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ABSTRACT

KEYWORDS: Concurrency testing; Fuzzing.

With the advancement in processor technologies, more and more software is being

developed to utilize the multi-processing capabilities of multicore processors. Multicore

processors have become the norm in mobile, desktop, and enterprise computing. Cloud

computing which has enabled easy access to fast multicore machines has fueled the

growth of such applications. Programmers use concurrent programming to harness

the power of multicore processors. Concurrent programming enables simultaneous

execution of tasks and I/O operations to reduce the time it takes for an application

to process the user request. These simultaneous executions introduce non-determinism

in concurrent and parallel programs. Due to non-determinism, a program may exhibit

different behaviors when executed multiple times. This non-determinism arising in

program execution gives rise to concurrency bugs. Concurrency bugs make bug-free

concurrent programs hard to write.

Testing concurrent program is a hard problem as concurrency bugs in programs

typically manifest only when the program is executed under a particular buggy

thread/event schedule. As a result, conventional testing methodologies for concurrent

programs like stress testing and random testing, which explore random schedules, have
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a strong chance of missing buggy schedules. Techniques under the umbrella of model

checking are time-consuming and not practical enough to be used during application

development. This leaves a void for an efficient and practical concurrency testing

technique for programmers wanting to test their applications for concurrency bugs in

a reasonable amount of time.

In this thesis, we argue that coverage-guided fuzzing can be used effectively for

concurrency testing event-driven concurrent and shared-memory parallel programs.

The key insight is to state high-level program properties as assertions in the program

and then use fuzzing to generate a schedule for the concurrent and the parallel programs

that can falsify the assertion, thus finding the concurrency bug. The thesis presents

three major contributions each focused on concurrency testing: (1) a novel concurrency

testing technique called coverage-guided property-based concurrency fuzzing (PBCF)

that combines property-based testing with mutation-based, grey box fuzzing (2)

ConFuzz which is an instantiation of PBCF to test event-driven concurrent OCaml

programs (3) ParaFuzz which is an instantiation of PBCF to test shared-memory

parallel OCaml programs.
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CHAPTER 1

INTRODUCTION

With the advancement in processor technologies, modern software applications

increasingly utilize the multi-processing capabilities of multicore processors. Multicore

processors have become the norm in mobile, desktop, and enterprise computing.

Cloud computing which has enabled easy access to fast multicore machines has

fueled the growth of such applications. As a result, programmers use concurrent

programming to harness the power of multicore processors. On the other hand,

concurrent programming is also used for applications that run on uniprocessors. Event-

driven systems such as UI applications, web browsers, and web services involve heavy

usage of concurrent programming. Indeed, both client and server-side applications use

concurrent programming to provide a fast and glitch-free user experience to their users.

This wide adoption of concurrent programming makes it an important programming

model for application programmers.

1.1 THE PROBLEM

Concurrent programming enables simultaneous execution of tasks and I/O operations

to reduce the time it takes for an application to process the user request.

These simultaneous executions introduce non-determinism in concurrent and parallel

programs. Due to non-determinism, a program may exhibit different behaviors when
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executed multiple times. Non-determinism arising in program execution may give rise

to concurrency bugs. Concurrency bugs in programs typically manifest only when the

program is executed under a particular buggy input, and event or thread schedule. Thus,

non-determinism makes it hard to write bug-free concurrent and parallel programs.

Due to the ubiquitous use of concurrent programming in mobile, web, and desktop

computing, it becomes imperative to test programs for concurrency bugs. Existing

testing methodologies used during application development like unit testing often fails

to find concurrency bugs, as it does not alter the schedule of the program. On the other

hand, concurrency testing techniques like stress and random testing are not effective in

finding concurrency bugs because of the large schedule and input space in concurrent

program. Techniques under the umbrella of model checking are time-consuming and

not practical enough to be used during application development. This leaves a void for

an efficient and practical concurrency testing technique for programmers wanting to test

their applications for concurrency bugs in a reasonable time budget.

1.2 MY THESIS

In this thesis, we argue that coverage-guided fuzzing can be used effectively for testing

event-driven concurrent and multicore parallel programs. The key insight is to state

high-level program properties as assertions in the program and then use fuzzing to

generate schedules of concurrent and parallel programs that can falsify the assertion,

eventually finding the concurrency bug.

