
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

Sal: Multi-modal Verification of Replicated Data Types
Pranav Ramesh

Indian Institute of Technology,
Madras

Chennai, India
cs22b015@smail.iitm.ac.in

Vimala Soundarapandian
Indian Institute of Technology,

Madras
Chennai, India

cs19d750@smail.iitm.ac.in

KC Sivaramakrishnan
Indian Institute of Technology,

Madras
Chennai, India

kcsrk@cse.iitm.ac.in

Abstract
Designing correct replicated data types (RDTs) is challenging
because replicas evolve independently and must be merged
while preserving application intent. A promising approach
is correct-by-construction development in a proof-oriented
programming language such as F★, Dafny and Lean, where
desired correctness guarantees are specified and checked as
the RDTs are implemented. Recent work Neem [19] proposes
the use of replication-aware linearizability (RA linearizabil-
ity) [20] as the correctness condition for state-based CRDTs
and mergeable replicated data types (MRDTs), with automa-
tion in the SMT-aided, proof-oriented programming lan-
guage F★. However, SMT-centric workflows can be opaque
when automation fails to discharge a verification condition
(VC), and they enlarge the trusted computing base (TCB).

We present Sal, a multi-modal workflow to design and
verify state-based CRDTs and MRDTs in Lean. Sal combines
(i) kernel-checkable automation with proof reconstruction,
(ii) SMT-aided automation when needed, and (iii) interactive
theorem proving for remaining proof obligations. When au-
tomated verification fails, we leverage Lean’s property-based
testing to automatically generate and visualize counterex-
amples, helping developers debug incorrect specifications
or implementations. We report on our experience verifying
a suite of 13 CRDTs and MRDTs with Sal: 69% of verifica-
tion conditions are discharged by kernel-verified automation
without SMT, and counterexamples automatically expose
subtle bugs such as the well-known enable-wins flag anom-
aly. The codebase for Sal is open-sourced, and is available
at https://github.com/fplaunchpad/sal.

CCS Concepts: • Software and its engineering→ Soft-
ware verification and validation; • Computing method-
ologies → Distributed algorithms.

Keywords: CRDT, Verification, Lean, Multi-Modal Proofs,
Counterexample Generation

1 Introduction
Local-first collaboration tools allow users to continue work-
ing while offline, synchronizing in the background when
connectivity returns [10]. This programming model requires
replicated data types whose states can evolve independently
at each replica and later be merged without violating applica-
tion intent. Conflict-Free Replicated Data Types (CRDTs) [18]
andMergeable ReplicatedData Types (MRDTs) [8] arewidely

used to implement such replicated state. However, design-
ing correct RDTs is subtle. Even well-known designs such
as Replicated Growable Arrays (RGA) [9] have had serious
anomalies discovered after publication1.

Replication-aware (RA) linearizability [20] provides a prin-
cipled correctness condition for CRDTs, relating replica exe-
cutions to a sequential explanation of updates. Prior work,
Neem [19], showed that RA linearizability can be extended to
MRDTs and also be reduced to a set of 24 verification condi-
tions (VCs) amenable to automation. Neem implements this
approach in F★, an SMT-aided, proof-oriented programming
language. Developers implement RDTs in F★ and leverage
SMT automation to discharge the RA-linearizability VCs au-
tomatically. In practice, however, SMT-centric verification
workflows can be difficult to iterate on. When automation
fails, developers often get little actionable information be-
yond an unproved VC, and debugging incorrect implemen-
tations remains manual and time-consuming.
This debugging experience contrasts sharply with ev-

eryday software development, where programmers iterate
quickly by writing code, running tests, inspecting failing
traces, and refining implementations. Understanding why
a particular VC fails requires a laborious “proof-debugging”
workflow: developers add intermediate assertions (assert)
or assumptions (admit) and progressively push them deeper
to localize the failing reasoning step. When the root cause
is an unexpected interaction between definitions and the
SMT encoding, additional tuning (e.g., controlling unfold-
ing or solver limits) may be needed. Moreover, SMT-aided
proofs can be brittle: small changes may cause previously
discharged VCs to fail. Relying on an external SMT solver
also increases the trusted computing base.

We present Sal, a verificationworkflow for RA-linearizability
in Lean that addresses these issues by making failures ac-
tionable. At the core of Sal is a staged Lean tactic that pri-
oritizes proof reconstruction (e.g., simplifying goals and in-
voking grind [12]) and falls back to SMT-aided automation
(lean-blaster [7]) only when necessary.When a VC is false,
Sal uses property-based testing (Plausible [13]) to automat-
ically synthesize small counterexamples and a ProofWid-
gets [1]-based visualizer to render the corresponding exe-
cution trace, enabling a test-like debugging loop for RDT
verification. In our evaluation over a suite of CRDTs and

1
https://martin.kleppmann.com/2019/03/25/papoc-interleaving-

anomalies.html#errata

1

https://github.com/fplaunchpad/sal
https://martin.kleppmann.com/2019/03/25/papoc-interleaving-anomalies.html#errata
https://martin.kleppmann.com/2019/03/25/papoc-interleaving-anomalies.html#errata

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

Conference’17, July 2017, Washington, DC, USA Ramesh et al.

