient to validate one of the communication choices and invali-
date others.

3.7 Interaction with GC

Just like host threads in the language runtime, the garbage collector
must be aware of parasitic threads and the objects it references.
But since parasites always exist as a part of the host thread’s stack,
the garbage collector can treat parasites as regular frames; the
collector is aware of the active portion of the parasite’s context (that
information is associated with each frame), and the existence of
holes in the stack, both of which can be skipped during collection.

3.8 Specialization of Communication

Our semantics expressed a useful optimization that allowed a direct
hand-off of values between communicating parasites located in the
same thread. We leverage Reppy’s compiler analysis for special-
ization of channels to discover write-once channels (19). A typical
programming idiom of CML is to create a local channel on which
a result is propagated between an asynchronous computation to its
parent. Since parasites never migrate, such communications can be
optimized to a local value exchange.

4. Results
To evaluate the performance of our raw message passing prim-
itives, we consider micro-benchmarks that test parasite perfor-
mance against CML’s threads. In addition to these micro bench-
marks, we evaluate parasitic threads on some well-known commu-
nication intensive benchmarks: Barnes-hut N-body simulation,
Mandelbrot set fractal generation and Raytrace . The parallel
versions of these programs were encoded in a master-slave model,
where a master thread partitions the work into equal sized chunks
and distributes the work among n workers, where n is proportional
to the number of available processors. The master communicates
asynchronously with workers since there is no a priori order in
which workers initiate requests for new work from the master.

4.1 Evaluation

The benchmarks were run on 16-way AMD Opteron 865 server
with 8 processors, each containing two symmetric cores, and 32 GB
of total memory, with each CPU having its own local memory of 4
GB. Access to non-local memory is mediated by a hyper-transport
layer that coordinates memory requests between processors. MLton
uses 64-bit pointer arithmetic, SSE2 instructions for floating point
calculations, and is IEEE floating point compliant.

4.1.1 Micro-benchmarks

We consider three micro-benchmarks to quantify parasite perfor-
mance (see Fig. 9). The first Non-blocking creates n threads,
each of whom write a value to a channel. We then consider two
different implementations to read these values: (1) creating n CML
threads each of whom read a single element; and (2) creating n par-
asites on a single host thread, each of whom reads a single element.
Parasites significantly outperform the threading implementation, up
to 13X speedup when n = 10K.

Our second benchmark, Blocking , is similar to the first except
that receivers execute before senders. This benchmark measures the
cost of rescheduling blocked parasites against the cost of schedul-
ing blocked threads. Our results are similar to the non-blocking
case.

The first two benchmarks measures the impact of a parasite im-
plementation on channel contention. Our last benchmark N-way
quantifies contention on thread queues. We create n senders each
of whom writes to a separate channel. We then perform n receive



Figure 9. Speedup for parasitic implementation of micro bench-
marks compared to corresponding CML thread implementations on
16 cores.

Figure 10. Speedup for Mandelbrot, Raytrace and Barnes-hut
benchmarks implemented using parasites compared to a corre-
sponding asynchronous implementation using CML threads.

operations on these n distinct channels. Lightweight threading cre-
ates n threads, and the parasite version creates n parasites; there are
no costs due to blocking. As before, we see that scheduling over-
heads of n threads has a notable impact on scalability compared to
using parasites.

4.1.2 Parallel Benchmarks

Compared to single core performance, Mandelbrot exhibits
14.2X speedup, Raytrace shows 14.7X speedup, and Barnes-Hut

demonstrates 8X 1 speedup when run on 16 cores using parasites.
We choose inputs for our benchmarks so they ran on the order of
several minutes. Fig. 10 shows parasite performance compared to
an asynchronous version (running on the same number of cores)
using lightweight CML threads.

We also present salient profile data for parasite and asynchronous
versions of the benchmarks on 16 core runs in Table 1. Spawns
represent the number of host threads and parasites created in the
parasitic version and the number of threads spawned in the asyn-
chronous CML version, resp. The Avg. size column shows the
average stack size of parasites, and the average stack size of threads
in the asynchronous CML version, resp. Comm is the number of
communication actions performed within an asynchronous compu-
tation, %Blocked represents the fraction of parasites that block on

1 Barnes-Hut requires synchronization between slave threads and the master
at every iteration of the benchmark.

a synchronous communication at least once, and %Preempted is
a measure of the number of times a parasite is preempted on aver-
age. For example, a %Preempted value of 200 indicates that every
parasite is preempted twice on average.

The statistics reveal that parasites consume substantially less
memory than CML’s lightweight threads, often requiring less than
100 bytes to execute. This occurs because parasites are mostly en-
gaged in communication actions, and often block; allowing them to
use a host’s resources (essentially, acting as a passive agent when
blocked) helps reduce overall thread management and scheduling
overheads. The preemption column indicates that parasites are not
always short-lived, and often perform enough computation to trig-
ger a context-switch, indicating that a cooperative scheduling pol-
icy may be ineffective or non-trivial to implement efficiently, re-
quiring yield points to be well-placed.