The thesis presents three major contributions each focused on concurrency testing:(1)
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proposing a novel concurrency testing technique called coverage-guided property-based

concurrency fuzzing (PBCF) that combines property-based testing with mutation-

based, grey box fuzzing (2) instantiating the technique in ConFuzz to test event-driven

concurrent OCaml programs (3) instantiating the technique in ParaFuzz to test parallel

multicore OCaml programs.

1.3 CONTRIBUTIONS

In this section, we provide an overview of the contributions made by the thesis.

1.3.1 PBCF: Coverage-guided Property-based Concurrency Fuzzing

The first contribution of the thesis is a novel concurrency testing technique, PBCF

that combines property-based testing [Claessen and Hughes (2000)] with mutation-

based, grey-box fuzzing [Zalewski (2021)]. We demonstrate the effectiveness

and the practicality of PBCF in finding concurrency bugs in real-world programs

by implementing PBCF in two directed concurrency testing tools, ConFuzz and

ParaFuzz to test event-driven OCaml and parallel Multicore OCaml programs

respectively.

Bug-free concurrent programs are hard to write due to non-determinism arising out of

concurrency and program inputs. Concurrent programs suffer from concurrency bugs

such as data race, deadlocks, and race conditions. Moreover, the erroneous condition in

a concurrent program may not be the mere presence of a race, but a complex assertion

expressed over the current program state. It is unclear how to express this type of
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concurrency bugs. Some concurrency bugs typically manifest under specific inputs and

event or thread schedules. Conventional testing methodologies for concurrent programs

like stress testing and random testing, which explore random schedules, have a strong

chance of missing these bugs.

To expose such complex concurrency bugs that may arise in concurrent programs,

we present a novel technique that combines property-based testing on the lines of

QuickCheck [Claessen and Hughes (2000)] with AFL fuzzer [Zalewski (2021)], the

state-of-the-art mutation-based, grey box fuzzer, and apply it to generate not only inputs

that may cause the property to fail, but also to drive the various scheduling decisions in

the concurrent program. Our key observation is that we can use AFL’s grey box fuzzing

capability to direct the search towards new schedules, and thus lead to property failure.

1.3.2 ConFuzz: Coverage-guided Property Fuzzing for Event-driven Programs

The second contribution of the thesis is ConFuzz, a concurrency property fuzz

testing tool for event-driven concurrent OCaml programs written using the popular

Lwt [Lwt (2021)] concurrency library. ConFuzz instantiates PBCF for event-

driven concurrent OCaml programs. Using ConFuzz, programmers specify high-level

program properties as assertions in the concurrent program. ConFuzz uses the popular

grey box fuzzer AFL to generate inputs as well as concurrent schedules to maximize

the likely hood of finding new schedules and paths in the program to make the assertion

fail.

The key contribution in ConFuzz’s implementation is that ConFuzz is developed as a

4



drop-in replacement for the Lwt library and does not require any modification to the

test program. ConFuzz controls the non-determinism present in Lwt programs by

capturing the various sources of non-determinism. ConFuzz scheduler then generates

and enforces event schedule with the help of AFL. The capability of ConFuzz to

capture non-determinism enables it to precisely enforce the schedule generated by AFL

and deterministically reproduce the concurrency bug. We evaluate ConFuzz against

Node.Fz [Davis et al. (2017)] - a random fuzzer for event-driven JavaScript programs

and stress testing on real-world OCaml applications and benchmark programs. Our

experimental results show that ConFuzz is easy-to-use, effective, detects concurrency

bugs faster than Node.Fz and can reproduce known concurrency bugs in widely used

OCaml libraries built using Lwt. These results were published in PADL 2021 [Padhiyar

and Sivaramakrishnan (2021)].

1.3.3 ParaFuzz: Coverage-guided Property Fuzzing for Parallel Programs

The final contribution of the thesis is proposed by ParaFuzz, a PBCF instantiation in

the form of a concurrency testing tool for multi-threaded Multicore OCaml programs.

Similar to ConFuzz, in ParaFuzz programmers specify high-level program properties

as assertions in the source code. ParaFuzz aims to identify the input and the schedule

that will cause the assertion to fail. ParaFuzz too readily supports record and replay to

reproduce the failure.

