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ABSTRACT

KEYWORDS: Distributed applications, Mergeable types, Three-way merge,

Cassandra, Git

Programming loosely connected distributed applications is a challenging endeavour.

Loosely connected distributed applications such as geo-distributed stores and

intermittently reachable IoT devices cannot afford to coordinate among all of the replicas

in order to ensure data consistency due to prohibitive latency costs and the impossibility

of coordination if availability is to be ensured. Thus, the state of the replicas evolves

independently, making it difficult to develop correct applications. Existing solutions to

this problem limit the data types that can be used in these applications, which neither offer

the ability to compose them to construct more complex data types nor offer transactions.

In this work, we describe Banyan, a programming model and a system for developing

loosely connected distributed applications. Data types in Banyan are equipped

with a three-way merge function à la Git to handle conflicts. Banyan provides

isolated transactions for grouping together individual operations which do not require

coordination among different replicas. We present a formal operational semantics for

Banyan over a core Git-like store. To our knowledge, our semantics is the first formal

description of the semantics of Git-like store equipped with three-way merges. We prove

the correctness of a novel form of garbage collection using our semantics. Thanks to

our semantics, we have also discovered bugs in the merge semantics of Irmin, a widely

used distributed database built on the principles of Git. Banyan programming model

iii



can be instantiated over any weakly consistent distributed store. To illustrate this, we

instantiate Banyan over Cassandra, an off-the-shelf industrial-strength distributed store.

Several benchmarks, including a distributed build-cache, illustrates the effectiveness of

the approach.
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GLOSSARY

The following are some of the commonly used terms in the thesis:

Distributed
applications

An application which runs on more than one machine and communicate
over the network

Sequential
datatype

Datatypes such as lists, arrays, etc which can only safely be used under
single threaded execution.

Write-skew It is an anomaly in database that occurs with snapshot isolation. Two
transactions cocurrently read a dataset, update them and commit them
concurrently, without seeing other’s updates. It creates a write-write
conflict.

Throughput Number of database operations performed per second

Latency Time taken to perform one database operation

Continuous
Integration
System

Continuous Integration system is a regression testing framework
that helps automate the integration of code changes from multiple
contributors into a single software project.

Sticky
availability

Ensuring availability by keeping the connection between a client and a
particular logical node of the distributed server persistent for a given
session.

Three-way
merge

A merging technique in a version control system which computes the
difference between the two objects, with respect to a common ancestor
object. The merge is performed based on changes made in the two
objects after the point of diversion.
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CHAPTER 1

INTRODUCTION

Modern web applications are supposed to be fast and always on. It is essential

because they support time-critical operations like bank transactions, Internet gaming,

collaborative document editing, etc. These applications typically host their data over

multiple machines (replicas) for three reasons: improving throughput, lower user-

perceived latency, and tolerating partial failures. Since there are multiple machines

that can address the same requests, we can distribute the requests optimally among them

to provide higher throughput. Replicas that are located near to the client provide faster

accessibility, hence lower latency. Furthermore, since all replicas are equivalent in terms

of data they provide, if one of the replicas goes down, others can handle the requests

directed towards that replica, providing fault tolerance for partial failures. Such a design

of systems is called as distributed system. The following section describes some of the

definitions that would help understand the nature of applications running on distributed

systems.

1.1 CONSISTENCY

Consistency in a distributed database refers to an expectation that any change in the

database should be reflected in all the replicas in a certain specified manner. It is a safety

property that deals with the correctness of data over all the replicas. There are several

kinds of consistency levels designed to ensure the consistency of data among the replicas.

These levels affect the time after which a particular write can be seen or read from the

store over all the replicas. Typically, stronger the consistency level, the easier it is for the



application developer to develop correct applications, but more expensive it is in terms

of latency, throughput, and fault tolerance for the system to ensure the consistency level.

Some of these consistency levels are described below:

Sequential Consistency: It implies that all the operations appear to take place in some

total order and that order is consistent with the order of operation on each replica. This

order may not be the same as the one in which the operations are executed, but it should

be agreed upon by all the replicas involved.

Causal Consistency: Causal consistency requires causally related operations to be

ordered in the same manner over all the replicas. Two operations could be considered as

causally related if they follow a happens-before relationship (Lamport, 2019). Operations

that are not causally related can be performed in any order. For example a write that uses

the value of a previous read is said to be causally happen after that read.

Eventual Consistency: Eventual consistency does not guarantee any kind of ordering

for the operations but it does ensure that the final value at all the replicas is eventually

the same. This is the weakest form of consistency for distributed databases.

1.2 ISOLATION LEVELS

While consistency talks about the order in which individual operations must be made

visible, isolation levels describe the expectations from a set of operations executed by

the client (a transaction). It includes serializability, snapshot isolation, parallel snapshot

isolation, Monotonic Atomic View, Read Committed and other relavent ones to what

Banyan provides. A few of them are described below:
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Serializability: Serializability ensures that in a transaction, the order of operations

performed over all the replicas over any data item are the same as they were executed.

If the set of concurrent operations performed are serializable, then it would mean that

the final outcome would be the same as if the operations were performed in some serial

order of transaction.

Snapshot isolation: Snapshot isolation ensures that a replica that needs to perform a

transaction would read the last committed value in the database at the time it started

the transaction. Concurrent updates made over the same committed value by different

replicas which would result in a conflict won’t be allowed.

1.3 TRADE-OFFS IN DISTRIBUTED SYSTEMS

Strong consistency and isolation levels ensure that before every new operation, the effect

of the previous operation is reflected over all the replicas. This makes it easier to design

correct applications. However, strong consistency and isolation levels adversely affects

the performance of the system. The CAP theorem and the PACELC theorem described

in this section draws the relationship between the consistency, availability, and latency in

the distributed systems.

CAP: As shown in figure 1.2, CAP (Gilbert and Lynch, 2002) stands for Consistency-

Availability-Partition tolerance. It states that if the distributed system suffers a partition,

i.e., if the two replicas are unable to communicate with each other, then we can either

choose the system to remain strongly consistent or available. Strong consistency requires

immediate visibility of an update at every replica, which is not possible under a partition.

3



Hence, client operations will have to be blocked, resulting in the loss of availability.

However, the choice is not a binary one since there are multiple levels of consistency. A

system can be designed for which the availability depends upon the level of consistency

it ensures. A strong consistency level would adversely affect the availability, whereas

high availability all the time would mean using the weakest form of consistency.

Figure 1.1: CAP theorem: Under partition, a distributed system would have to trade-off
between consistency and availability

PACELC: PACELC theorem (Abadi, 2012) builds upon the CAP theorem. It states that

in the presence of network Partition, we need to choose between system Availability

and Consistency, Else if the system is not partitioned the choice is between Latency

and Consistency.

Unlike CAP theorem, which assumes that a distributed system would always experience

a network partition, PACELC points out that there is a trade-off that we need to consider

even without partition. A distributed system that is designed to ensure the availability of

the system in case of a device failure would replicate its data. This means that if there

is no network partition, an update over one of the hosts has to be replicated to others.

4



Figure 1.2: PACELC theorem: In case of partition choice is between Availability and
Consistency otherwise, Latency and Consistency

Replication affects the latency depending upon the network bandwidth, congestion, etc.,

and until the replication is completely done, the system remains inconsistent. This trade-

off between consistency and latency is important to make the system highly available

even in normal conditions.

1.4 EVENTUALLY CONSISTENT DATABASES

Ideally, we would like to have a system that is highly available and exhibits low latency.

However, like the CAP and PACELC theorems suggest, creating a system with strong

consistency, high availability and low latency is not possible. This limitation has spurred

the development of commercial weakly consistent distributed databases for wide-area

applications such as DynamoDB (DynamoDB, 2021), Cassandra (Cassandra, 2021),

CosmosDB (CosmosDB, 2021) and Riak (Riak, 2021). However, developing correct

applications under weak consistency is challenging due to the fact that the operations

may be reordered in complex ways even if issued by the same session (Burckhardt

et al., 2014). This makes it difficult to develop applications using eventually consistent

databases, as it may lead to conflicts during convergence. Methods like using Convergent

Replicated Data Types and Mergeable Replicated Data Types can help in resolving these

5



conflicts.

1.4.1 Convergent Replicated Data Types (CRDT)

One of the major concerns of a distributed application is the consistency of data. CRDTs

provide a set of data structures that ensures conflict-free convergence. It is because all

the operations performed over these data structures are commutative. While CRDTs

help in creating practical applications over weakly consistent databases, it provides

only a limited set of data structures to work with. Data structures like Sets, Maps, and

Graphs can be used as CRDTs as the operation performed over them are commutative.

However, other important data structures such as a queue and stack can not be used as

their operations like push and pop do not commute. There are several CRDT based

built-in methods by which eventually consistent databases try to resolve these conflicts,

such as:

Last-Writer-Wins: When multiple replicas converge, it is possible that more than one

replica have updates for the same location. Last-Writer-Wins (LWW) chooses the value

of the replica which made the last update. LWW typically uses the timestamp of the

replicas at the time of write operation to compare the timings of the updates. LWW is

used by the Cassandra distributed database to resolve conflicts.

Multi-valued data structures: These are the data structures that can store multiple

values together. When there are conflicting updates, such data structures can keep the

values from all the replicas, and give the user a chance to choose the final value based on

application requirements. Dynamo DB uses this method to resolve the conflict.
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These methods help in successfully converging the values over all the replicas, there

is only a limited set of data types which offer such measures. Moreover, such built-in

conflict resolution leads to anomalies such as write-skew (Berenson et al., 1995) which

makes it difficult (and often impossible) to develop complex applications with rich

behaviors. Furthermore, CRDTs are not composable. Unlike ordinary data types which

allow arbitrary contents through parametric polymorphism (generics), CRDTs do not

permit such composition. Container CRDTs such as CRDT sets usually can only hold

primitive elements. In particular, CRDT set with CRDT counter will not be a CRDT.

Such a data structure will have to be implemented from scratch.

1.4.2 Mergeable Replicated Data Types (MRDTs)

Mergeable Replicated Data Types (MRDTs) (Kaki et al., 2019) gives a way to

automatically derive correct distributed variants of ordinary data types. The inductively

defined data types are equipped with an invertible relational specification which is used

to derive a three-way merge function à la Git (Git, 2021), a distributed version control

system. MRDT tracks the point of diversion between two versions of data and uses this

information to resolve the conflicts using the three-way merge method. Infact, a CRDT

that stores the entire history acts exactly like an MRDT. That said, three-way merge

certainly makes it easier to develop the applications which is the point of MRDTs. In the

following sections, we describe the working of MRDTs with an example of a counter

data type and the limitations of MRDT in creating the distributed applications.
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1.4.3 Counter data type with MRDT

We take an example of an application built using the counter data type. Such a data type

can have several use cases like calculating the number of accesses a certain web page has

had. Since the web page could be hosted over several replicas of the server, a distributed

counter would help us accumulate the results from all over the replicas and maintain the

count without strong coordination.

Figure 1.3: MRDT Counter: Initial values at Replica1 and Replica2. Replica2 is a
clone of Replica1

In this example, we consider that there are two replicas Replica1 and Replica2, shown

in figure 1.3. The initial counter value at Replica1 is 0. Replica2 is the clone of

Replica1, meaning it is branched out of Replica1. Hence the values at both the

replicas at this stage are the same.

Figure 1.4: MRDT Counter: Individual updates at Replica1 and Replica2
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Now consider that there are several hits to our web page hosted at each replica. Separately

updating the counter requires a simple increment to the existing values. Change in state

of the two replicas is shown in figure 1.4.

Figure 1.5: MRDT Counter: Merging Replica1 into Replica2

At this point, if Replica2 wants to update the value at its end with the total number of

hits on the web page over all the replicas, then it will merge its counter value with that

of Replica1. Figure 1.5 shows that the final value is the result of the merge operation

performed using the latest value at the Replica1 (r1), the latest value at the Replica2

(r2), and the Lowest Common Ancestor (l) in the history of the two replicas.

Note that LCA is found from the history of the updates stored by the MRDTs. We will

see in the chapter 5 how MRDTs represent this history. The merge for counter datatype

is defined as: v = (r1− l) + (r2− l) + l. The total count is the sum of the counts at the

lowest common ancestor and the counts in each of the replicas since.