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

MRDTs, Sal discharges most VCs without SMT and auto-
matically rediscovers subtle bugs such as the well-known
enable-wins flag anomaly (Table 2).

This paper makes the following contributions:

1. A Lean formalization of RA-linearizability VCs for a
suite of state-based CRDTs and MRDTs.

2. A counterexample-generation and visualization work-
flow for failing VCs, based on property-based testing
in Lean.

3. Sal, a custom tactic that attempts proof reconstruction-
based automation first and falls back to SMT-aided
automation, with interactive proving as a last resort.

4. An evaluation across a suite of CRDTs and MRDTs,
including cases where counterexamples expose subtle
bugs (Table 2).

2 Background
We assume familiarity with replicated data types and focus
on the specific models and specifications used in this paper.
State-based CRDTs reconcile replicas via a deterministic
two-way merge 𝜇 (𝑣1, 𝑣2); a common sufficient condition for
convergence is that the merge function 𝜇 is the join of a
semilattice.

Mergeable Replicated Data Types (MRDTs) [8] avoid em-
bedding causal metadata in the state of the RDT. Instead,
they assume a versioned storage model (e.g., Git-like histo-
ries) that can provide the lowest common ancestor (LCA)
for a three-way merge. This interface often yields compact
implementations: for example, a counter MRDT can be𝑂 (1),
whereas state-based counter CRDTs require Ω(𝑛) space in
the number of replicas [2].

Formally, an MRDT implementation for a data type 𝜏 [19]
is a tuple D𝜏 = ⟨Σ, 𝜎0, do,merge, rc⟩, where:

• Σ is the set of states, 𝜎0 ∈ Σ is the initial state.
• do : Σ×T×R×𝑂𝜏 → Σ implements update operations

parameterized by timestamp in T , replica id in R and
operations in 𝑂𝜏 .

• merge : Σ× Σ× Σ → Σ is a three-way merge function.
• rc ⊆ 𝑂𝜏 × 𝑂𝜏 is the conflict resolution policy to be

followed for concurrent conflicting update operations.
The relation is interpreted as a partial order where
(𝑜1, 𝑜2) ∈ rc means that 𝑜1 is ordered before 𝑜2.

For example, the increment-only counter MRDT is defined
as follows:

• Σ = N with 𝜎0 = 0
• 𝑂 = {inc}
• do(𝜎, _, _, inc) = 𝜎 + 1
• merge(𝜎𝑙𝑐𝑎, 𝜎1, 𝜎2) = 𝜎𝑙𝑐𝑎+(𝜎𝑙𝑐𝑎−𝜎1)+(𝜎𝑙𝑐𝑎−𝜎2) – the
merged state is the sum of the states of the LCA and
the difference between the LCA and the two versions.

• rc = ∅ – no conflicting operations.

An observed-removed set (OR-set) MRDT [8] is defined as
follows:

• Σ = P(T × 𝐸) where 𝐸 is the set of elements with
𝜎0 = ∅

• 𝑂 = {add𝑒 , rem𝑒 |𝑒 ∈ 𝐸}
• do(𝜎, 𝑡, _, add𝑒) = 𝜎 ∪ {(𝑒, 𝑡)}
• do(𝜎, _, _, rem𝑒) = 𝜎 \ {(𝑒, 𝑖) | (𝑒, 𝑖) ∈ 𝜎}
• merge(𝜎𝑙𝑐𝑎, 𝜎1, 𝜎2) = (𝜎𝑙𝑐𝑎 ∩ 𝜎1 ∩ 𝜎2) ∪ (𝜎1 \ 𝜎𝑙𝑐𝑎) ∪

(𝜎2 \ 𝜎𝑙𝑐𝑎) – the merged state contains elements com-
mon to all three versions (unchanged elements remain;
deleted elements are not included), as well as elements
added in either version since the LCA.

• rc = {(rem𝑒 , add𝑒) |𝑒 ∈ 𝐸} – remove is ordered before
add for the same element, and hence, adds win over
concurrent removes.