ParaFuzz make a single assumption to make it an efficient and practical testing

tool. ParaFuzz only requires the test program to be free from data races to enable

certain optimizations. We argue that the assumption is reasonable enough to make

5



ParaFuzz efficient. ParaFuzz captures the various source of non-determinism present

in Multicore OCaml programs by controlling thread executions and generate thread

schedules with the help of AFL. The main challenges faced by ParaFuzz is AFL

integration and testing parallel programs without requiring code to change. AFL is

known not to work with multi-threaded programs. Also, to make ParaFuzz a practical

tool for concurrency testing, it is imperative to handle unmodified test programs. We

solve both the challenges by employing a novel approach to control threads using

effect handlers [Plotkin and Pretnar (2009)] in ParaFuzz. Effect-handlers enable

ParaFuzz to control threads without changing Multicore OCaml thread APIs. This

makes ParaFuzz easier to adopt and test a wide variety of parallel programs. ParaFuzz

simulates the parallel execution of threads using effect-handlers thereby allowing AFL

to retain tight control over the thread scheduling decisions. Thus enabling ParaFuzz

to use AFL to test Multicore OCaml parallel programs. We evaluate ParaFuzz

against random and stress testing on parallel benchmark programs commonly used

in concurrency testing research. We show that ParaFuzz is efficient and effective in

finding concurrency bugs that depend on some combination of input and thread schedule

compared to random and stress testing. ParaFuzz was able to find one previously

unknown concurrency bug 1 in parallel programming library: domainslib [domainslib

(2021)].

1https://github.com/ocaml-multicore/domainslib/issues/25
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1.4 THESIS OVERVIEW

The rest of the thesis is organized as follows. Chapter 2 presents an overview of

property-based testing and fuzzing which forms the basis of ConFuzz and ParaFuzz.

Chapter 3 proposes combining concurrency testing with property-based testing and

fuzzing. Chapter 4 presents ConFuzz, a concurrency testing tool for event-driven

concurrent OCaml programs. ParaFuzz, a concurrency testing tool for parallel

multicore OCaml programs is introduced in Chapter 5. Related work is presented at

the end of each chapter. We conclude the thesis with the future direction of this work in

Chapter 6.
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CHAPTER 2

Preliminaries

To put this work in context, we begin with a discussion on existing concurrency testing

techniques. Next we talk about property-based testing and its applicability in testing

programs. We then describe Fuzzing and introduce AFL, the most widely used fuzzer.

Then we move on to how Crowbar [Dolan and Preston (2017)], a property-based fuzz

testing tool for OCaml, which brings the best of both property-based testing and fuzzing.

Finally, we discuss concurrent programming in OCaml which forms the basis of the rest

of this thesis.

2.1 EXISTING CONCURRENCY TESTING TECHNIQUES

Multi-threaded parallel programs are difficult to get right as it suffers from various

concurrency bugs such as data races, race conditions and deadlocks. Such concurrency

bugs are often difficult to find because the bugs are exposed only on specific

interleavings. More moving parts in the application in the form of thread non-

determinism warrants sufficient testing of multi-threaded programs. Testing a shared-

memory multi-threaded program is a hard problem. The specific interleavings that cause

the bugs to manifest are hard to find as thread interleaving is non-deterministic and

there can be large number of thread interleavings to test. Even for a small program, the

number of thread interleavings can be huge. We now discuss the existing concurrency

testing techniques.
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2.1.1 Stress and Random Testing

Most common approach to test parallel program is stress testing, where the program is

made to execute under heavy system load for hours or even days in the hope to find any

notorious concurrency bug. Stress testing suffers from a few problems. Stress testing

depends heavily on the test environment as some of the interleavings may be exposed

only on heavily-loaded systems. The thread interleavings are not explicitly controlled

by stress testing. The interleavings are subject to OS scheduling which can cause stress

testing to execute same interleaving again and again which makes it less likely to find

that rare buggy interleaving.