Replica2 gets the value 3, which is the total number of updates made over both the

replicas. After few more updates at the local sites, Replica1 wants to update its counter

value by including the updates from Replica2. For this, Replica1 needs to merge the
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values from Replica2. Figure 1.6 shows the newer updates and the merge result.

Figure 1.6: MRDT Counter: Merging Replica2 into Replica1 after some individual
updates

MRDT implicitly computes the LCA of two replicas for every merge operation.

Replica1 gets the value as 6, which is the total number of updates made over all

the replicas. If Replica2 again merges with Replica1, then both the replicas would

converge to the same value. Figure 1.7 shows the final convergence.

Figure 1.7: MRDT Counter: Convergence of Replica1 and Replica2 after merging
them without any new updates.

1.4.4 Limitations

What does it take to make MRDTs practically viable for creating high-throughput,

low-latency distributed applications such as the ones that would be implemented over

10



industrial-strength distributed databases? There are several key challenges to getting

there. While MRDTs define merge semantics for operations on individual objects, Kaki

et al. do not describe the semantics of composition of operations on multiple objects, i.e.,

transactions. Transactions are indispensable for building complex applications. Strongly

consistent distributed transactions suffer from unavailability (Abadi, 2012), whereas

highly-available transactions (Bailis et al., 2013a) combined with weakly consistent

operations often lead to incomprehensible behaviours (Viotti and Vukolić, 2016). In

addition, MRDTs impose a significant burden on the storage and network layer to

be able to support three-way merges to reconcile conflicts. Kaki et al. implement

MRDTs over Irmin (Irmin, 2021), a Git-like store for arbitrary objects, not just files.

As with Git, in order to reconcile conflicts, three-way merges in MRDTs require the

storage layer to record enough history to be able to retrieve the lowest common ancestor

(LCA) state. For a distributed database, the performance of the network layer is quite

important for throughput and latency. Industrial-strength distributed databases use gossip

protocols (Kermarrec and van Steen, 2007) to quickly disseminate updates in order to

ensure fast convergence between the replicas. Git comes equipped with a remote protocol

for transferring objects between remote sites using push and pull mechanisms. However,

the cost of transferring objects between two git remotes (replicas) using the Git remote

protocol is proportional to the number of objects in the store. Figure 1.8 shows the time

taken to pull 10k byte-sized objects successively from a remote repository into an initially

empty local repository. The initial pull fetches 10k objects, and each subsequent pull

fetches another 10k objects until the local repository has 100k objects. So, to pull 50k

objects, five pull operations are performed subsequently pulling 10k objects each. All the
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clients perform the pull operation concurrently and the time taken is the total time taken

from the start of the operation till the end of the last operation. Observe that even though

the same number of objects are being fetched in each pull, the performance worsens as

the number of objects in the local repository increases. The performance is also worse,

with multiple clients pulling concurrently. Since the pull may update the state of multiple

objects in order to be correct with respect to multi-object updates, the system will have

to remain unavailable for multiple seconds when the pull is in progress. Clearly, the Git

remote protocol is not suitable for high-throughput, low-latency distributed applications.
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Figure 1.8: Performance of Git pull: Each data point indicates the time to pull 10k byte-
sized additional objects. It shows how the time taken to pull same number of
objects increases as the number of objects in the local repository increases.

1.5 OBJECTIVE AND SCOPE OF THE THESIS

In this work, we present Banyan, a programming model for building loosely connected

distributed applications that provide coordination-free transactions over MRDTs. Banyan

provides per-object causal consistency, and the transaction model is built on the principles
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of Git-like branches. Rather than relying on Git remote protocol for dissemination across

replicas, we instantiate Banyan on top of Cassandra, an industrial-strength, off-the-shelf

distributed store (Lakshman and Malik, 2010). Unlike Git, Banyan does not expose

named branches explicitly and ensures eventual convergence. Importantly, Banyan only

relies on eventual consistency, and it can be instantiated on any eventually consistent

key-value store. We do not utilize the strong consistency features of Cassandra in our

implementation. Extensive evaluation shows that Banyan makes it easy to build complex

high-performance distributed applications.

1.6 ORGANIZATION OF THE THESIS

The rest of the thesis is organized as follows. We motivate the Banyan model by

designing a distributed build cache in the next chapter. Chapter 3 describes the Banyan

programming model. Chapter 4 describes the formal operational semantics of the banyan

programming model and proves the correctness of a novel form of garbage collection that

is essential for the practical viability of Banyan. Chapter 5 describes the instantiation of

Banyan on Cassandra, an off-the-shelf distributed database. We evaluate the instantiation

of Banyan on top of Cassandra in chapter 6. Chapter 7 and 9 present the related work

and conclusions, respectively.
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CHAPTER 2

MOTIVATION: A DISTRIBUTED BUILD CACHE

In this chapter we motivate Banyan programming model by building a distributed build

cache. A distributed build cache enables a team of developers and/or a continuous

integration (CI) system to reuse the build artefacts between several builds. Such a facility

is provided by modern build tools such as Gradle (Gradle, 2021) and Bazel (Bazel, 2021),

which can store and retrieve build artefacts from cloud storage services such as Amazon

S3 or Google Cloud Storage. Consider the challenge of building a distributed build

cache for OCaml packages. Let us assume that the builds are reproducible – that is,

independent builds of the same source files yield the same artefact. In addition to storing

the artefacts, it would be useful to gather statistics about the artefacts such as creation

time, last accessed time and number of cache hits. Such information may be used in the

cache eviction policy or replicating artefacts across several sites for increased availability.

While an artefact itself is reproducible, care must be taken to ensure that the statistics

are consistent. For the sake of exposition, we will assume that all the build hosts use the

same operating system and compiler version.

2.1 MERGEABLE TYPES

Let us build this distributed cache using Banyan, implementing it in OCaml. At its heart,

Banyan is a distributed key-value store. The keys in Banyan are paths, represented as

list of strings. The values are algebraic data types equipped with a merge function that

reconciles conflicting updates. In this example, we will use the following schema:

[<pkg_name>; <version>; <kind>; <filename>] for the keys, where <kind> is either



lib indicating binary artefact or stats indicating statistics about the artefact. The value

type is given below:

type timestamp = float
type value =

| B of bigarray (* binary artefact *)
| S of timestamp (* created *)

* timestamp (*last accessed *) * int (*hits*)

The value is either a binary artefact or a statistics triple where a timestamp is a

Unix timestamp represented as seconds elapsed since the start of clock on January

1, 1970. Figure 2.1 shows the slice of the build cache key-value store. The cache

stores the artefacts (cmx and cmi files) produced as a result of compiling the source file

lwt_mutex.ml from the package lwt version 5.3.0. The build cache also stores the

statistics for every artefact. The example shows that the lwt_mutex.cmx was accessed

25 times.

Key Value
/lwt/5.3.0/lib/
lwt_mutex.cmx B(0x…)

/lwt/5.3.0/lib/
lwt_mutex.cmi B(0x…)

/lwt/5.3.0/stats/
lwt_mutex.cmx

S(1593518762.20,
  1593518822.36, 25)

Figure 2.1: A slice of the build cache key-value store

When several developers and/or CI pipelines are running concurrently on different hosts,

they may attempt to add the same artefact to the store, or, if the artefact is already present,

retrieve it from the cache and update the corresponding artefact statistics. It would be

unwise to synchronize across all of the hosts for updating the store, and suffer the latency
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hit and potential unavailability. Hence, Banyan only writes an update to one of the

replicas. The replicas asynchronously share the updates between each other, and resolve

conflicting updates using user-defined three-way merge function. The merge function

for the build cache is given below.

Merge function for build cache

1 let merge (lca: value option) (v1: value) (v2: value)
: value =

2 match lca , v1, v2 with
3 | None , B a1, B a2 (* no lca *)
4 | Some (B _), B a1, B a2 -> assert (a1 = a2); B a1
5 | None , S(c1,la1 ,h1), S(c2,la2 ,h2) -> (* no lca *)
6 S(min c1 c2, max la1 la2 , h1 + h2)
7 | Some(S(_,_,h0)), S(c1,la1 ,h1), S(c2,la2 ,h2)->
8 S(min c1 c2, max la1 la2 , h1 + h2 - h0)
9 | _ -> failwith "impossible"

The key idea here is that Banyan tracks the causal history of the state updates such that

it is always known what the lowest common ancestor (LCA) state is, if one exists. This

idea is analogous to how Git tracks history with the notion of branches. The merge

function is applied to the LCA and the two conflicting versions to determine the new

state. In the case of build cache, since the builds are reproducible, the binary artefacts

will be the same (line 4). The only interesting conflicts are in the statistics. The merge

function picks the earliest creation timestamp, latest last accessed timestamp, and the

sum of the new cache hits since the LCA in the two branches and the original value at

the LCA, if present (lines 5–8).

Figure 2.2 shows how the merge function helps reconcile conflicts. The arrows capture

the happens-before relationship between the states. Assume that replica r2 starts off by

cloning the branch corresponding to replica r1. Subsequently both r1 and r2 performed
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local updates. The remote updates are reconciled by calling the merge function on each

of the conflicting values. The value v5 is obtained with merging the values v3 and v4

with v1 as LCA.

S(15.3,16.5,3)

S(15.3,16.5,3)

Replica r1 Replica r2

clone

S(15.3,20.1,7)

merge

v1

v2

S(15.3,20.1,9)v5

merge (Some v1) v3 v4

local updates

S(15.3,17.5,5)

local updates
v3

v4

S(15.3,20.1,9)
merge

v6
merge (Some v4) v4 v5

Figure 2.2: Merging conflicting statistics updates.

Importantly, observe that the cache hit count is 9 in v5 which corresponds to the sum of

3 hits in the initial state, 4 additional hits in r1 and 2 additional hits in r2. At this point,

r1 has all the changes from r2, but the vice-versa is not true. Subsequently, when r1 is

merged into r2, both the replicas have converged.

2.2 TRANSACTIONS

Now that we know the mergeable value type for the build cache, let us see how we

can compile lwt_mutex.ml using Banyan. Figure 2.3 shows the code for compiling
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lwt_mutex.ml.

let compile s (* session *) =
let ts = Unix.gettimeofday () in
let lib = ["lwt";"5.3.0";"lib"] in
let stats = ["lwt";"5.3.0";"stats"] in
refresh s >>= fun () ->
read s (lib @ ["lwt_mutex.cmx"]) >>= fun v ->
match v with
| None ->

let (cmx , cmi , o) = ocamlopt "lwt_mutex.ml" in
write s (lib @ ["lwt_mtex.cmx"]) (B cmx) >>= fun _ ->
write s (stats @ ["lwt_mutex.cmx"]) (S (ts,ts ,0))

>>= fun _ ->
... (* similarly for cmi and o files *)
publish s >>= fun _ ->
return (cmx , cmi , o)

| Some cmx ->
read s (stats @ ["lwt_mutex.cmx"])

>>= fun (Some M(c,la,h)) ->
write s (stats @ ["lwt_mutex.cmx"]) (S (c,ts,h+1))

>>= fun _ ->
read s (lib @ ["lwt_mutex.cmi"])

>>= fun (Some cmi) ->
read s (lib @ ["lwt_mutex.o"]) >>= fun (Some o) ->
... (* update stats for cmi and o file *)
publish s >>= fun _ ->
return (cmx , cmi , o)

Figure 2.3: Compiling lwt_mutex.ml.

In Banyan, the clients interact with the store in isolated sessions. Clients can perform a

read operation to read a key from the session and write operation to write a key-value

pair into the session. A session can fetch recent updates using the refresh primitive

and make all the local updates visible to other sessions using the publish primitive.

During refresh, any conflicting updates are resolved using the three-way merge function

associated with the value type.
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In order to compile lwt_mutex.ml, we first refresh the session to get any recent updates.

Then, we check whether the lwt_mutex.ml file is in the build cache. If not, the source

file is compiled, and the resultant artefacts (cmx, cmi, o files) and the corresponding

entries for updated statistics are written to the store. Finally, all the local updates are

published.