We verify RDT correctness using replication-aware (RA)
linearizability [20], which makes merge semantics explicit
while retaining a linearizability-style reading. Neem [19]
reduces RA linearizability for MRDTs and state-based CRDTs
to a finite set of verification conditions (VCs) over do,merge,
and rc. Sal focuses on discharging these VCs effectively and
on producing actionable feedback when automation fails.
Lean 4 [16] is a theorem prover and functional program-

ming language with a small trusted kernel; proofs can be
checked as proof terms by the kernel. Lean’s metaprogram-
ming support enables custom tactics and domain-specific
automation, which is useful for VC-heavy developments like
ours.
Lean offers several automation techniques with different

tradeoffs. We rely on the following:
• dsimp and aesop: simplification and proof search for
routine goals.

• grind [12]: SMT-style automation with proof recon-
struction, producing kernel-checkable proof terms.

• lean-blaster [7]: an SMT backend (Z3) that is effec-
tive on many VCs (notably those with lambdas), but
without proof reconstruction; it therefore enlarges the
trusted computing base.

Sal stages automation accordingly: we first attempt re-
constructible automation and only fall back to SMT when
needed.

3 Sal framework
In this section, we describe the Sal multi-modal verification
framework for RA-linearizability in Lean. We start with the
challenge of designing data structures conducive to auto-
mated verification in Lean.

3.1 Data structures for automated verification
Many RDTs rely fundamentally on sets and maps. For ex-
ample, the OR-set MRDT maintains a set of timestamped
elements; map-based MRDTs and CRDTs require reasoning
about extensional equality of mappings. However, Lean’s

2

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

Sal: Multi-modal Verification of Replicated Data Types Conference’17, July 2017, Washington, DC, USA

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

standard library provides data structures optimized for dif-
ferent purposes: the mathematical Set type uses propositions
(𝛼 → Prop) suitable for manual proofs, while computational
maps like RBMap and HashMap emphasize efficient itera-
tion but complicate extensional reasoning.
For automated verification, we use decidable representa-

tions that tools like grind can reason about effectively. We
therefore implement custom set and map interfaces inspired
by F★’s verification-oriented designs. Our sets use boolean-
valued membership functions rather than propositions, since
they typically contain datatypes where equality is decidable.

abbrev set (a:Type) [DecidableEq a] := a → Bool

This representation is decidable by construction: since
membership returns a boolean, automation can directly com-
pute and compare set operations without requiring proof
objects to reason about decidability. We requireDecidableEq
for element types, ensuring all operations remain computable.
This is a natural condition which is satisfied across the RDTs
we verify with this framework.

Similarly, our map interface makes the domain explicit to
enable extensional reasoning:

structure map (key:Type) [DecidableEq key]

(value:Type) where

mappings: key → value

domain: set key

Two maps are equal when their domains and mappings
agree. Since the mapping is restricted to the domain key

which supports decidable equality, the map supports exten-
sional equality.
Critically, we annotate all definitions and lemmas with

@[simp, grind] attributes and provide grind_pattern hints.
This builds a domain-specific rewrite database: when grind
encounters goals involving set membership, union, or map
selection, it automatically applies the appropriate lemmas
without manual guidance. These annotations trade the gener-
ality of Lean’s standard library for automation-friendliness,
enabling grind to discharge most VCs involving sets and
maps without SMT assistance (Table 2). This is analogous to
SMT patterns in F★.

3.2 Counterexample generation in Lean
When a VC fails during verification, understanding why it
failed is critical for debugging. In SMT-centric workflows
like F★, a failed VC provides little actionable feedback: de-
velopers must manually construct execution traces, add in-
termediate assertions, and progressively narrow down the
source of the failure. This process is labor-intensive and re-
quires significant expertise. In contrast, Sal leverages Lean’s
property-based testing framework, Plausible [13], to auto-
matically generate concrete counterexamples when VCs fail,
transforming opaque proof failures into tangible test cases
that developers can inspect and debug.

abbrev concrete_st := Int × Bool

inductive app_op_t : Type where

| Enable

| Disable

abbrev op_t:= N × N × app_op_t

/-timestamp, rid, operation-/

def do_ (s:concrete_st) (o: op_t) : concrete_st

:= match o with

| (_, (_, .Enable)) => (Prod.fst s + 1, true)

| (_, (_, .Disable)) => (Prod.fst s, false)

def merge_flag (l a b: concrete_st) :=

if Prod.snd a && Prod.snd b then true

else if not (Prod.snd a) && not (Prod.snd b) then

false

else if Prod.snd a then Prod.fst a > Prod.fst l

else Prod.fst b > Prod.fst l

def merge (l a b: concrete_st) : concrete_st

:= (Prod.fst a + Prod.fst b - Prod.fst l ,

merge_flag l a b)

Figure 1. Buggy enable-wins flag MRDT implementation

𝑒!: (1, r!, enable)

𝑣"

𝑣! 𝑣#(1,T)

(1,F) 𝑣$

𝑒#: (2, r#	, enable)
(0,F)

(1,F)

(2,T)

𝑒&: (3, r!, disable)

𝑣&

𝑣'

𝑒$: (4, r#, disable)

𝑣(

(1,T)

(2,T)

LCA=(0,F)

LCA=(1,T)

Figure 2. An enable-wins flag execution: both replicas see
a disable at the end, yet merging produces (2, true) at 𝑣6,
incorrectly reporting the flag as enabled.