Random testing techniques [Edelstein et al. (2003)] improves stress testing by

randomizing the thread interleavings in order to exercise different interleavings in

different test runs. These random testing techniques differ in the way they randomize

thread interleavings. Both random and stress testing does not recognize the tested

interleavings and naively executes the same interleavings multiple times. Also, the

probability of finding the buggy interleaving out of huge interleaving state space is very

low.

2.1.2 Model checking

Another approach is model checking or systematic testing [Godefroid (1997);

Musuvathi et al. (2019)] which controls thread scheduler and systematically generate

all legal thread schedules. But it’s hard to model check programs due to well known

problem of state space explosion. State-space explosion problem refers to combinatorial

explosion with increase in number of threads and instructions in each thread. There have
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been prior works to deal with state- space explosion problem like partial-order reduction

[Flanagan and Godefroid (2005); Godefroid (1995)], context bounding [Musuvathi and

Qadeer (2007b)] to reduce state space, but cannot substantially reduce it to test long-

running program. Even if the state space of a program is not huge, it will take a long

time to test multi-threaded programs, which makes it unlikely to use as a practical

technique for programmers wanting to test their code in a reasonable amount of time.

Most of the existing testing technique focuses on finding only buggy interleaving, which

is inadequate for bugs that depend on some combination of program input and thread

schedule. Techniques focusing on testing programs under different schedule requires

test input to be fixed. Even after finding no buggy schedule during testing for a given

test input, programmers cannot determine whether to continue testing with different

input or stop.

2.2 PROPERTY-BASED TESTING

Property-based testing is a testing technique introduced by QuickCheck (Claessen and

Hughes (2000)). In property-based testing, the properties under test are invariants that

must hold on all possible inputs. The properties are specified as test methods with

formal parameters. The program is then tested with randomly generated inputs in an

attempt to violate the property. Inputs that violate the invariant are reported by the

property-based testing tool.

Property-based testing allows a wide range of input to the property ranging from simple

primitive types (Integers, floating-point numbers, etc) to Algebraic data type by the use
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of generators. Generators can be composed with simple combinators provided by the

QuickCheck tool to write generators for user-defined types, which enables programmers

to test arbitrary interfaces. The values in QuickCheck as defined by generators are

generated automatically by random testing. The values that do not conform to the

generator’s specification are simply discarded. Thus, property-based testing enables

programmers to validate the program properties on a wide variety of inputs.

2.3 FUZZING

Fuzzing (Fuzz testing) is an effective technique for testing software by feeding random

input to induce the program to crash. Fuzz testing was introduced first by [Miller et al.

(1990)] to test the reliability of Unix utilities twenty-five years before and has been used

widely since then to detect bugs and vulnerabilities in software. Fuzz testing has gained

popularity as a testing technique to test programs due to its effectiveness, efficiency, and

ease of use in finding software bugs and vulnerabilities. Fuzz testing is used especially

in the security domain to detect software security bugs. Fuzz testing can be divided into

three types: black-box fuzzing, white-box fuzzing, and grey-box fuzzing.

Black-box fuzzing does not require knowing the internal structure of the program under

test nor its source code. The program is treated as a black box for testing purposes.

As a result, many generated test cases are not interesting or cannot sufficiently test the

program. There have been works [Sparks et al. (2007); Wang et al. (2010)] in black-box

fuzzing to generate effective test inputs and explore deeper paths in the program with

the help of domain knowledge of the program.
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As opposed to black-box fuzzing, white-box fuzzing requires source code as well

knowledge of the internal logic of the program to be tested. White-box fuzzing uses

program analysis techniques such as dynamic symbolic execution, model-based testing

to generate test inputs to systematically increase code coverage or to reach certain

critical program locations. White-box fuzzers are very effective in finding bugs deep

in the program. But white-box fuzzer may not work well with large programs as

program analysis is often quite time-consuming. To overcome this, there have been

attempts [Stephens et al. (2016)] to combine the efficiency of black-box fuzzers and the

effectiveness of white-box fuzzers.