The all or nothing property of refresh and publish is critical for the correctness of

this code. Observe that when the artefact is locally compiled, all the artefacts and their

statistics are published atomically. This ensures that if a session sees the cmx file, then

other artefacts and their statistics will also be visible. Thus, Banyan makes it easy to

write highly-available, complex distributed applications in an idiomatic fashion.
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CHAPTER 3

PROGRAMMING MODEL

In this chapter, we shall describe the system and programming model of Banyan from

the developers point-of-view. The Banyan store consists of several replicas, which are

fully or partially replicated (Crain and Shapiro, 2015). The replication factor is left to the

underlying database. The replicas asynchronously distribute updates amongst themselves

until they converge. The key property that enables Banyan to support mergeable types

and isolated transactions is that Banyan tracks the history of the store in the same way

that Git tracks the history of a repository. Figure 3.1 presents the schematic diagram of

the system and programming model.

p0-c0

p0-c1

p0-c2

p0-c3

p0-c4

p1-c0

p1-c1

p1-c2

p1-c3

s1-c0

s0-c0

connect

publish
connect

s1-c0 publish

remote
refresh 

s0-c1

remote
refresh 

refresh

s1-c2 publish

pub p0session s1session s0 pub p1

publish

publish

Replica r0 Replica r1

Figure 3.1: Banyan system and programming model.



Each replica has a distinguished public branch pub, which records the history of the

changing state at that replica. Each node in this connected history graph represents a

commit. Whenever a new client connection is established, a new branch is forked off

the latest commit in the public branch. Any reads or writes in this session are only

committed to this branch unless explicitly published. This ensures the isolation property

of each session. The figure shows the creation of two sessions in the replica r0.

3.1 BANYAN API

The simplified Banyan API is given below:

type config (* Store configuration *)
type session
type key = string list
type value (* Type of mergeable values in the store *)

val connect : config -> session Lwt.t
val close : session -> unit Lwt.t
val read : session -> key -> value option Lwt.t
val write : session -> key -> value -> unit Lwt.t
val publish : session -> unit Lwt.t
val refresh : session -> unit Lwt.t

When a client connects to a Banyan store, a new session is created, which is rooted to

one of the replicas in the store. Every write creates a commit in the session performing

the write. As previously explained, Banyan permits the sessions to atomically publish

their updates and refresh to obtain latest updates. The publish operation squashes all

the local commits since the previous refresh or publish to a single commit, and then

pushes the changes to the public branch on the replica to which the session is rooted.

The refresh operation pulls updates from the public branch into the current sessions

branch. Both publish and refresh may invoke the merge function on the value type
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if there are conflicts. The objects that are written to each replica are asynchronously

replicated to other replicas. Banyan offers causal consistency for operations on each key.

Periodically, the changes from other public branches are pulled into a replica’s public

branch (remote refresh). This operation happens implicitly and asynchronously, and does

not block the client on that replica. When a session is closed, the outstanding writes are

implicitly published. Similarly, when a session is connected, there is an implicit refresh

operation.

Observe that both the local and the remote refresh operations are non-blocking – it is

always safe for refresh to return with updates only from a subset of public branches.

The only push operation is due to publish. When pushing to a branch, it is necessary to

atomically update the target branch to avoid concurrency errors. The key observation

is that only the session that belongs to a replica can push to the public branch on that

replica. This can be achieved with replica-local concurrency control and does not require

coordination among the replicas. Hence, Banyan transactions do not need inter-replica

coordination, and hence, are always available.

When a particular replica goes down, the sessions that are rooted to that replica may not

have enough history to be able to refresh and publish to other replicas. In particular,

refresh and publish will need to discover the LCA in the case of conflicting updates.

Since the objects are asynchronously replicated across the replicas, the recent writes

to the replica that went down may not have been replicated to other replicas. Hence,

Banyan requires sticky availability (Bailis et al., 2013a) – the sessions need to reach the

logical replica to which it originally connected. In practice, with partial replication, a
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logical replica may be represented by a set of physical servers. As long as one of these

physical servers is reachable, the system remains available for that session.

3.2 TRANSACTIONS

Compared to traditional transactions usually executed at a particular isolation level,

refresh and publish permits more fine-grained, explicit control of visibility. In Banyan,

transactions are delimited by publish operations, begin and end of sessions. For

example, the set of writes performed between consecutive publish operations are made

visible atomically outside the session. The transaction may abort if the three-way merge

function throws an exception. However, in practice, the useful MRDTs are designed

in such a way that a merge is always possible, and the failure of the merge function

represents a bug. This idea of merge always being possible ensures strong eventual

consistency, espoused by convergent replicated data types (Shapiro et al., 2011). Banyan

adds transactional support over strong eventual consistency.

The publish and refresh can be used to achieve well-known isolation levels. For

example, consider parallel snapshot isolation (PSI) (Sovran et al., 2011), which is an

extension of snapshot isolation (SI) (Berenson et al., 1995) for geo-replicated systems.

Like SI, the transactions in PSI operate on a snapshot of the state at a replica. While SI

precludes write-write conflicts, PSI admits them on mergeable types. Since all the data

types in Banyan are mergeable types, every write-write conflict can be resolved. We can

achieve PSI by refreshing at that beginning of the transaction and publishing at the

end of the transaction with no intervening refreshes.
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Similarly, we get monotonic atomic view (MAV) (Bailis et al., 2013a) isolation level

if two consecutive publish operations are interspersed with refreshes. Since the

refreshes may bring in new updates from committed transactions, the state of the

transaction grows monotonically.
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CHAPTER 4

OPERATIONAL SEMANTICS

In the previous chapter, we have seen the Banyan programming model from a developer’s

point of view. In this chapter, we formalise the semantics of the Banyan store using

structural operational semantics. The operational semantics formalises a core language

that captures the essence of a Git-like store, and the Banyan programming model on top.

Our aim with the operational semantics is to succinctly but precisely present the details

of the Banyan programming model and illustrate how Banyan may be implemented on

a different eventually consistent data store. In addition, we prove the correctness of a

novel kind of garbage collection (GC) algorithm in Banyan, which is essential to keep

the storage requirements of the model in check.

4.1 SYNTAX

Label l := lb | lt
Branch β := String

Hash h
Name n := String

Key k := n
Blob Object b
Tree Object t := φ | t[n 7→ (l, h)]

Commit Object c := (h̄, h)
Values v := b | t | c

Tag Store T := φ | T [β 7→ h]

Block Store B := φ | B[h 7→ v]
Store S := 〈B, T 〉

Requests r := read(βL, k, b)
| write(βL, k, b)
| publish(βL, βP )
| refresh(βL, βP )
| connect(βL, βP )
| close(βL, βP )
| remote_refresh(βps, βpt)
| gc

Figure 4.1: Syntax of Banyan store and requests

Figure 4.1 shows the syntax of Banyan stores and requests that would be performed

over them. The Banyan store S is composed of an immutable, content-addressable block

store B which stores all the objects used by banyan store, and a mutable tag store T

which records the association between the branch names and its associated state. Both of



the stores are represented as maps in the semantics. Block store maps a hash (h) to its

corresponding value (v). Since the block store is content-addressed, given a block store

B[h 7→ v], h = hash(v). These hashes h correspond to objects that are in the block

store B. The tag store maps a branch name (β) to a hash h of a commit node. The empty

map is represented by φ.

4.1.1 Banyan objects

A value (v) is one of the several kinds of Banyan objects. Since Banyan is a Git-like store,

we use the same terminology to name the various objects in Banyan store (GitOjbects,

2021). The objects are blobs (b), trees (t) and commits (C).

Let us first look at the structure of the tree object. Recall from the previous chapter that

Banyan is a key-value store where the key is a path in a file system with support for

recursive directory structure. The path is represented by a list of strings [n1;n2; . . . ;nk],

where each entry is a name n. The names n1 to nk−1 are directory names and the entry nk

is the name of the file. In the rest of the section, where appropriate, we will alternatively

use [n1;n2; . . . ;nk] and /n1/n2/ . . . /nk to represent the same path. A tree object is

represented as a map that maps a name to a tuple of a label (l) and a hash (h). Since

each entry in the tree object may refer to a sub-directory or a file, we utilise the label

l to disambiguate whether the entry is a reference to a sub-directory (which would be

another tree object) lt or a file (represented as a blob) lb.

A commit object c is represented by a pair, where the first component of the pair is a

list of hashes corresponding to the commit objects of parent commits, and the second

26



component is a hash of the tree object corresponding to this commit which represents

the state of the store at this commit.

4.1.2 Banyan requests

Operations in Banyan are in the form of requests (r). The operational semantics rules

are described as S r−→ S where they transform the store from one state to the other based

on the request. Hence, the requests include the arguments as well as the results. As

per the Banyan programming model, read and write operations are performed on a

branch specific to the session, called the local branch of that session. Consequently,

read request takes local branch (βL) and a key (k) as the argument and returns a blob (b)

as the result. A write request takes a key (k) and a blob (b) value and writes them into

the specified local branch, βL. The operations publish, refresh and remote_refresh

are merge related operations which take two branches as the arguments and merge them.

The connect operation creates a new local branch (βL) by connecting to replica whose

public branch is βP . The close operation publishes the contents of the local branch

βL to the public branch βP and then deletes the local branch to close the session. The

gc operation is used to garbage collect the Banyan objects that would no longer be used.
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4.2 WRITE REQUEST

WriteTree

h = hash(b) t′ = t[n 7→ (lb, h)] B′ = B[h 7→ b]

write_tree(B, [n], b, t) = (B′, t′)
(1)

n ∈ domain(t) (lt, ht) = t(n)

(B′, t′) = write_tree(B, ns, b,B(ht)) h = hash(t′)

write_tree(B, n :: ns, b, t) = (B′[h 7→ t′], t[n 7→ (lt, h)])
(2)

n /∈ domain(t) (B′, t′) = write_tree(B, ns, b, φ) h = hash(t′)

write_tree(B, n :: ns, b, t) = (B′[h 7→ t′], t[n 7→ (lt, h)])
(3)

Write

hc = T (βL) (hp, ht) = B(hc) write_tree(B, k, b,B(ht)) = (B′, t′)
ht′ = hash(t′) c′ = ([hc], ht′) hc′ = hash(c′)

〈B, T 〉 write(βL,k,b)−−−−−−−−→ 〈B′[ht′ 7→ t′][hc′ 7→ c′], T [βL 7→ hc′]〉

Figure 4.2: Semantics of Write

The write(βL, k, b) request writes a pair with key k and blob b into the local branch

βL. Banyan write updates both the stores of Banyan in a way that it retains all the

previous updates on the same key as its history. If k is not already present, it inserts

the new key-value pair into the store; otherwise, it updates the value to b. Rule Write

in figure 4.2 describes the behaviour of a write request that writes to a session’s local

branch βL at key k with value b. The bulk of the work is done by the helper function

write_tree(B, k, b, t) that inserts the value b at key k in the tree t with the block store B.

The function write_tree returns a new block store B′ and a new tree t′ with the new key

and value. Lets look at the function write_tree first, described in rule WriteTree(1),

(2) and (3). WriteTree(1) describes the addition of a key-value to the store where the

key is a singleton list. Recall that the only name n in the list refers to the file. In this

case, the new tree has the same entries as the old tree except for a new entry that maps n
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to a pair of (lb, hash(b)). The new block store B′ has the same entries as B except the

mapping of hash(b) to b.

Rule WriteTree(2) and (3) describes the case when the key has more than one name in

the list. Recall that the key represents the directory structure. Hence, each entry in the

list is parsed starting from the top level directory until the last entry, i.e. the file name.

The content of a directory or a file is hashed before storing into the block store to ensure

that everything in the block store is content addressable. Rule WriteTree(2) and (3)

verifies if there already exists a directory structure same as the one given in the key list.

To check that, the function write_tree verifies if the name n is present in the tree node

t. In the semantics, the set of names n present in the tree t is represented as domain(t).