We demonstrate this approach using the enable-wins flag
MRDT, a shared boolean flag that represents a disabled or
enabled state. The desired specification is that in the case of
concurrent enable and disable operations, the enable wins.
This is expressed as disable

rc−→ enable, meaning that when
we read a replica’s state, the flag should be true if there exists
an enable operation that is not causally preceded by a disable.

Consider the enable-wins flag implementation in Figure 1,
which tracks the number of concurrent enables using a
counter and uses this counter to determine the flag’s state
after merging. This implementation contains a subtle bug.
The bug manifests in executions where enable operations
are followed by disables on each replica, yet the merged

3

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

Conference’17, July 2017, Washington, DC, USA Ramesh et al.

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

state incorrectly reports the flag as enabled. Figure 2 shows
such an execution: when merging 𝑣3 and 𝑣5 (with LCA 𝑣1),
the counter value of 𝑣5 exceeds 𝑣1, causing merge_flag to
compute the new flag to be true in 𝑣6. However, all enable
events in this execution are subsequently disabled on their
respective replicas, violating the enable-wins specification!
When verifying the RA-linearizability VCs, one of the VCs
fails. However, finding such counterexamples manually is
challenging, particularly for more complex RDTs with larger
state spaces.

To automate counterexample discovery, we leverage Plau-
sible [13], a property-based testing tool for Lean inspired by
QuickCheck [3]. Plausible requires that VCs be expressed
as decidable propositions – that is, properties that can be
algorithmically evaluated to true or false. Once decidability
is established, Plausible generates random test inputs and
checks whether they satisfy the VC. When a violation is
found, Plausible reports the failing input, such as:

postcondition violated for input

(disable, (enable, (enable, (disable, (0, false)))))

While this output identifies a counterexample, diagnosing
the cause of the failure is difficult. To address this, we imple-
ment an execution trace visualizer using Lean’s ProofWid-
gets framework [1]. The visualizer instruments the do and
merge operations to record intermediate states and opera-
tions, producing a step-by-step execution trace.
Sal, like Neem [19], includes VCs that check whether

concurrent executions can be RA-linearized to the same final
state. This is achieved using bottom-up linearization, where
we peel off events in a bottom-up manner to construct a
linearization order. In the failed VC, we attempt to prove:

𝜇
(𝑣1︷ ︸︸ ︷
𝑒1 (0, 𝑓 𝑎𝑙𝑠𝑒),

𝑣3︷ ︸︸ ︷
𝑒3 (𝑒1 (0, 𝑓 𝑎𝑙𝑠𝑒)),

𝑣5︷ ︸︸ ︷
𝑒1 (𝑒4 (𝑒2 (0, 𝑓 𝑎𝑙𝑠𝑒)))

)
=

𝑒3
(
𝜇 (𝑒1 (0, 𝑓 𝑎𝑙𝑠𝑒)︸ ︷︷ ︸

𝑣1

, 𝑒1 (0, 𝑓 𝑎𝑙𝑠𝑒)︸ ︷︷ ︸
𝑣1

, 𝑒1 (𝑒4 (𝑒2 (0, 𝑓 𝑎𝑙𝑠𝑒)))︸ ︷︷ ︸
𝑣5

)
)

where 𝜇 is themerge operation, 𝑒1 . . . 𝑒4 are events, and each
tuple (Int × Bool) constitutes a state. The state at 𝑣6 in Fig-
ure 2 is obtained by merging 𝑣3 and 𝑣5, with 𝑣1 as LCA. This
corresponds to the LHS of the VC. This state should match
the state obtained by first merging 𝑣1 and 𝑣5, with 𝑣1 as LCA,
and then applying 𝑒3, through bottom-up linearization.
Figure 3 illustrates the visualization for the enable-wins

flag that violates this VC. The states and operations are
shown in blue and yellow boxes, respectively, and corre-
spond to concrete_st and and op_t, respectively, from Fig-
ure 1. The LCA trace and state is shown at the top. In both
cases, the LCA state is 𝑣1. The left panel (a) shows the execu-
tion trace for the LHS, which evaluates to (2, true), and the
right panel (b) shows the RHS, which evaluates to (2, false).
By comparing these traces, developers can quickly identify

(a) (b)

Figure 3.Visualization for the failed VC for the buggy enable-
wins flag in Figure 1.