Finally grey box, fuzzing leverages program instrumentation rather than program

analysis to learn more about the program. It uses the collected information to generate

test cases that can reach new paths in the program. Prominent grey-box fuzzers like AFL

[Zalewski (2021)], libFuzzer [libFuzzer (2021)], honggfuzz [honggfuzz (2021)] have

been able to detect many bugs and vulnerabilities in open source projects. Compared

to black-box fuzzing, grey-box fuzzing is aware of the internal program structure via

automatic instrumentation introduced during compilation, makes it effective in guiding

the fuzzing procedure to more interesting paths. On the other hand, grey-box fuzzing

is extremely lightweight and scalable to large real-world programs than white-box

fuzzing. We now discuss American Fuzzy Lop (AFL), one of the popular grey-box

fuzzer in detail.
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2.3.1 American Fuzzy Lop (AFL)

American Fuzzy Lop [Zalewski (2021)] is a coverage-guided fuzzer [Padhye et al.

(2019)], which inserts lightweight instrumentation in the program under test to collect

code coverage information such as program execution paths. AFL instruments a

targeted program at every conditional jump instruction at compile time. Being a

coverage-guided fuzzer, AFL tries to explore new branches in the program in the

hope to find more bugs. AFL starts with a seed test case, which it mutates with a

combination of random and deterministic techniques that aims to find new execution

paths in the program. On detecting a new execution path increasing code coverage, the

corresponding input test case is saved for further mutation. During fuzzing, the input

test cases that result in a crash are saved, thus finding the exact test case that results in a

crash. AFL has successfully discovered thousands of bugs and security vulnerabilities1

in various applications such as image libraries, web browsers, and networking tools

[Zalewski (2021)].

2.4 CROWBAR

Fuzzing uses sophisticated techniques to generate input data, but the condition being

checked is generally simple: "does the program crash"? This is in contrast to property-

based testing where input data is generated in a simple way (randomly), but the testing

conditions (properties) are complex. In addition, while property-based testing works

well in many cases, random generation of inputs may not cover large parts of the

programs where the bugs may lie. Crowbar [Dolan and Preston (2017)] is a testing tool

1https://lcamtuf.coredump.cx/afl/
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for OCaml combining property-based testing with coverage-guided fuzzing by using

AFL to generate test data for QuickCheck-style tests. Rather than generating input data

randomly, the test inputs are generated by AFL to maximise the discovery of execution

paths in the function under test. Crowbar is similar to QuickCheck, with the user

specifying generators and properties to be tested. Crowbar does not offer the options

for controlling the frequency and distribution of test cases as done by QuickCheck, but

instead the distribution of test data is controlled automatically by AFL, to maximize the

number of code paths tested.

2.5 CONCURRENT PROGRAMMING IN OCAML

Concurrent programming is used to develop applications for both single and multicore

systems. We next describe precisely the notion of concurrent and parallel programs in

OCaml language. OCaml is a general-purpose multi-paradigm programming language.

OCaml offers a powerful static type system and type inference capability to help

programmers get rid of type-related runtime bugs typically associated with dynamically

typed languages.

2.5.1 Lwt: Event-driven programming

Event-driven programming is a programming paradigm in which programs react to

events such as mouse clicks, keypresses, or any user interactions with the application.

Event-driven programs are typically single-threaded with the main idea to process I/O

in a non-blocking way. An event loop sits at the heart of the programming model

that concurrently performs the I/O operations, and schedules the callback functions
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to be resumed when the corresponding I/O is completed. Event-driven concurrent

programming is used in I/O-heavy applications such as web browsers, network

servers, web applications. For the rest of the thesis, by concurrent programs, we

mean both single-threaded event-driven and multi-threaded parallel programs. While

referring to individual concurrent programs (event-driven/parallel) we provide sufficient

information to distinguish between two types of concurrency.

OCaml language lacks native support for single-thread and multi-thread concurrency.

So threading libraries like Lwt [Lwt (2021)] and Aysnc [Async (2021)] are used to

write single-threaded event-driven concurrent programs in OCaml. In this thesis, we

focus on Lwt based event-driven programs. Lwt (Lightweight threads) [Lwt (2021)]

is a cooperative threading library for writing concurrent programs in OCaml. Under

cooperative threading, each task voluntarily yields control to other tasks when it is no

longer able to make progress. Lwt is the most widely used asynchronous I/O library

in the OCaml ecosystem. Lwt’s event handling model is similar to that of Node.js

[Node.jsEventLoop (2021)]. Internal working of Lwt is discussed in detail in Chapter

4.