Our benchmark results show a general decay in performance
of the asynchronous (non-parasite) implementation in comparison
to an implementation based on parasites. This decay is a result
of the overheads incurred due to CML thread creation, manage-
ment and context switches. Although CML threads are extremely
lightweight, on the order of 500 bytes, scheduling and synchroniza-
tion exact a toll on performance. Parasitic threads, are on average an
order of magnitude smaller than CML threads, are often zero-copy
schedulable, and require significantly less underlying synchroniza-
tion.

A thread blocked on a channel, needs to be placed on a processor
queue when it is unblocked. Unfortunately, this requires synchro-
nization on the processor queue the thread wishes to be enqueued
upon. Hence, for each pair of communications, an atomic action
(implemented via a low-level processor lock operation) is required
on the processor queue 2. The contention on the processor queue
increases significantly with an increase in the number of com-
municating threads performing concurrent communication, even
though such threads may be communicating over distinct channels.
These overheads quickly erode the gains obtained by on-demand
work distribution via asynchronous computation. In contrast, a par-
asite performing a matching communication directly unblocks the
blocked parasite, without any need for locking. It is this feature that
contributes most notably to its improved relative performance.

4.1.3 Swerve Case Study

Swerve consists of a collection of modules that communicate using
CML’s message-passing operations. There are four critical modules
of interest: (a) a listener that processes incoming requests; (b) a
file processor that handles access to the underlying file system;
(c) a network processor that communicates with the client and,
(d) a timeout manager that regulates the amount of time allocated
to serve a request. There is a dedicated listener for every distinct
client, and each request received by a listener is delegated to a
server thread responsible for managing that request. Requested files
are broken into chunks and packaged as messages sent back to the
client.

Our case study focused on the file and network processors. A new
thread is spawned for each client request. This thread subsequently
spawns one thread each for file server and network processor. File
processor traverses the local directory to get the file, splits the
file into chunks and sends it to the network processor. Network
processor gets the file chunk and sends it over the socket to the
client. These components also take care of handling connection
termination errors, file unavailability, etc. They also synchronize
with the timeout manager to poll for timeout signals.

2 The use of lock-free queues alleviates this slightly, but once contention
increases performance decreases correspondingly.



Avg size (bytes) % %
Benchmark LOC Spawns Parasites Threads Comm Blocked Preempted
Mandelbrot 151 4122 40 892 4115 99 90
Ray trace 2512 619 44 1284 618 94 43
Barnes-hut 1251 16016 43 1184 15875 75 24
Swerve 23671 21747 208 3104 72231 82 38

Table 1. Benchmark statistics on 16 core runs.

An important aspect of the implementation is that the file proces-
sor and the network processor proceed in lock step. The file pro-
cessor reads a chunk of the file and performs a synchronous send
to the network processor. Only after the network processor has re-
ceived the chunk can the next chunk be processed. Typically, net-
work communication is slower than disk I/O. Hence, file processing
often blocks waiting for network processors to signal readiness to
receive the chunk.

We make use of parasites to achieve asynchrony in this scenario.
A wrapper function converts I/O actions to synchronous commu-
nication. This ensure that the file read is preemptible and does
not block the entire thread. The file processor asynchronously pro-
cesses reading the file with respect to the communication it under-
takes with the network processor.

The file is read in 8KB chunks. Each chunk read is performed
asynchronously. Since the chunks are being read from a stream, the
parasites must read the files in order, and send it to the network
processor in the same order. This synchronization between the
parasites is implemented using our synchronous communication
primitives.

1 fun chunkProcessor (prevFileCh , nextFileCh ,
2 prevNWch , nextNWch)
3 l e t
4 v a l _ = r e c v (prevFileCh)
5 v a l chunk = read (fileStrm , chunkSize)
6 i n
7 send (nextFileCh , ());
8 r e c v (prevNWCh );
9 send (nwProcCh , chunk );

10 send (nextNWCh , ())
11 end

The file processor creates one parasitic thread for every file
chunk that evaluates the procedure shown above. Since file chunk
reads have to happen in order, the parasitic thread waits for the
previous parasitic thread to finish reading this chunk (line 4). After
it is unblocked, it reads the chunk (line 5), and finally signals the
next waiting parasite that it can continue (line 6). This ensures an
ordering in the chunk reads. The same synchronization mechanism
is used for sending the chunk to the network processor (line 8).
Performing chunk reads asynchronously in this way allows overlap
of file reads with network communication, reducing the bottleneck
in the original implementation.

We tested the system with file sizes from a few kilobytes to 20
MB, and compared the parasite implementation with the original
version of Swerve executing on 16 cores using only synchronous
communication. With our changes incorporated into the system,
we see a 25% overall raw speed up in the server when using 16
cores. Additionally, the throughput of the file processor increased
75% due to the reduction in the time each file descriptor was kept
open. The statistics presented in Table 1 correspond to the server
processing 10 requests of a file size of 16 MB.