that the bug arises from the counter-based merge logic fail-
ing to account for subsequent disables. This visualization
transforms the abstract VC failure into a concrete debugging
scenario, analogous to examining a failing unit test trace in
conventional software development.
The combination of automatic counterexample genera-

tion and interactive visualization significantly accelerates
the debugging workflow. Instead of manually inspecting
failed VCs and constructing hypothetical execution traces,
developers receive concrete, visualizable counterexamples
automatically. This approach also complements the multi-
modal proof strategy: when grind or lean-blaster fail to
discharge a VC, Plausible can quickly determine whether the
failure stems from an incorrect implementation (producing a
counterexample) or requires manual interactive proof (when
no counterexample exists).

3.3 Visualizing functional sets
While the enable-wins flag uses simple concrete types (inte-
gers and booleans), many RDTs are set-based. Our custom
sets (Section 3.1), designed as functional predicates a → Bool

for verification, pose a visualization challenge: they are ab-
stract, infinite by nature, and do not support iteration or
enumeration. Yet both counterexample debugging and gen-
eral trace inspection require displaying actual set contents
as concrete element lists.
To bridge this gap, we implement a universe tracking

mechanism. During execution, we maintain a finite HashSet
4

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

Sal: Multi-modal Verification of Replicated Data Types Conference’17, July 2017, Washington, DC, USA

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

Figure 4. OR-set execution visualized using ProofWidgets

of all elements that have been added or removed. When
visualizing the set state, we only check membership for ele-
ments in this finite universe, which suffices to characterize
the set’s observable behavior. The implementation augments
our abstract sets with a concrete universe:

structure set_with_universe (𝛼: Type) [ToString 𝛼]

[DecidableEq 𝛼] [Hashable 𝛼] where

_set : set 𝛼

_universe : HashSet 𝛼

Figure 4 demonstrates this approach on an OR-set execu-
tion with concurrent add and remove operations on element
3. The visualization shows concrete set states using the nota-
tion #[(1, 3)]#, where the tuple contains the timestamp and
element. The left branch removes element 3 (resulting in the
empty set #[]#), while the right branch adds element 3 (re-
sulting in #[(1, 3)]#). Both branches converge to #[(1, 3)]#,
confirming that adds win over concurrent removes as spec-
ified. Operations are displayed in yellow boxes, and users
provide operation labels via format strings.

This mechanism works uniformly for both correct execu-
tions and counterexamples, enabling developers to inspect
set-based RDT behavior regardless of whether they are de-
bugging a failed VC or validating a correct implementation.

3.4 Multi-modal proofs using the Sal tactic
The Sal tactic orchestrates a staged proof strategy that
adapts to VC complexity. As described in Section 2, Lean pro-
vides multiple automation techniques with different trade-
offs between power, trust, and performance. The Sal tactic
attempts these approaches sequentially, prioritizing proof
reconstruction before falling back to more powerful but less
trustworthy methods.

The tactic proceeds in the following stages:
1. dsimp + grind (DG) – This combination applies sim-

plification followed by grind’s SMT-style automation
with proof reconstruction, producing kernel-checkable
proof terms while maintaining the smallest TCB. We
exclude aesop [14] due to prohibitively high verifica-
tion times on RDT VCs.

2. lean-blaster (LB) –WhenDG fails, lean-blaster
encodes the goal to Z3. While more powerful for VCs
with higher-order functions and lambdas, this sacri-
fices proof reconstruction and enlarges the TCB. We
select it over Lean-SMT [15] and Lean-Auto [17] for
its superior support for higher-order functions.

If both automated stages fail and no counterexample was
generated (Section 3.2), the VC requires interactive prov-
ing. Developers must then manually construct proofs using
Lean’s tactic language. To prevent runaway automation, the
Sal tactic incorporates a heartbeat-based timeout mecha-
nism that bounds the execution time of each stage. When a
timeout expires, control returns to the user, allowing them
to either increase the limit or proceed directly to interactive
proving.

4 Evaluation
Table 1 compares F★ and Lean across several dimensions rel-
evant to RDT verification. Lean’s rich tactic system enables
the multi-modal workflow central to Sal, while built-in coun-
terexample generation (Plausible) and proof reconstruction
support actionable debugging and reduced TCB. However,
Lean’s standard library data structures are designed for math-
ematical reasoning rather than automation, necessitating the
custom sets and maps described in Section 3.1.

Table 2 shows the results of verifying 13 RDTs (312 VCs in
mtotal) using Sal. Across all benchmarks, 215 VCs (68.9%)
are discharged by dsimp+grind, a lightweight tactic with
proof reconstruction verified by Lean’s kernel. An additional
87 VCs (27.9%) require lean-blaster (SMT-based), and only 9
VCs (3%) fall back to interactive proving. This demonstrates
that the majority of RA-linearizability VCs can be verified
without enlarging the TCB through SMT solvers.