If the directory name n is present in the tree node, the function write_tree is called

again to check if the sub-directories (ns) are also present in the same order as given in

the key. To check the sub-directories the content of the current directory is parsed to get

the hash of the sub-directory ((lt, ht) = t(n)) and the sub-directory (B(ht)) is passed as

an argument to the write_tree. Alternatively, if the directory name n is not present in

the tree node the function write_tree is called to walk through each directory name

in the key with φ as the tree node. The function write_tree is recursively called as

per Rule WriteTree(2) or (3) until there is a single value in the key list, the case for

which is described in rule WriteTree(1). A new block store and a tree node is returned

back from this function. The new block store B′ has all the entries received from the

write_tree function along with an added entry hash(t′) mapping to t′. Similarly, the

new tree node t has all the received entries in addition to a new entry n mapping to (lt,

hash(t′)).
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The write function triggered over the local branch βL searches for an entry related to

βL in the tag store T . If the entry is found, T returns the commit hash hc of the latest

entry in the βL. A lookup with this commit hash into the B returns a pair of values which

also contains the corresponding tree hash. The tree hash along with the B, k, and b is

used to call the helper function write_tree, which returns a new block store B′ and

a new tree node t′. The write function creates a new commit node c′ which contains

the hash of the previous commit node hc as its parent and hash of the new tree node ht′.

The write function creates a new block store B′ which contains all the previous entries,

entries made in the write_tree function, a mapping from hash(t′) to t′ for the new tree

node, a mapping from hash(hc′) to c′ for the commit node and an entry into the tag store

updating the handle of local branch βL to point to the latest commit hash.

4.2.1 Banyan object creation with write request

Before describing about the semantics of other Banyan requests, lets see with an example

how Banyan objects are created and manipulated with the write operation. For the

purpose of explanation here we will write three key-values into the branch B1 of the

store and see how objects are created and stored in the block store and the tag store. The

key-value pairs taken for this example are:

• Key: [a] Value: V1

• Key: [b; c] Value: V2

• Key: [b;d] Value: V3
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Figure 4.3: Initial state of the tag store and block store. Rounded rectangle is a tag,
diamond is a commit, and rectangle is an empty tree object.

All the Banyan objects are stored in the block store. Tag store contains the branch names

which point to the latest commit in that branch. Initially, branch B1 points to a commit

C0, which in turn points towards an empty tree object. Figure 4.3 shows the initial state

of the two stores. For the first write operation in Banyan, C0 will act as a parent commit.

Figure 4.4: State of the tag store and block store after adding first key-value. Rounded
rectangle is a tag, diamond is a commit, rectangle is a tree object, and circle
is a blob.

Lets write the key [a] and value V1 into the store now. Figure 4.4 demonstrates the

objects created after this write operation. When the key [a] and the value V1 is added

into the Banyan store, a new blob for V1 is created and stored in the block store. A new

tree object is created with an entry for key [a] with label lb, pointing towards the blob

V1. lb denotes that the tree entry points to a blob. A new commit node C1 is created
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which points to the latest tree node and the commit node C0 denoting its parent. The

entry in the tag store related to branch B1 which was earlier pointing to commit node C0

would now point to C1 as C1 is the latest commit for branch B1.

Figure 4.5: State of the tag store and block store after adding second key-value. Rounded
rectangle is a tag, diamond is commit, rectangle is a tree object, and circle is
blob.

The next write operation would write key [b;c] and value V2 into the Banyan store.

Recall that a key represents a directory structure. In this case b is the top-level directory

and c is the nested directory inside b. The tree node pointed by the branch’s latest commit

always contains the entries related to the top-level directory of all the keys present in that

branch. Each tree entry points to another tree object containing all its nested directories

or the blob, as may the case be.

Figure 4.5 demonstrates the state of the store after writing key [b;c] and value V2 into

it. Since V2 does not already exist in the block store, a new blob object is created for it.
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A new tree object with entry for c and label lb is created which points to the blob of V2.

Further, a new top-level tree object is created, which contains all the entries from the

previous top-level tree object, in addition to a new entry with b and label lt. Label lt

is due to the fact that the tree entry points to another tree object containing c. Notice

that a new tree object is created which contains entries for both a and b, instead of just

editing the previous tree object and adding b to it. The new objects are created because

the block store is immutable, and we can not change the objects once created. As a result,

we have two tree objects which contain a and both must point to a blob V1. Also, notice

that there is a single blob object for V1, pointed by both the tree objects. Banyan avoids

creating duplicate objects as it is content addressable. It helps in the re-usability of the

objects. At last, a new commit node C2 is created, which points to the latest tree object

and the previous commit C1, denoting C1 as its parent. A pointer to the previous commit

is stored because Banyan is a persistent store and keeps track of the history without

removing any previous objects. Tag store is updated so that the handle for branch B1

would point to the latest commit C2.

Figure 4.6 demonstrates the state of the store when the key [b;d] and value V3 is written

into it. This example is just an extension of the previous write operation. Notice that the

tree entry of c and d share the same tree object which is pointed by the tree entry b. This

denotes that the top level directory b contains two entries c and d nested to it. All the

three keys are accessible from the tag store entry of branch B1.

An important observation here is that there are several objects created for every

write operation, and several others are retained in the store. This affects the storage
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requirements and performance of the Banyan. We discuss its impact and some

optimization techniques in detail in Section 4.9 and Chapter 6.

Figure 4.6: State of the tag store and block store after adding third key-value. Rounded
rectangle is a tag, diamond is a commit, rectangle is a tree object, and circle
is a blob.
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4.3 READ REQUEST

ReadTree

(lb, h) = t(n)

read_tree(B, [n], t) = B(h)
(1)

(lt, h) = t(n) read_tree(B,ns,B(h)) = b

read_tree(B, n :: ns, t) = b
(2)

Read

hc = T (βL) (hp, ht) = B(hc) read_tree(B, k,B(ht)) = b

〈B, T 〉 read(βL,k,b)−−−−−−−−→ 〈B, T 〉

Figure 4.7: Semantics of Read

Banyan read(βL, k, b) reads the key k into the local branch βL and returns the result

as blob b. It does not change anything in any of the two stores. Figure 4.7 shows the

semantics for Banyan read. Semantic rule Read suggests that the Banyan fetches the

hash (hc) of the head commit of the local branch βL from the tag store, and then the

corresponding commit node is read from the block store. A commit node is a tuple that

contains a list of hashes hp, denoting the parents of this commit and hash of a tree object.

Further, with the helper function read_tree, the tree object is parsed with reference to

the key to find if the key is present in the tree object. If the key is found, it returns the

associated value; otherwise, it returns empty (φ).

If the key contains a single name n, tree object must have a mapping of n to a tuple with

lb and a hash h to its value. In this case the read_tree will read h into the block store

(B(h)) and return the value. Otherwise, it will return φ, considering the key provided is

not available (rule ReadTree (1)).

Semantic rule ReadTree (2) describes the steps if the key contains more than one name.
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In this case, the key is parsed from the top level directory name till the last. For each

name n, read_tree finds out the tree entry containing the mapping of n. The hash h

associated with that mapping is used to find the next tree object from the block store

(t = B(h)). For a successful search, the next name in the key should be available in

t. The method is recursively applied until there is only a single name in the key. Rule

READTREE (1) described above guides the steps when there is a single name in the key.

4.4 LOWEST COMMON ANCESTOR

In this section we will see what is a lowest common ancestor (LCA), how to identify one

and the semantic rule to find the LCA.

4.4.1 Finding the Lowest Common Ancestor

Figure 4.8: Common Commits: C11 and C13 are common commits between two
branches. C13 is the LCA. Arrow points to the parent(s) of the commit.

Before understanding the rule to compute the LCA, lets understand what a LCA is and

how it is created. A Lowest Common Ancestor (or LCA) is a special kind of commit
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node that is shared by two branches. To elaborate, a commit is a way of adding an

update into the store. Every new commit follows its previous commit and records the

previous one as its parent. A branch is created by a single or a series of commits formed

in this manner. Banyan allows forking a new branch out of an existing one. In this

process, the two branches share a common commit initially and then diverge based on

further commits. Another way to create a common commit is to merge the two branches.

The latest of common commits between two branches is called their Lowest Common

Ancestor (LCA). Figure 4.8 shows how common commits are created and the LCA of

the two commits.

4.4.2 Operational Semantics of finding LCA

ReachableCommits c ∈ rea_comm(B, c) (1)

(hp, ht) = c h ∈ mem(hp) c′ ∈ rea_comm(B,B(h))

c′ ∈ rea_comm(B, c)
(2)

DescendentCommits des_comm(B, c) = {c′ | c ∈ rea_comm(B, c′)}\{c}

LCA

l ∈ rea_comm(c1) l ∈ rea_comm(c2)

des_comm(B, l) ∩ rea_comm(B, c1) ∩ rea_comm(B, c2) = φ

l ∈ lca(B, c1, c2)

Figure 4.9: Reachable, Descendant and LCA commits

To understand the semantic rule to compute the LCA, first we need to understand the

rule to find the reachable and descendent commits given in figure 4.9. Every commit

is considered to be reachable to itself (rule ReachableCommits (1)). A commit c′ is

considered to be reachable from a commit c if c′ is reachable from the parents of c
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(rule ReachableCommits (2)). This definition forms a recursive method where every

commit that is an ancestor of a commit c is a reachable commit for c. Table 4.1 shows the

reachable commits for some of the commits in figure 4.9. If a commit c is reachable from

Table 4.1: List of reachable commits from a given commit

Commit Reachable Commits

C0 C0

C11 C11, C0

C12 C12, C11, C0

C14 C12, C11, C0

C21 C11, C0

C23 C13, C12, C22, C21, C11, C0

C24 C23, C13, C12, C22, C21, C11, C0

a commit c′ then c′ is a descendent of c, with an exception to itself. This means a commit

is reachable to itself, but is not a descendent to itself (rule DescendentCommits). Table

4.2 show the list of descendants of the given commit in figure 4.8.

Table 4.2: List of descendant commits from a given commit

Commit Descendent Commits

C0 C11, C12, C13, C14, C21, C22, C23, C24,
C11 C12, C13, C14, C21, C22, C23, C24,
C13 C14, C23, C24

C14 no descendents
C21 C22, C23, C24

C23 C24

C24 no descendents

A lowest common ancestor of two commits c1 and c2 is a commit which is reachable

from both c1 and c2, such that none of the descendents of this commit is reachable from
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c1 and c2 (rule LCA). Basically, it is the most recent common commit between c1 and c2.

4.5 MERGING TWO COMMITS

In Banyan we often need to merge two branches, to share the updates made by individual

sessions, through publish and refresh operations which is described later. Merging

two branches means collecting all the key-value pairs written in the two individual

sessions. Figure 4.10 shows two commits C1 and C2 with key-value as [a;b] => v1

and [c;d;e] => v2 respectively. Commit C12 shows the merged commit from which

both the keys [a;b] and [c;d;e] are accessible.

Figure 4.10: Two branches with head commit C1 and C2 are merged to form a new
merged commit C12

It is the tree objects of the latest commits that keep the latest set of key-value pairs that

belong to that branch. Hence, to merge two commits, we need to merge their two tree

objects. Merging the two commits may become complicated due to conflicts. There is

said to be a conflict between two commits when there are different values for the same
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key in the two commits. Figure 4.11 shows a conflict between commits c1 and c2.

Figure 4.11: Commit C1 and C2 have conflict due to different values for the same key

The figure shows that there is a key [a;b] which is reachable from both commit c1 and c2

but have different values associated with them. In this case, it is unclear which value

should be chosen as the value for the merged commit. Banyan uses a three-way merge

mechanism to resolve such conflicts. For the key which is creating the conflict, it uses

its values from the two commits and from the lowest common ancestor (LCA) commit.

Finding LCA is described in the previous section. The three values are passed to a

user-defined conflict resolution function, which provides an application specific solution

to these conflicts.

Semantic rule Merge in figure 4.13 shows the semantics for merging the two branches

βs and βt. It finds the latest commit objects of the two branches (cs and ct) and merges

them to get the new commit c′. A merge operation ends in updating the tag store. For the

branch which requested the merge, it updates its corresponding commit hash to that of

the latest commit created after the merge.