We then compared our system against a Swerve implementation
where all parasites were replaced by CML threads, effectively im-

Figure 11. Speedup for Swerve compared to a corresponding
asynchronous implementation using lightweight threads on 16
cores.

plementing asynchrony through lightweight threading; the results
are shown in Fig. 11. The parasitic version remains considerably
faster than the asynchronous version and speed up increases as the
file size is increased. More significantly, lightweight threading ac-
tually results in poorer performance compared to the synchronous
version, as described above. Since the chunk size is 8KB, the asyn-
chronous threading version creates 2048 threads to read a 16 MB
file, each of size 3 KB on average (See Table 1); in contrast, the
memory overhead associated with each parasite is just 208 bytes.
The cost of synchronization on thread and channel queues among
these asynchronous threads becomes substantial, and leads to no-
table degradation as file size increases. These overheads outweigh
any benefits that accrue from asynchronous evaluation. On the
other hand, the parasite implementation profitably exploits asyn-
chrony without thread management and scheduling overheads.

5. Related Work
There are a number of languages and libraries which support vary-
ing kinds of message-passing styles. Systems such as MPI (13; 25)
support per-processor static buffers, while CML (21), Erlang (3),
F# (24), and MPJ (4) allow for dynamic channel creation. Al-
though MPI supports two distinct styles of communication, both
asynchronous and synchronous, not all languages provide primi-
tive support for both. For instance, Erlang’s fundamental message
passing primitives are asynchronous, while CML’s primitives are
synchronous. We believe the benefits of parasitic threads can be
leveraged regardless of the underlying fundamental message pass-
ing primitive used.

There has been much interest in lightweight threading models
ranging from using runtime managed thread pools such as those
found in C# (22) and the Java util.concurrent package (12), to
continuation-based systems found in functional languages such as
Scheme (17; 11), CML (21), Haskell (8), and Erlang (3). Parasitic



threads can be viewed as a form of lightweight threading, though
there are a number of key differences. First, from the perspective
of a host thread, initiating a parasitic thread is akin to making a
procedure call; the parasite executes using the same resources as
the host, and has its computation initially scheduled before the host
as well. Second, compiler analysis is critical to enable parasitic
threads to be managed with zero-copy overheads when possible,
even when they run in the middle of a host thread’s stack. Third,
because parasitic threads are attached to a host, they incur no
locking overheads for scheduling.

The parasitic threads described here are similiar in some re-
spects to the lightweight threads found in Capriccio (26). Threads
in Capriccio are comprised of small, non-contiguous stacks that can
grow or shrink at runtime. Like our approach, Capriccio relies on
compiler support to limit the amount of stack space that is preallo-
cated to a thread. While a non-contiguous stack implementation is
feasible even for parasitic threads, it would have entailed substan-
tial re-engineering of the MLton compiler and runtime; fortunately,
as our benchmark results indicate, most parasitic threads consume
a very small amount of stack space, often less than hundred bytes.
More significantly, unlike parasitic threads, Capriccio does not sup-
port specialized message passing primitives. In Multi-Mlton, com-
munication operators are aware of parasites, and can unblock wait-
ing parasites quickly, with no synchronization overheads.

Kilim (23), is an actor-based (1) model implemented in Java us-
ing lightweight threading. Kilim assumes a programming environ-
ment that utilizes no shared memory and no locks. In compari-
son, parasitic threads impose no constraints on the code they exe-
cute. Additionally, Kilim requires copying of state associated with
each lightweight fiber on a context switch. Parasitic threads are de-
signed to incur no copy overheads on context switches whenever
possible. Fibers and the actors associated with Kilim actors are co-
operatively scheduled and thus impact fairness guarantees.

Parasites also share some similarity to dataflow (10; 18) lan-
guages, insofar as they represent asynchronous computations that
block on dataflow constraints; in our case, these constraints are
manifest via synchronous message-passing operations. Unlike clas-
sic dataflow systems, however, parasites are not structured as nodes
in a dependency graph, and maintain no implicit dependency rela-
tionship with the thread that created it. CML (21) supports buffered
channels with asynchronous sends. While parasites can be used to
encode asynchronous sends, unlike buffered channels, they provide
a general solution to encode arbitrary asynchronous computation.

Work stealing (5; 2) is a well-known technique for load balanc-
ing multithreaded tree-structured computations, and has been used
effectively in languages like Cilk (6) to improve performance. Intu-
itively, work stealing parasitic threads would appear to be beneficial
since a given host may have many suspended parasites ready to ex-
ecute, but which cannot. However, allowing parasites to be stolen
by other threads would substantially complicate the overall system
design. This is partly because, (a) unlike a typical work-stealing
scheme, parasites are associated with an execution context, and (b)
additional synchronization among threads would be required to mi-
grate a parasite from one host to another.

6. Conclusions

This paper describes a novel threading mechanism called parasites
that enables lightweight asynchronous computation. The key dis-
tinguishing feature of parasites is its ability to execute using the re-
sources of a host thread. This mechanism enables higher-level pro-
grammability without imposing additional scheduling and thread
management overheads.
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