We observe notable differences betweenCRDTs andMRDTs.
MRDTs generally require less SMT than CRDTs due to their
simpler three-way merge; for example, PN-counter MRDT
needs no lean-blaster while PN-counter CRDT requires it for
2 VCs plus 6 interactive proofs. The 9 interactive proofs are
concentrated in map-based RDTs, reflecting that Lean’s map
automation is less mature than its set automation.
The enable-wins flag MRDT demonstrates the value of

counterexample generation. This implementation contains
a known bug from prior work [19]; when the correspond-
ing VC fails, Plausible automatically generates a concrete
counterexample, which our ProofWidgets-based visualizer
renders for inspection (Figure 3). This workflow transforms
opaque VC failures into actionable debugging scenarios.

5 Related work
Multi-modal verification. Loom [5] is a recent work on
multi-modal verification for data structures in Lean, using
Dijkstra Monads to model effectful operations on mutable
arrays and counters. Sal adapts this multi-modal approach

5

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

Conference’17, July 2017, Washington, DC, USA Ramesh et al.

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

Table 1. Comparing F★ and Lean for verifying RA Linearizability

Criterion F★ Lean

Automation Direct SMT solving via Z3. Automation often works
out of the box at scale.

Multiple tactic-based tools (aesop, grind,
lean-blaster), less effective on large proof
goals.

Multi-Modal
Proofs

Limited tactic system; most proofs require SMT
solver.

Rich tactic system allows combining automated and
interactive proving.

Counterexamples No counterexample generation; reports only success
or failure.

Plausible generates counterexamples for decidable
properties.

Data Structures Rich set and map libraries designed for verification. Mathematical data structures; custom sets and maps
needed for automation (Section 3.1).

Trustworthiness No proof reconstruction; relies on trusting Z3. Proof reconstruction for most tools; kernel verifies
proofs. Uncertified proofs marked sorry.

Table 2. Number of VCs discharged by the Sal tactic (total
VCs = 24 per RDT). DG refers to dsimp + grind, and LB refers
to lean − blaster. #Contains known bug; counterexample au-
tomatically generated (Section 3.2).

RDT DG LB Fallback to ITP

Increment-only counter MRDT 24 0 0
PN-counter MRDT 24 0 0
OR-set MRDT 3 21 0
Enable-wins flag MRDT # 9 14 0
Efficient OR-set MRDT 2 22 0
Grows-only set MRDT 24 0 0
Grows-only map MRDT 22 0 2
Replicated growable array MRDT 15 9 0
Multi-valued register MRDT 24 0 0
Increment-only counter CRDT 24 0 0
PN-counter CRDT 16 2 6
Multi-valued register CRDT 24 0 0
OR-set CRDT 4 19 1

to RDT verification in Lean, but leverages conventional tac-
tics rather than monadic effects since RDTs are monotonic
and non-mutable. Unlike Loom’s focus on sequential data
structures, Sal targets the unique challenges of replicated
systems with merge operations and causal reasoning.

CRDT verification. Several approaches verify CRDT cor-
rectness. Isabelle/HOL has been used to verify strong even-
tual consistency [6], but requires substantial manual proof
effort. Neem [19] automates RA-linearizability verification
in F★ using SMT solvers, achieving high automation but at
the cost of an enlarged TCB and opaque failures. Verifx [4]
provides a specialized language for RDTs with built-in veri-
fication, trading generality for domain-specific automation.
Sal distinguishes itself through kernel-verified automation
(69% of VCs discharged by proof reconstruction), automated

counterexample generation when verification fails, and inter-
active visualization of execution traces–capabilities absent
in prior CRDT verification tools.
Counterexample generation. Property-based testing

tools like QuickCheck [3], QuickChick [11] (Coq), and Plau-
sible (Lean) generate test inputs for executable properties.
Sal leverages Plausible for decidable VCs, but extends it
with domain-specific visualization for RDT execution traces,
including handling of functional set representations through
universe tracking (Section 3.3). This bridges property test-
ing and formal verification, transforming failed VCs into
debuggable counterexamples.

6 Conclusion
We present Sal, a multi-modal verification framework for
replicated data types in Lean that addresses key limitations of
SMT-centric verification workflows. By staging automation–
prioritizing kernel-verified proof reconstruction via grind,
falling back to SMT-based lean-blaster, and supporting
interactive proving for complex obligations–Sal achieves
69% kernel-verified automation across 13 CRDTs andMRDTs
while minimizing the trusted computing base. When automa-
tion fails, automated counterexample generation via Plau-
sible and interactive visualization through ProofWidgets
transform opaque proof failures into actionable debugging
scenarios, as demonstrated by rediscovering the enable-wins
flag bug.