As mentioned above, to merge two commits, we need to find their LCA. Rule LCA

described in the previous section shows how the LCA is computed when two commits
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are given. A complex situation may occur when we are performing concurrent merge

operations. Concurrent merge leads to a situation where there are two LCAs for a pair

of commits, and none of them helps in computing the correct value. The solution to

this problem is to recursively merge the two commits (found as LCAs) and keep doing

so until we find a single LCA and then use it for resolving the original conflict we had.

Section 5.3 describes how the concurrent merge occurs and how recursive merge solves

the problem. Here, we will see how the LCA is computed by merging the list of commits.

Rule MergeCommits (2) shows how to merge a list of commits. It takes two commit c1

and c2, merge them and then recursively merges other commits into the resultant commit

c. Finally a single resultant commit c will be returned (rule MergeCommits). To merge

any two commits c1 and c2, merge_commit first computes its LCA. merge_commit(B,

lca(c1, c2)) in the antecedent of the MergeCommits (2) shows the recursive computation

of LCA. The tree object of the resultant LCA commit c′ and the other two commits c1

and c2 are then used to merge their keys. The resultant tree object t′′ is used to create a

new commit node which is then added to the block store and returned back for updating

the tag store, as described earlier. The parent of the new commit object c′ reflects that

it is made by combining the contents of c1 and c2. In the figure 4.8, C23 is the result of

merging C13 and C22. Hence, the arrows point out that it has two parents.

In the next section, we will explore different situations which may occur when merging

two tree objects.
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4.6 MERGING TREE OBJECTS

A tree object contains the mapping of a key to its value. Merging two commits

requires merging their two tree objects and create a new one with the final values. Rule

MergeTree in figure 4.13 shows the rules for merging the trees in different situations.

Below we discuss each of those scenarios and how the final tree object is created.

The method merge_tree merges the tree objects t1 and t2 and uses tree object tl of the

LCA to resolve the conflicts. It returns an updated block store and a new tree object.

If the tree objects which are needed to be merged are empty then MergeTree returns

the block store and an empty tree object (rule MergeTree (1)).

Merging tree objects in Banyan is a commutative operation. Hence merging t1 into t2 or

vice-versa, generates the same new tree object (rule MergeTree (2)).

GET get(m,n) =

{
m(n) if n ∈ domain(m)

φ otherwise

SET set(m,n, v) =

{
m′ if v = φ ∧m′ = m[n 7→ v′]

m[n 7→ v] otherwise

REMOVE rem(m,n) =

{
m′ if n ∈ domain(m) ∧m′ = m[n 7→ v]

m otherwise

Figure 4.12: Helper functions

When two tree objects have to be merged, we need to consider each of the names present

in them. Merging trees require to compare the mapping for each name in all the three

objects and take a decision to include them into the new tree object.
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MERGETREE merge_tree(B, φ, φ, φ) = (B, φ) (1)

merge_tree(B, tl, t1, t2) = merge_tree(B, tl, t2, t1) (2)

get(t1, n) = get(t2, n)

(B′, t′) = merge_tree(B, rem(tl, n), rem(t1, n), rem(t2, n))

merge_tree(B, tl, t1, t2) = (B′, set(t′, n, get(t1, n)))
(3)

get(tl, n) = get(t2, n) get(t1, n) 6= get(t2, n)

(B′, t′) = merge_tree(B, rem(tl, n), rem(t1, n), rem(t2, n))

merge_tree(B, tl, t1, t2) = (B′, set(t′, n, get(t1, n)))
(4)

(B′, t′) = merge_tree(B,B(hl),B(h1),B(h2)) h′ = hash(t′)

(B′′, t′′) = merge_tree(B′[h′ 7→ t′], tl, t1, t2)

merge_tree(B, tl[n 7→ (lt, hl)], t1[n 7→ (lt, h1)], t2[n 7→ (lt, h2)])

= (B′′, t′′[n 7→ (lt, h
′)])

(5)

get(tl, n) = (lb, h) ∨ get(tl, n) = φ (B′, t′) = merge_tree(B, φ,B(h1),B(h2))

h′ = hash(t′) (B′′, t′′) = merge_tree(B′[h′ 7→ t′], tl, t1, t2)

merge_tree(B, tl, t1[n 7→ (lt, h1)], t2[n 7→ (lt, h2)])

= (B′′, t′′[n 7→ (lt, h
′)])

(6)

m = merge_val(B(hl),B(h1),B(h2)) hm = hash(m)

(B′, t′) = merge_tree(B[hm 7→ m], tl, t1, t2)

merge_tree(B, tl[n 7→ (lb, hl)], t1[n 7→ (lb, h1)],

t2[n 7→ (lb, h2)]) = (B′, t′[n 7→ (lb, hm)])

(7)

(B′, t′) = merge_tree(B,B(hl), φ,B(h2)) h′ = hash(t′)

(B′′, t′′) = merge_tree(B′[h′ 7→ t′], tl, t1, t2)

merge_tree(B, tl[n 7→ (lt, hl)], t1, t2[n 7→ (lt, h2)]) = (B′′, t′′[n 7→ (lt, h
′)])

(8)

(B′, t′) = merge_tree(B, tl, t1, t2)

merge_tree(B, tl[n 7→ (lb, hl)], t1, t2[n 7→ (lt, h2)]) = (B′, set(t′, n, get(t2, n)))
(9)

MERGECOMMITS merge_commits(B, {c}) = (B, c) (1)

merge_commits(B, lca(B, c1, c2)) = (B′, c′)
(hp1, ht1) = c1 (hp2, ht2) = c2 (hp′, ht′) = c′

(B′′, t′′) = merge_tree(B′(ht′),B′(ht1),B′(ht2))

h′′ = hash(t′′) c = ([hash(c1), hash(c2)], h′′)

merge_commits(B, {c1, c2} ∪ cs)
= merge_commits(B′′[hash(c) 7→ c], {c} ∪ cs)

(2)

MERGE

hcs = T (βs) hct = T (βt) cs = β(hcs)

ct = B(hct) (B′, c′) = merge_commits(B, {cs, ct})

merge(B, T , βs, βt) = (B′, T [βt 7→ hash(c′)])

Figure 4.13: Banyan Merge
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The helper function rem (rule Remove, figure 4.12) takes a map m and string n and

removes the mapping of n from m. We use Remove in the semantics rule MergeTree

for removing the tree entries with mappings that are already considered in that tree object.

Helper function get (rule Get) is used to fetch the mapping of name n in the map m.

If the mapping is not present, it returns φ. Another function set (rule Set) writes a

mapping of (n 7→ v) into m. If v is empty, it is considered to be request to delete the

name from the map, and a map m′ without that value is returned back.

If get(t1, n) = get(t2, n) then there is no conflict in the two tree objects regarding the

name n. Hence, the new tree object will retain n and its mapping as it is, regardless of its

value in the LCA. Rule MergeTree(3) gives the semantics for this condition. Once n is

resolved, it recursively checks the condition for other keys, until all the keys are covered.

If the value for a name n is different in tree object t1 (belongs to branch1) and tree

object t2 (belongs to branch2) then there is a conflict. In this case the value in t1 will be

checked. Consider that the value of n in tl and t2 are same, this means that the branch1

has updated the value, where as branch2 has retained the previous value. In this case

the updated value will be retained in the merged tree (rule MergeTree(4)). Since the

Banyan merge is commutative (rule MergeTree(2)), the semantics would still be same

if tl and t1 had the same value for n and t2 had a different value.

When all the three tree objects being compared has a mapping to name n and all of

them point to another tree object, but contain a different hash, then they might have a

different name as their descendants or a different value for that key. To check this, we

need to follow those hashes and explore their contents. Rule (MergeTree(5)) shows
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this condition. When the recursive process returns to this level of the key, it will bring a

modified tree t′ as the return value if the conditions in the descendants follow one of the

rules specified in MergeTree.

Rule MergeTree(6) shows the condition where a name n is found in the both tree objects

t1 and t2 and both points to another tree object but with different hashes. Also, tl either

points to a blob or does not contain the mapping for n at all. This means that both branch1

and branch2 has added a different key with name n, which was not already present in the

LCA. n is added in a manner such that it is reachable from the head commits of both t1

and t2 following the same path. In this case, a new tree object will be formed which will

contain all the names from top until n. n will have a mapping to the hash of a tree object

which contains the descendants of n from both t1 and t2.

If all the three tree objects contain a name n, with label lb but different hashes, then they

contain a different value for the same key. This shows that there is a conflict among

the branches and has to be resolved using the three-way merge mechanism. Hence the

three values are passed to a user-defined function merge_val, which returns a final value

based on application requirement. Rule (MergeTree(7)) gives the semantics for this

case. The returned value m is hashed, and their mapping is updated into block store. A

tree entry with this mapping and the updated block store is returned.

If a name n is not present in the tree object t1, but present in both tl and t2 and has

different hashes, then it means that t1 has deleted a previous key in the store, and t2

has changed it. Rule MergeTree(8) describes this situation. In this case the a new tree

object will be created by combining the effect of deletion at t1 with modification at t2. It
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can be done by recursively calling the merge_tree over the tree objects pointed by tl

and t2 and combining the resultant tree object with the result of other keys.

MergeTree(9) covers a situation where a name n is found in the tl and in t2, but not in

t1. Moreover, in tl, n refers to a blob object and in t2 it refers the tree object. This means

that both t1 and t2 have modified the value after their previous common commit and t1

has actually deleted that key. In this case, the value given in t2 will be retained in the

resultant tree object. It implicitly ensures that the effect of deletion at t1 is also retained.

4.7 COMMUNICATION OPERATIONS

PUBLISH
merge(B, T , βL, βP ) = (B′, T ′)

〈B, T 〉 publish(βL,βP )−−−−−−−−−→ 〈B′, T ′〉

REFRESH
merge(B, T , βP , βL) = (B′, T ′)

〈B, T 〉 refresh(βL,βP )−−−−−−−−−→ 〈B′, T ′〉

REMOTEREFRESH
merge(B, T , βps, βpt) = (B′, T ′)

〈B, T 〉 remote_refresh(βps,βpt)−−−−−−−−−−−−−−→ 〈B′, T ′〉

Figure 4.14: Communication Operations

In order to share the updates among different sessions, Banyan provides some

communication operations like publish, refresh and remote_refresh. Chapter 3

describes the working of these operations in detail. From semantics point of view,

they are just a merge operation between two branches. We have two kinds of branches

described in chapter 3, local and public branches. A publish operation merges the updates

from the local branch βL into the public branch βP (rule Publish in figure 4.14). A
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refresh operation merges the updates in the public branch βP into the local branch βL

(rule Refresh). A remote refresh operation merges the updates between public branches

βps and βpt (rule RemoteRefresh).

4.8 CONNECT AND CLOSE OPERATIONS

CONNECT
βL /∈ domain(T )

〈B, T 〉 connect(βL,βP )−−−−−−−−−→ 〈B, T [βL 7→ T (βP )]〉

CLOSE
merge(B, T , βL, βP ) = (B′, T ′[βL 7→ h])

〈B, T 〉 close(βL,βP )−−−−−−−−→ 〈B′, T ′〉

Figure 4.15: Session connect and close operations

Connect operation (rule Connect, figure 4.15) is used by new clients to create a session

for themselves in Banyan. It takes the names of local branch (βL) and a public branch

(βP ) as the arguments. It checks whether there is an entry related to βL in the tag store

T . If there is no such entry in the tag store, it means that no local branch with name βL

exists. Connect operation creates a new branch βL with a mapping to the hash of the

latest commit of the public branch βP .

Close operation closes a session after securing its updates to its associated public branch.

It first calls the merge method, which is analogous to publish operation here, and then

removes the entry for the local branch βL from the tag store (rule Close). Chapter 3

describes the application level details of Connect and Close functions.

47



4.9 GARBAGE COLLECTION

While traditional database systems only store the most recent version of the data, Banyan

necessitates that previous versions of the data must also be kept around for three-way

merges. While persistence of prior versions (Driscoll et al., 1986; Farinier et al., 2015)

is a useful property for audit and tamper evidence, Banyan API presented here does

not provide a way to access earlier versions. It is only needed to compute the LCA for

merge operation. Hence, if we can identify the objects that would not be needed in

any LCA computation, we can delete those objects to free up the memory. We do not

implement a full garbage collector (GC) in this work, but present a sketch about how

garbage collection can be performed in Banyan. In this section we will see how we

can identify the objects which can be garbage collected in Banyan, present operational

semantics rules for the same and inductively proof its correctness.