Our experience reveals patterns in RDT verification:MRDTs
generally require less SMT than CRDTs due to simpler three-
waymerge, andmap-based reasoning remainsmore challeng-
ing than set-based reasoning for current Lean automation.
Future work includes extending our custom data structure li-
brary to improve map automation, developing optimizations
for the staged tactic based on VC patterns, and evaluating
Sal on larger-scale RDT developments.

6

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

Sal: Multi-modal Verification of Replicated Data Types Conference’17, July 2017, Washington, DC, USA

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

References
[1] EdwardW. Ayers, Mateja Jamnik, andW. T. Gowers. 2021. A Graphical

User Interface Framework for Formal Verification. In 12th International
Conference on Interactive Theorem Proving (ITP 2021) (Leibniz Interna-
tional Proceedings in Informatics (LIPIcs), Vol. 193), Liron Cohen and
Cezary Kaliszyk (Eds.). Schloss Dagstuhl – Leibniz-Zentrum für Infor-
matik, Dagstuhl, Germany, 4:1–4:16. doi:10.4230/LIPIcs.ITP.2021.4

[2] Sebastian Burckhardt, Alexey Gotsman, Hongseok Yang, and Marek
Zawirski. 2014. Replicated data types: specification, verification, opti-
mality. SIGPLAN Not. 49, 1 (Jan. 2014), 271–284. doi:10.1145/2578855.
2535848

[3] Koen Claessen and John Hughes. 2000. QuickCheck: a lightweight
tool for random testing of Haskell programs. SIGPLAN Not. 35, 9 (Sept.
2000), 268–279. doi:10.1145/357766.351266

[4] Kevin De Porre, Carla Ferreira, and Elisa Gonzalez Boix. 2023. VeriFx:
Correct Replicated Data Types for theMasses. In 37th European Confer-
ence on Object-Oriented Programming (ECOOP 2023) (Leibniz Interna-
tional Proceedings in Informatics (LIPIcs), Vol. 263), Karim Ali and Guido
Salvaneschi (Eds.). Schloss Dagstuhl – Leibniz-Zentrum für Informatik,
Dagstuhl, Germany, 9:1–9:45. doi:10.4230/LIPIcs.ECOOP.2023.9

[5] Vladimir Gladshtein, George Pîrlea, Qiyuan Zhao, Vitaly Kurin, and
Ilya Sergey. 2026. Foundational Multi-Modal Program Verifiers. Proc.
ACM Program. Lang. 10, POPL, Article 77 (Jan. 2026), 32 pages. doi:10.
1145/3776719

[6] Victor B. F. Gomes, Martin Kleppmann, Dominic P. Mulligan, and
Alastair R. Beresford. 2017. Verifying strong eventual consistency in
distributed systems. Proc. ACM Program. Lang. 1, OOPSLA, Article
109 (Oct. 2017), 28 pages. doi:10.1145/3133933

[7] Input Output Global. 2024. Lean-blaster: An SMT-based proof automa-
tion tactic for Lean 4. GitHub repository. https://github.com/input-

output-hk/Lean-blaster

[8] Gowtham Kaki, Swarn Priya, KC Sivaramakrishnan, and Suresh Ja-
gannathan. 2019. Mergeable replicated data types. Proc. ACM Pro-
gram. Lang. 3, OOPSLA, Article 154 (Oct. 2019), 29 pages. doi:10.1145/
3360580

[9] Martin Kleppmann, Victor B. F. Gomes, Dominic P. Mulligan, and
Alastair R. Beresford. 2019. Interleaving anomalies in collaborative text
editors. In Proceedings of the 6th Workshop on Principles and Practice
of Consistency for Distributed Data (Dresden, Germany) (PaPoC ’19).
Association for Computing Machinery, New York, NY, USA, Article 6,
7 pages. doi:10.1145/3301419.3323972

[10] Martin Kleppmann, Adam Wiggins, Peter van Hardenberg, and Mark
McGranaghan. 2019. Local-first software: you own your data, in
spite of the cloud. In Proceedings of the 2019 ACM SIGPLAN Inter-
national Symposium on New Ideas, New Paradigms, and Reflections
on Programming and Software (Athens, Greece) (Onward! 2019). As-
sociation for Computing Machinery, New York, NY, USA, 154–178.
doi:10.1145/3359591.3359737

[11] Leonidas Lampropoulos, Michael Hicks, and Benjamin C. Pierce. 2019.
Coverage guided, property based testing. Proc. ACM Program. Lang. 3,
OOPSLA, Article 181 (Oct. 2019), 29 pages. doi:10.1145/3360607