4.9.1 Banyan Garbage Collector

Banyan GC is an extension of Git GC. Git is equipped with a GC that considers that

any object in the block store that is reachable from the tag store is alive. Unreachable

objects are to be deleted. Our aim is to assist the Git-like GC by pruning the history

graph of nodes which will no longer be used. The key idea is that if a commit node

will not be used for LCA computation, then that commit node may be deleted. Deleting

commit nodes will leave dangling references from its referees, but Irmin can be extended

to ignore dangling references to commit nodes. For individual sessions, once the session

is closed, the corresponding entry in the tag store, and all the commits by that session

may be deleted. In the execution history in figure 4.16, the commit node s0-c0 may be
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deleted.

p0-c0

p0-c1
s0-c0

connect

close

pub p0session s0

p0-c2

s1-c0

session s1

connect

s1-c1
refresh

s1-c2

p1-c0

pub p1

remote
refresh

Figure 4.16: Garbage collection. Here, the commits p0-c0 and s0-c0 may be deleted.

The next question is when can commits on public branch be deleted. For each ongoing

session in a replica, we maintain the latest commit in the public branch against which

refresh was performed. The earliest of such commits in the public branch, and its

descendants must be retained since they are necessary for three-way merge. For example,

in figure 4.16, session s1 refreshed against p0-c2, and s1 is the only ongoing session.

If s1 publishes, then p0-c2 will be the LCA commit. A similar reasoning is used for

remote refreshes. When a commit in the public branch of a replica has been merged into

the public branches of all the other replicas, then the ancestors of such commits will not

be accessed and can be deleted. In figure 4.16, assume that we only have two replicas.

Since p0-c1 was merged by the public branch p1, p0-c1 will be the LCA commit for

subsequent remote refreshes by p1. Given that p0-c0 is neither necessary for remote

refreshes nor for ongoing sessions, p0-c0 can be deleted.
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We expect Banyan GC to save a significant amount of space compared to Banyan

without GC. When there are no sessions in progress or when the updates to the database

have stopped, the data maintained by Banyan would be comparable to any traditional

databases, i.e. Banyan would only maintain the latest state of database. In particular,

there would only be one latest commit, and associated tree and blob nodes. If there are

ongoing sessions, then only the minimum information needed to perform refresh and

publish operations in that session would be kept around after a GC. After the session is

done, all the session local information would be GCed. This would significantly reduce

the storage overhead of Banyan.

4.9.2 Operational Semantics of Banyan GC

Figure 4.17: Reachable objects: Arrows show the objects that are connected with each
other in the directional manner. Diamond is a commit, rectangle is a tree
and circle is a blob object

Below are few rules described to help understand the GC semantics shown in figure 4.18:

ReachableObject: As we have discussed earlier, a tree object t is a collection of

tree entries which has a mapping from a name n to a tuple which contains a hash to

another object. Let us call this object a descendant of t. There can be more than one
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descendant for t. Similarly, a commit node also contains a hash for its associated tree

object, which could be called as its descendant. An object ob is always reachable from

itself (rule ReachableObject(1)). Also, another object ob′ is reachable from ob, if it is

reachable from one of the descendants of ob (rule ReachableObject(2)). This forms a

recursive method which covers all the objects including blobs until the end. Figure 4.17

shows a commit and its associated objects. Table 4.3 shows the Banyan objects that are

reachable from given objects in figure 4.17.

Table 4.3: List of reachable objects from a given objects in figure 4.17

Object Reachable Objects

C1 C1, a, b, c, d, e, f, V1, V2, V3

c c, d, e, f, V1, V2

V3 No reachable objects
b b, V3

d d, f, V1

RecursiveLca: It is used to find the LCA of the two commits. Section 4.5 describes

the situation of concurrent merge where we need to recursively find the LCA of two

commits until a single commit is found. Semantically, if we have a single commit

object, then it is its own LCA (rule RecursiveLca(1)). LCA of two given commits

can be computed as described in rule LCA. For a set of commits, we choose any two

commits, compute their LCA (say Cl), and recursively compute the LCA of Cl and the

next commit in the set (rule RecursiveLca(2)). It results in the lowest commit, which is

common to all the commits combined.

Filter: filter(B, hs) filters the block store such that it returns a store which contains
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only hashes that are part of the list hs and their corresponding mappings. This means,

if there is a hash h, such that h ∈ hs, then filter will retain h in the resultant store (rule

Filter(2)), otherwise h and its mapping will be removed from the resultant store (rule

Filter(3)). If the provided store is empty, then filter returns an empty store, regardless

of hs (rule Filter(1)).

REACHABLEOBJECT ob = rea_obj(B, ob) (1)

ob′ ∈ rea_obj(B,B(h))

ob′ ∈ rea_tree(B, t[n 7→ (l, h)])
(2)

RECURSIVELCA c = recursive_lca(B, {c}) (1)

c = recursive_lca(B, lca(B, c1, c2) ∪ cs)

recursive_lca(B, {c1, c2} ∪ cs) = c
(2)

FILTER φ = filter(φ, hs) (1)

B′ = filter(B, hs)

filter(B[h 7→ v], {h} ∪ hs) = B′[h 7→ v]
(2)

h /∈ hs

filter(B[h 7→ v], hs) = filter(B, hs)
(3)

GC

head_commits = {c | h ∈ domain(T ) ∧ c = B(h)}
c = recursive_lca(B, head_commits)

live_commits = {c} ∪ des_comm(B, c)
live = live_commits ∪ {t | c ∈ live_commits ∧ t ∈ rea_tree(B, c)}

live_hashes = {h | l ∈ live ∧ h = hash(l)}
B′ = filter(B, live_hashes)

〈B, T 〉 gc−→ 〈B′, T 〉

Figure 4.18: Garbage Collection
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Tag store contains the mapping of all the active branches to the hash of their latest

commits or head commits. To perform any Banyan operation, we need this head commit.

For example, a write operation would need the head commit to be noted as the parent

of the new commit. A read operation would search for the key in the head commit. It

is the merge related operations like publish, refresh, and remote refresh that will not

only require the head commits but also the LCA of the two commits. To ensure that

every merge operation is performed successfully even after GC, we need to ensure that

the LCA of every pair of head commits is retained. Rule GC gives the semantics for

garbage collection in Banyan. We identify all the head commits from the tag store and,

using the recursive_lca method, identify the LCA c, of all the head commits. Every

commit, which is a descendent of c, along with c itself, is considered to be a live commit

and needs to be retained. Since GC is about deleting all the redundant objects and not

just commit objects, we identify each object which is associated with the live commit.

These are all the objects that are reachable from those commits. The set of such objects

is called live in the semantics. We find the hash of live objects (live_hashes) and filter

the block store such that it contains only the live_hashes. GC operation returns back

the modified block store (B′). GC does not affect the tag store.

4.9.3 Proof of GC correctness

Since GC deletes some objects from the block store, we feel the need to prove that

performing a GC would not affect the functionality of the Banyan. So, below we present

an inductive proof of correctness for GC.
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Definition 1 (Initial Store). init_store = 〈B, T 〉 such that ∀βP ∈ domain(T ).

B(T (βP )) = ([ ], h) ∧ B(h) = φ. Intuitively, the initial store has a number of public

branches βP corresponding to the replicas, and all of the public branches point to the

same initial commit ([ ], h) with no parent commits and whose tree is empty.

Definition 2 (Well-formed Store). A store 〈B, T 〉 is said to be well-formed if there exists

a sequence of requests r1, r2 ... rn, such that, init_store r1−→ S1
r2−→ S2 ... rn−→ 〈B, T 〉.

Definition 3 (Equivalent stores). Given two stores 〈B1, T1〉 and 〈B2, T2〉 are said to be

equivalent if ∀β, k, b. 〈B1, T1〉
read(β,k,b)−−−−−−→ 〈B1, T1〉 ⇒ 〈B2, T2〉

read(β,k,b)−−−−−−→ 〈B2, T2〉.

Intuitively, all the key-value pairs in every branch remains the same . We write

〈B1, T1〉 ' 〈B2, T2〉.

Lemma 1 (Unique Root). Given a well-formed store 〈B, T 〉, there exists a unique root

commit c such that for all head_commits = {c | h ∈ domain(T ) ∧ c = B(h)},

head_commits ⊆ des_comm(B, c). Intuitively, all the head commits are descendants of

the unique root commit.

Proof. By induction on the definition of the well-formed store.

• Base case: The initial store by definition has a single commit, which is the unique
root commit.

• Inductive case: Assume that 〈B, T 〉 is well-formed. By induction hypothesis, it
has a unique root. We need to show that for all r, 〈B, T 〉 r−→ 〈B′, T ′〉, 〈B′, T ′〉 has
a unique root.

– Case Read: does not change the store and hence, the unique root in 〈B′, T ′〉
is the same as 〈B, T 〉.

– Case Write: adds a new commit whose parent is one of the head commits.
Hence, the unique node remains the same.

– Cases Publish, Refresh, Close, Remote Refresh: all perform a merge. A
merge operation adds a new commit whose parents are two head commits of
the branch being merged. Hence, the root commit remains the same.
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– Case Connect: does not change the block store, and hence, the root commit
remains the same.

– Case GC: The GC procedure computes the recursive LCA of all of the head
commits. There is a unique recursive LCA since 〈B, T 〉 has a unique root.
Let’s call the unique recursive LCA as l_gc. GC only retains l_gc and its
descendant commits. Hence, the unique root in 〈B′, T ′〉 will be l_gc.
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Lemma 2 (Merge GC). Given a well-formed store 〈B, T 〉, ∀β1, β2 ∈ domain(T ), if

merge(B, T , β1, β2) = (B1, T1), and 〈B, T 〉 gc−→ 〈B2, T2〉,

merge(B2, T2, β1, β2) = (B3, T3) then 〈B1, T1〉 ' 〈B3, T3〉

Proof. The merge function computes the LCA of the head commits pointed by the

branches β1 and β2. If there are multiple LCAs then, a merge is computed recursively on

the LCAs, which will in turn access the LCA of the previous LCAs. By Unique Root

lemma, the commit history has a unique root. Hence, the recursive merge procedure will

eventually find the unique recursive LCA l_merge. The merge will then access the tree

and the blob nodes of any of the computed LCAs in this process.

The GC procedure computes the recursive LCA of all of the head commits of all the

branches. This includes β1 and β2. Hence, the recursive LCA l_merge computed by

merge on β1 and β2, will either be the recursive LCA computed by the GC l_gc or

l_merge is a descendent of l_gc. The GC procedure retains l_gc and its descendent

commits and the tree and the blob nodes of any of these commits. This set of nodes is a

superset of the nodes accessed by merge.

Finally, the new nodes added by the merge will be the same in merge(B, T , β1, β2) and

merge(B2, T2, β1, β2). Given that read will only access the head commits, and the

corresponding tree and blob nodes, which will remain the same in 〈B1, T1〉 and 〈B3, T3〉,

〈B1, T1〉 ' 〈B3, T3〉

Theorem 1 (GC Safety). Given a well-formed store 〈B, T 〉 and a request r such that

〈B, T 〉 r−→ 〈B1, T1〉 then 〈B, T 〉 gc−→ 〈B′, T ′〉 r−→ 〈B2, T2〉, then 〈B1, T1〉 ' 〈B2, T2〉.

Proof. By case analysis on the derivation of S1
r−→ S2.

56



Case 1 read

The read request only reads the latest commit and the tree associated with the

commit. GC retains the latest commit, and its associated tree entry; the head

commit is part of the live commits retained by the GC rule in figure 4.18.

Hence, the two stores are equivalent.

Case 2 write

The write request only reads the latest commit and the tree associated with the

commit. GC retains the latest commit, and its associated tree entry; the head

commit is part of the live commits retained by the GC rule in figure 4.18.

A new commit is added in both the stores, whose parent is the latest commit

and new tree entriesis added whose subtrees may be the subtrees from the

latest commit. Hence, the two stores are equivalent.