[12] Lean Community. 2024. The grind tactic. Lean 4 Reference Manual.
https://lean-lang.org/doc/reference/latest/The--grind--tactic/

[13] Lean Community. 2024. Plausible: A counterexample generator for
Lean 4. Lean Reservoir. https://reservoir.lean-lang.org/@leanprover-

community/plausible

[14] Jannis Limperg and Asta Halkjær From. 2023. Aesop: White-Box Best-
First Proof Search for Lean. In Proceedings of the 12th ACM SIGPLAN
International Conference on Certified Programs and Proofs (Boston, MA,
USA) (CPP 2023). Association for Computing Machinery, New York,
NY, USA, 253–266. doi:10.1145/3573105.3575671

[15] Abdalrhman Mohamed, Tomaz Mascarenhas, Harun Khan, Haniel
Barbosa, Andrew Reynolds, Yicheng Qian, Cesare Tinelli, and Clark
Barrett. 2025. lean-smt: An SMT Tactic for Discharging Proof Goals

in Lean. In Computer Aided Verification: 37th International Conference,
CAV 2025, Zagreb, Croatia, July 23-25, 2025, Proceedings, Part III (Zagreb,
Croatia). Springer-Verlag, Berlin, Heidelberg, 197–212. doi:10.1007/
978-3-031-98682-6_11

[16] Leonardo de Moura and Sebastian Ullrich. 2021. The Lean 4 The-
orem Prover and Programming Language. In Automated Deduction
– CADE 28: 28th International Conference on Automated Deduction,
Virtual Event, July 12–15, 2021, Proceedings. Springer-Verlag, Berlin,
Heidelberg, 625–635. doi:10.1007/978-3-030-79876-5_37

[17] Yicheng Qian, Joshua Clune, Clark Barrett, and Jeremy Avigad. 2025.
Lean-Auto: An Interface Between Lean 4 and Automated Theorem
Provers. In Computer Aided Verification, Ruzica Piskac and Zvonimir
Rakamarić (Eds.). Springer Nature Switzerland, Cham, 175–196.

[18] Marc Shapiro, Nuno Preguiça, Carlos Baquero, and Marek Zawirski.
2011. Conflict-Free Replicated Data Types. In Stabilization, Safety,
and Security of Distributed Systems, Xavier Défago, Franck Petit, and
Vincent Villain (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg,
386–400.

[19] Vimala Soundarapandian, Kartik Nagar, Aseem Rastogi, and KC Sivara-
makrishnan. 2025. Automatically Verifying Replication-Aware Lin-
earizability. Proc. ACM Program. Lang. 9, OOPSLA1, Article 111 (April
2025), 27 pages. doi:10.1145/3720452

[20] Chao Wang, Constantin Enea, Suha Orhun Mutluergil, and Gustavo
Petri. 2019. Replication-aware linearizability. In Proceedings of the
40th ACM SIGPLAN Conference on Programming Language Design
and Implementation (Phoenix, AZ, USA) (PLDI 2019). Association for
Computing Machinery, New York, NY, USA, 980–993. doi:10.1145/
3314221.3314617

7

https://doi.org/10.4230/LIPIcs.ITP.2021.4
https://doi.org/10.1145/2578855.2535848
https://doi.org/10.1145/2578855.2535848
https://doi.org/10.1145/357766.351266
https://doi.org/10.4230/LIPIcs.ECOOP.2023.9
https://doi.org/10.1145/3776719
https://doi.org/10.1145/3776719
https://doi.org/10.1145/3133933
https://github.com/input-output-hk/Lean-blaster
https://github.com/input-output-hk/Lean-blaster
https://doi.org/10.1145/3360580
https://doi.org/10.1145/3360580
https://doi.org/10.1145/3301419.3323972
https://doi.org/10.1145/3359591.3359737
https://doi.org/10.1145/3360607
https://lean-lang.org/doc/reference/latest/The--grind--tactic/
https://reservoir.lean-lang.org/@leanprover-community/plausible
https://reservoir.lean-lang.org/@leanprover-community/plausible
https://doi.org/10.1145/3573105.3575671
https://doi.org/10.1007/978-3-031-98682-6_11
https://doi.org/10.1007/978-3-031-98682-6_11
https://doi.org/10.1007/978-3-030-79876-5_37
https://doi.org/10.1145/3720452
https://doi.org/10.1145/3314221.3314617
https://doi.org/10.1145/3314221.3314617

	Abstract
	1 Introduction
	2 Background
	3 Sal framework
	3.1 Data structures for automated verification
	3.2 Counterexample generation in Lean
	3.3 Visualizing functional sets
	3.4 Multi-modal proofs using the Sal tactic

	4 Evaluation
	5 Related work
	6 Conclusion
	References