Case 3 publish

The publish request reads the head commit and the tree associated with that

commit both in the local branch βL and the public branch βP . It merges the

tree entryof βL into and the public branch βP . It merges the tree node of βL

into the tree entryof βP . By lemma Merge_gc, the two stores are equivalent.

Case 4 refresh

The refresh request reads the head commit and the tree associated with that

commit both in the public branch βP and the local branch βL. It merges the

tree entryof βP into the tree entryof βL. By lemma Merge_gc, the two stores

are equivalent.
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Case 5 remote_refresh

The remote refresh request reads the head commit and the tree associated

with that commit in the two public branch βP1 and βP2. It merges the tree

node of βP1 into the tree entryof βP2. By lemma Merge_gc, the two stores

are equivalent.

Case 6 connect

The connect request takes a local branch name (βL) and a public branch

(βP ). It adds an entry into the tag store in which βL maps to the hash

of the latest commit of βP . It does not change anything in the block store.

GC retains the latest commit, and its associated tree entry; the head commit

is part of the live commits retained by the GC rule in figure 4.18.

Hence, the two stores are equivalent.

Case 7 close

The close request performs a merge and then removes an entry from the tag

store. For merge, it reads the head commit and the tree associated with that

commit both in the local branch βL and the public branch βP . It merges the

tree node of βL into the tree entryof βP . By lemma Merge_gc, the two

stores are equivalent. Later, in both the stores, it removes an entry related to

βL from the tag store, hence retaining the equivalence of the two stores.
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Case 8 gc

A gc request identifies the head commit of all the branches and secures the

set of all the live commits associated with those head commits as shown in

figure 4.18. Since the gc request itself does not change the head commit for

any branch, another run for the gc request would result in the same set of

live commits. Hence, a store with single gc request and one with two consecutive

gc requests would result into equivalent stores.
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CHAPTER 5

IMPLEMENTATION

In this chapter, we describe the instantiation of Banyan on Cassandra (Cassandra,

2021), a popular, industrial-strength, column-oriented, distributed database. Cassandra

offers eventual consistency with the last-write-wins (LWW) conflict resolution policy.

Cassandra also offers complex data types such as list, set and map, with baked-in conflict

resolution policies. Given the richness of replicated data types, the available complex data

types are quite limiting. In addition to storing the values in different formats like complex

data types, replicated data types offers in-built conflict resolution techniques. Cassandra

also offers lightweight transactions (distributed compare-and-update) implemented using

the Paxos consensus protocol (Lamport, 2001). Lightweight transactions are also limited

to operate on only one object. Banyan does not use lightweight transactions since their

cost is prohibitively high due to consensus in a geo-distributed setting. As mentioned

previously Banyan only requires sticky availability and so uses a replica-local lock for

ensuring mutual exclusion when multiple sessions try to update the public branch on a

replica concurrently.

By instantiating Banyan on Cassandra, we offload the concerns of replication, fault

tolerance, availability, and convergence to the backing store. On top of Cassandra,

Banyan uses Irmin (Irmin, 2021), an OCaml library for persistent stores with built-in

branching, merging, and reverting facilities. Irmin can be configured to use different

storage backends, and in our case, the storage is Cassandra. Importantly, Cassandra

being a distributed database, serves the purpose of the networking layer in addition to



persistent storage. While Irmin permits arbitrary branching and merging, Banyan is a

specific workflow on top of Irmin which retains high availability.

5.1 IRMIN DATA MODEL

The expressivity of Irmin imposes a significant burden on the underlying storage. For

efficiently storing different versions of the state as the store evolves, Irmin uses the

Git object model. In chapter 4, we had seen the different kinds of objects that Banyan

(and also Irmin and Git) creates and how these objects are used to implement a version

controlled store. Figure 5.1 shows a snapshot of the state of the Irmin store.

Figure 5.1: A sample Irmin store. The rounded rectangles are tags, diamonds are commit
objects, rectangles are tree object, and circles are blob objects.

As described earlier, the tag store records the branch and the commit that corresponds

to that branch. In this example, we have three branches, Session s0, Session s1

and Pub p1. The content-addressable block store contains the commit, tree, and blob
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objects reachable from those branches. A commit object representing a commit may

have a single reference to a tree object. A commit node would have one or more parent

commits, except for the initial commit which has no parents. Here, the commit c0 is the

initial commit which does not have any parent commit. It points to an empty tree node.

The commit c1 is associated with Session s0 which contains a single key ["foo"] and

value V0. The commit c0 is the parent of commit c1 showing that Session s0 is forked

out of the initial commit. The commit c3 is the latest commit of Session s1 with c2

as its parent. Like commit c1, c2 also has a single key ["foo"] and value V0. Both the

commits share the same objects as the block store is content addressable. Session s1

adds a new key ["bar"] and value V1 which results in the creation of commit C3. A

new tree object is created for commit C3 as the block store is immutable and hence we

can not edit the existing tree object. Session s1 publishes its content to another branch

Pub p1. As a result, Pub p1 at this point would have the exact same content as Session

s1. Hence, it shares the commit node with Session s1, instead of creating new objects

for itself. As we have seen previously in chapter 4, a single Banyan write translates to

multiple writes to the underlying store. This is necessary to maintain the historical state

of the store which is needed for the three-way merge.

5.2 CASSANDRA INSTANTIATION

For instantiating Banyan on Cassandra, we use two tables, one for the tag store and

another for the block store. In the tag store a tag is mapped to a commit hash. It uses

Cassandra String typed value for tag and a Cassandra blob typed value for

the commit hash. In the block store, a hash is mapped with the different Banyan objects
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representing the contents of the store. It uses Cassandra blob typed value for both

hash and the corresponding content in the store. Irmin handles the logic necessary to

serialize and deserialize the various Git objects into binary blobs and back.

Cassandra replicates the writes to the tag and block tables asynchronously amongst the

replicas. Each replica periodically merges the public branches of other replicas into its

public branch to fetch remote updates. Due to eventual consistency of Cassandra, it

may be the case that not all the objects from a remote replica are available locally. For

example, the merge function may find a new commit from a remote replica, but the tree

object referenced by a commit object may not available locally. In this situation, Banyan

simply skips merging this branch in this round. Cassandra ensures that eventually the

remote tree object will arrive at this replica and will be merged in a subsequent remote

refresh operation. Thus, fetching remote updates is a non-blocking operation.

In Irmin, the tag store is updated with a compare-and-swap to ensure that concurrent

updates to the same tag should be disallowed. This is necessary to ensure that Banyan

publish operation which writes to the public branch on a replica does not lose updates.

Naively implementing this in Cassandra would necessitate the use of lightweight

transactions and suffer prohibitive costs. By restricting the Banyan programming model

(Chapter 3) such that entries in the tag store, in particular, the tag corresponding to the

public branch of the replica is only updated on that replica, we remove the necessity for

lightweight transactions. Thus, we don’t depend on any special features of Cassandra to

realise the Banyan model, and Banyan can be instantiated on any eventually consistent

key-value store.
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5.3 RECURSIVE MERGES

A particular challenge in making Banyan scalable is the problem of recursive merges.

Consider a simple mergeable counter MRDT, whose implementation is:

let merge lca v1 v2 =
let old = match lca with
| None -> 0
| Some v -> v
in
v1 + v2 - old

Consider the execution history presented in Figure 5.2 which shows the evolution of a

single counter. The history only shows the interaction between two replicas, and does

not show any sessions. Each node in the history is a commit. Since we want to focus

on a single counter, for simplicity, we ignore the tree nodes and the node labels show

the counter value. Initially the counters are 0, and each replica concurrently increments

0 0

Replica r1 Replica r2

4 5

9 9

+4 +5

merge None 4 5  

12 14
+3 +5

17 17

9

merge (Some (merge 
  None 4 5)) 12 14  

18 19
+1 +2

20 20

17

merge (Some (merge 
  (Some (merge None 4 5)) 
  12 14) 18 19

Figure 5.2: Recursive merge. Rounded rectangles are the results of recursive merges.
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the counter by 4 and 5. When the replicas perform remote refreshes, they invoke merge

None 4 5 to resolve the conflict updates yielding 9. The LCA is None since there is no

common ancestor.

Subsequently, the replicas increment the counters by 3 and 5. Now, consider that the

replicas merge each other’s branches. When merging 12 and 14, there are two equally

valid LCAs 4 and 5. Picking either one of them leads to incorrect result. At this point,

Irmin merges the two LCAs using merge None 4 5 to yield 9, which is used as the

LCA for merging 12 and 14. This yields the value 17. The result of merging the LCAs

is represented as a rounded rectangle. Importantly, the result of the recursive merge 9 is

not a parent commit of 12 and 14 (distinguished by the use of dotted arrows). This is

because the commit nodes are stored in the content-addressed store, and adding a new

parent to the commit node would create a distinct node, whose hash is different from the

original node. Any other nodes that referenced the original commit node will continue

to reference the old node. As a result, the recursive merges will need to be performed

again for subsequent requests!

Consider that the replicas further evolve by incrementing 1 and 2, yielding 18 and 19.

When these commits are merged on remote refresh, there are two LCAs 12 and 14, which

need to be merged. This in turn has two LCAs 4 and 5, which need to be merged. Thus,

every subsequent recursive merge, which is very likely since the replicas merge each

other’s branches, requires repeating all the previous recursive merges. This does not

scale.

We solve this problem by having a separate table in Cassandra that acts as a cache,
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recording the result of LCA merges. Whenever Banyan encounters a recursive merge,

the cache is first consulted before performing the merge. In this example, when 18 and

19 are being merged, Banyan first checks whether the two LCAs 12 and 14 are in the

cache. They would not be. This triggers a recursive merge of LCAs 4 and 5, whose

result is in the cache, and is reused. The cache is also updated with an entry that records

that the merge of the LCAs 12 and 14 is the commit corresponding to 17.
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CHAPTER 6

EVALUATION

In this section, we evaluate the performance of Banyan instantiation on Cassandra. Our

goal is to assess the suitability of Banyan for programming loosely connected distributed

applications. To this end, we first quantify the overheads of implementing Banyan over

Cassandra. Subsequently, we assess the performance of MRDTs implemented using

Banyan. And finally, we study the performance of distributed build cache (Chapter 2).

6.1 EXPERIMENTAL SETUP

For the experiments, we use a Cassandra cluster with 4 nodes within the same data

center. Each Cassandra node runs on a baremetal Intel®Xeon®E3-1240 CPU, with 4

physical cores, and 2 hardware threads per core. Each core runs at 3.70GHz and has

128KB of L1 data cache, 128KB of L1 instruction cache, 1MB L2 cache and 8MB of L3

cache. Each machine has 32GB of main memory. The machines are unloaded except for

the Cassandra node. The ping latency between the machines is 0.5ms on average. The

clients are run on a machine with the same configuration in the same data center.

For the experiments, Cassandra cluster is configured with a replication factor of 1, read

and write consistency levels of ONE. Hence, the cluster maintains a single copy of each

data item, and only waits for one of the servers to respond to return the result of read and

write to the client. These choices lead to eventual consistency where the reads may not

return the latest write. The cluster may be configured with larger replication factor for

better fault tolerance. However, stronger consistency levels are not useful since Banyan

enforces per-key causal consistency over the underlying eventual consistency offered



by Cassandra. In fact, choosing strong consistency for reads and writes in Cassandra

does not offer strong consistency in Banyan since the visibility of updates in Banyan is

explicitly controlled with the use of refresh and publish.

6.2 BASELINE OVERHEADS

Given that Banyan has to persist every version of the store, what is the impact of Banyan

when compared to using Cassandra in a scenario where Cassandra would be sufficient?

We measure the throughput of performing 32k operations, with 80% reads and 20%

writes with different numbers of clients. The keys and values are 8 and 128 byte strings,

respectively. For Banyan, we use last-writer-wins resolution policy, which is the policy

used by Cassandra. The results are presented in Figure 6.1.
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Figure 6.1: Performance comparison between Banyan and Cassandra on LWW string
value.

With 1 client, Banyan performs 16 operations per second, while Cassandra performs 795

operations per second. Cassandra offers 50× more throughput than Banyan with 1 client.

This is due to the fact that every read (write) performs 4 reads (3 reads and 4 writes) to the

underlying store to create and access the tag, commit and tree nodes. Banyan additionally
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includes marshalling and hashing overheads for accessing the content-addressed block

store. Cassandra does not include any of these overheads. Luckily, Banyan overheads

are local to a client, and hence, can be easily parallelized. With 1 client, the cluster is

severely under utilized, and the client overheads dominate. With increasing number of

clients, the cluster is better utilized. At 128 clients, Cassandra performs 31274 operations

per second where as Banyan performs 5131 operations per second, which is a slowdown

of 6.2×. We believe that these are reasonable overheads given the stronger consistency

and isolation guarantees, and better programming model offered by Banyan.

At the end of 32k operations, Cassandra uses 4.9MB of disk space, while Banyan uses

1.8GB of disk space. With the use of GC whose sketch and operational semantics was

presented in Chapter 4 this space usage will come down significantly.

6.3 MERGEABLE TYPES

Counter We begin with the counter data type discussed in Section 5.3. How does

Banyan counter perform when concurrently updated by multiple clients? For the

experiment, the value type is a counter that supports increment, decrement and read

operations. The clients perform 32k increment or decrement operations on a key

randomly selected from a small key space. Each client refreshes and publishes after

every 100 operations. By choosing a small key space, we aim to study the scalability of

the system with large number of conflicts.

Figure 6.2 shows the performance result for two key spaces of size 1024 and 4096 keys.

With 1 client, there are no conflicts. The conflicts increases with increasing number of
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clients. We get a peak throughput of 1814 (2027) operations per second with a key space

of 1024 (4096) keys. Observe that the number of conflicts is considerably lower with

4096 keys when compared to 1024 keys. As a result, the throughput is higher with 4096

keys. The result shows that the throughput of the system is proportional to the number

of conflicting operations.
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Figure 6.2: Performance of counter MRDT.

Blob log Another useful class of MRDTs are mergeable logs, where each log message

is a string. Such a distributed log is useful for collecting logs in a distributed system,

and examining the logs in their global time order. To this end, each log entry is a pair of

timestamp and message, and the log itself is a list of such entries in reverse chronological

order. The merge function for the mergeable log extracts the newer log entries from both

the versions, sorts the newer entries in reverse chronological order and returns the list

obtained by appending the sorted newer entries to the front of the log at the LCA.

While this implementation is simple, it does not scale well. In particular, each commit
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stores the entire log as a single serialized blob. This does not take advantage of the fact

that every commit can share the tail of the log with its predecessor. Moreover, every

append to the log needs to deserialize the entire log, append the new entry and serialize

the log again. Hence, append is an O(n) operation, where n is the size of the log. Merges

are also worst case O(n). This is undesirable. We call this implementation a blob log.

Linked log We can implement a efficient logs by taking advantage of the fact that every

commit shares the tail of the log with its predecessor. The value type in this log is:

type value =
| L of float (* timestamp *) * string (* message *)

* blob (* hash of prev value *)
| M of blob list (* hashes of the values being merged *)

The value is either a log entry L(t,m,h) with timestamp t, message m and a hash of the

previous value h. Appending to the log only needs to add a new object that refers to

the previous log value. Hence, append is O(1). Figure 6.3 shows a snapshot of the log

assuming a single key x. The log at x in the public branch p0 (session s0) is [a;b;c]

([a;b;d]). The merge operation simply adds a new value M [h1;h2], which refers to

the hashes of the two log values being merged. This operation is also O(1). The read

function for the log does the heavy-lifting of reading the log in reverse chronological

order.

Observe that unlike the examples seen so far where the values do not refer to other values,

this linked log implementation refers to other values as heap data structures would do.

Figure 6.4 shows the time taken to add 100 additional messages to the log with 4 clients.
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Figure 6.3: A snapshot of linked log storage.

Observe that the time stays constant with linked log but increases linearly with blob

log. By being able to share objects across different commits (versions), Banyan leads to

efficient implementations of useful data structures.

Number of messages (x 100)

Ti
m

e 
(s

ec
)

0

2

4

6

1 3 5 7 9 11 13 15 17 19 21 23 25
Linked Log Blob Log

Figure 6.4: Performance of mergeable logs.
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6.4 DISTRIBUTED BUILD CACHE

In this section, we evaluate the performance of distributed build cache described in

Chapter 2. We have chosen three OCaml packages git, irmin and httpaf with common

dependent packages. In the first experiment, we measure the benefit of building a

package that has already been built in another workspace. Hence, the package artefacts

will already be in the build cache.

For each library, we measure the baseline build time (1) without using the build cache,

(2) using an empty build cache, and (3) building the same package on a machine with the

same package having built earlier on a different machine. Figure 6.5 shows the results.

We see that case using an empty build cache is slower than not using the cache since

the artefacts are stored in the cache. We also see that building the same package on a

different machine is faster due to the build cache when compared to the baseline.
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Figure 6.5: Performance of complete reuse of build artefacts.
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A more realistic scenario is partial sharing of artefacts, where some of the dependencies

are in the cache and other need to be build locally, and added to the cache. In this

experiment, git package is first build on a machine with an empty cache. Subsequently,
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Figure 6.6: Performance of partial reuse of build artefacts.

irmin package is built on a second machine (which will now benefit from the common

artefacts in the cache). And finally, building httpaf on a third machine, which benefits

from both of the builds. Figure 6.6 shows the results. As expected, the git package

build is slower with cache than without since the cache is empty and the artefacts need

to be written to the cache additionally. Subsequent package builds benefit from partial

sharing of build artefacts. The results illustrate that Banyan not only makes it easy to

build complex applications like distributed build caches, but the implementation also

performs well under realistic workloads.
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CHAPTER 7

RELATED WORK

Several prior works have addressed the challenge of balancing the programmability

and performance under eventual consistency. RedBlue consistency (Li et al., 2012)

offers causal consistency by default (blue), but operations that require strong consistency

(red) are executed in single total order. Quelea (Sivaramakrishnan et al., 2015) and

MixT (Milano and Myers, 2018) offer automated analysis for classifying and executing

operations at different consistency levels embedded in weakly isolated transactions,

paying the cost of proportional to the consistency level. Indeed, mixing weaker

consistency and transactions has been well-studied (Brutschy et al., 2017; Kraska et al.,

2013; CosmosDB, 2021).

Banyan only supports causal consistency, but it is known to be the strongest consistency

level that remains available (Lloyd et al., 2011). While prior works attempt to reconcile

traditional isolation levels with weak consistency, Banyan leaves the choice of reading

and writing updates to and from other transactions to the client through the use of

publish and refresh. We believe that traditional database isolation levels are already

quite difficult to get right (Kaki et al., 2017), and attempting to provide a fixed set of

poorly understood isolation levels under weak consistency will lead to proliferation of

bugs.

Banyan is distinguished by the equipping data types with the ability to handle conflicts

(three-way merge functions). Banyan builds on top of Irmin (Irmin, 2021). Irmin allows

arbitrary branching and merging between different branches at the cost of having to



expose the branch name. Banyan refreshes and publishes implicitly to the public branch

at a repository, which obviates the need for naming branches explicitly. Irmin does not

include a distribution and convergence layer; Banyan uses Cassandra for this purpose.

Banyan provides causal consistency and coordination free transactions over weakly

consistent Cassandra. Several prior work have similarly obtained stronger guarantees on

top of weaker stores (Sivaramakrishnan et al., 2015; Bailis et al., 2013b).

TARDiS (Crooks et al., 2016) supports user-defined data types, and a transaction model

similar to Banyan. TARDiS is however a machine model that exposes the details of

explicit branches and merges to the developer, whereas Banyan is a programming model

that can be instantiated on any eventually consistent key-value store. For instance, in

TARDiS programmers need to invoke a separate merge transaction that does an n-way

merge. Banyan transaction model is more flexible than TARDiS. For example, Banyan

can support monotonic atomic view, which TARDiS cannot – TARDiS transactions do

not have a way of allowing more recent updates since the transaction began. TARDiS

does not discuss merges without LCAs or the issue with recursive merges. We found

recursive merges to be a very common occurrence in practice.

Concurrent revisions (Burckhardt et al., 2012) describe a programming model with

branch and merge workflow with explicit branches and restrictions on the shape of

history graphs. Banyan makes the choice of branches to publish and refresh implicit

leading to a simpler model. Concurrent revisions does not include an implementation.

Antidote SQL (Lopes et al., 2019) is a database system for geo-distributed applications

that provides the user the ability to relax SQL consistency when possible, but remain
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strict when necessary. Similar to Banyan, Antidote SQL transactions are executed over

replicated data types. While Antidote SQL only permits parallel snapshot isolation

level (Sovran et al., 2011), by making refresh and publish explicit, Banyan permits

weaker isolation levels such as monotonic atomic view (Bailis et al., 2013a).

In this work, we also present a formal operational semnatics for Banyan over a core

Git-like store. To our knowledge, our semantics is the first formal description of the

semantics of a Git-like store equipped with three-way merges
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CHAPTER 8

LIMITATIONS AND FUTURE WORK

Many eventually consistent databases such as CosmosDB (CosmosDB, 2021),

DynamoDB (DynamoDB, 2021) and Cassandra provide tunable consistency levels

for operations ranging from eventual consistency to strong consistency. Banyan only

provides causal consistency, which is known to be the strongest available consistency

level, but does not provide weaker or strong consistency levels. As such applications that

require strong consistency, such as bank accounts with a minimum balance requirement,

cannot be expressed in Banyan. We believe that we can extend Banyan with strongly

consistent operations. However, operations with weaker consistency (and presumably

better performance) cannot be incorporated in Banyan due to the underlying expectation

about the causal history for each operation.

We have yet to implement the garbage collector for Banyan based on the design sketched

in Section 4.9. In the absence of a garbage collector, the storage requirements are quite

significant compared to traditional databases which only store the most recent version of

the data (Section 6.2). We leave the implementation of the garbage collector for future

work.



CHAPTER 9

CONCLUSION

Programming loosely connected distributed application is challenging. CAP and

PACELC theorems suggest that there is always a trade-off between consistency and

availability with distributed systems. If we need to design a highly available system,

we must expect weak consistency among the replicas. Eventually consistent databases

are used to design applications in such scenarios. Eventually consistent databases are

designed assuming that there will always be a divergent view of data among different

replicas. Hence it provides means to converge the replicas eventually. Current solutions

based on Convergent Replicated data types such as Last-Writer-Wins, and multi-valued

data structures provide very few data types to work with. Moreover, they support only

the primitive types. That becomes a hindrance in developing complex applications over

eventually consistent databases. In this work, we present Banyan, which is based on

Mergeable Replicated Data types and uses the principles of Git to allow coordination-

free distributed transactions. Like Git, the data type in Banyan is equipped with three-

way merge capabilities. It records the entire history of updates and finds the lowest

common ancestor between two replicas to track the diversion between them. It uses this

information to merge these replicas based on rules defined by the application. Banyan is a

programming model which is instantiated on top of an off-the-shelf eventually consistent

distributed database. A distributed database provides not only storage capabilities but

also a distribution network. This makes it easy to develop distributed applications without

worrying about complex network protocols. Banyan provides a way to perform isolated

transactions to each client. It provides methods like publish refresh and remote



refresh to share the updates among the replicas and other clients. With extensive

evaluation, we show that Banyan helps build complex distributed applications without

compromising the performance. Banyan uses a large amount of space as it stores the

entire history of updates. It uses this history to compute the lowest common ancestor

(LCA) for merge-related operations. We propose a sketch for a garbage collector that

identifies the objects that would not be needed by Banyan for the computation of LCA

and could be deleted from the store. Garbage collection would help in significantly

reducing the space usage of Banyan. We also present a formal operational semantics

for Banyan over a core Git-like store. To our knowledge, our semantics is the first

formal description of the semantics of a Git-like store equipped with three-way merges.

We prove the correctness of the novel form of garbage collection using our semantics.

Thanks to our semantics, we have also discovered bugs in the merge semantics of Irmin,

a widely used distributed database built on the principles of Git.
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