2.5.2 Multicore OCaml: Shared-memory Parallel programming

Shared-memory parallel programming is a type of parallel programming used to

develop applications for multicore systems. The aim of parallel programming is to

harness the processing capability of multiple processor cores to increase application

performance. Parallel programming creates multiple threads that are executed in

parallel (simultaneously) on different processor cores. Threads in multicore programs
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share data by sharing common memory (shared memory).

OCaml is one of the few modern managed system programming languages to lack

support for shared memory parallel programming. Although OCaml offers threading

capabilities, threads are executed concurrently on a single-core instead of parallel

execution. Multicore OCaml is an extension of the OCaml language to take advantage

of multicore processors. Multicore OCaml adds native support for Concurrent and

shared-memory Parallel programming to OCaml. Relevant details of Multicore OCaml

are discussed in Chapter 5.
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CHAPTER 3

COMBINING CONCURRENCY WITH COVERAGE-GUIDED

PROPERTY FUZZING

In this chapter, we start with how existing property-based fuzzing techniques fail

to test concurrent programs. Then we introduce the novel technique that combines

concurrency testing and coverage-guided property fuzzing to test concurrent and

parallel OCaml programs. Finally, we introduce two practical concurrency testing tools:

ConFuzz and ParaFuzz based on the novel technique to test concurrent and parallel

OCaml programs respectively.

3.1 PROBLEM WITH PROPERTY-BASED FUZZING + CONCURRENCY

Property-based fuzzing tools like Crowbar [Dolan and Preston (2017)] work quite well

in finding bugs in programs without concurrency. Crowbar has found bugs in many

widely used OCaml libraries. But property-based fuzzing is ineffective in finding

concurrency bugs. Due to concurrency-induced non-determinism, concurrency bugs

typically manifest under a specific schedule of events or threads out of many possible

schedules. As property-based fuzzing cannot control the scheduling decisions of a

concurrent program, it fails to find concurrency bugs. Scheduling decisions of a

concurrent program are left to the OS scheduler, which makes property-based fuzzing

on par with stress testing in terms of concurrency bug finding capability, which runs the
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program normally without controlling the scheduling decisions. Property-based fuzzing

and stress testing explore random schedules of a concurrent program which makes it

least likely to find a buggy schedule. Despite being an effective testing technique to

find bugs, property-based fuzzing fails to test programs with concurrency.

3.2 COVERAGE-GUIDED PROPERTY-BASED CONCURRENCY FUZZING

As discussed in the previous section property-based testing combined with coverage-

guided fuzzing is an effective testing techniques, but cannot be used to test concurrent

programs. Based on this observation, we introduce a novel concurrency testing

technique called property-based concurrency fuzzing (PBCF) that combines property-

based testing with coverage-guided fuzzing applied to concurrent programs. We use

AFL fuzzer [Zalewski (2021)], the state-of-the-art mutation-based, coverage-guided

grey box fuzzer to provide fuzzing capability in PBCF. We apply PBCF to generate

not only inputs that may cause the property to fail, but also to drive various scheduling

decisions in the concurrent program. Our key observation is that we can use AFL’s

grey box fuzzing capability to direct the search towards new schedules, and thus lead to

property failure and detect concurrency bugs. PBCF not only finds bugs that manifest

under a particular schedule but also bugs that depend upon a particular combination of

the input to the program and the schedule.

PBCF uses AFL to generate inputs as well as concurrent schedules to maximize the

likelihood of finding new schedules and paths in the program to make the assertion fail.

To have absolute control over scheduling decisions, PBCF requires direct control of

the concurrent program scheduler. PBCF then uses AFL to randomize the scheduling
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Figure 3.1: PBCF technique and its application in ConFuzz and ParaFuzz

order and enforces the scheduling order through the concurrent program scheduler. This

results in the concurrent program being executed under the enforced particular schedule.

AFL works by instrumenting the program under test to observe the control-flow edges,

mutates the input such that new paths are uncovered. The scheduling order affects the

program’s execution path. Due to the program instrumentation, AFL recognizes the

program execution path in every program run. AFL being a coverage-guided fuzzer,

tries to increase coverage in terms of execution paths, thus generating schedule order

that increases schedule space coverage.

PBCF completes the trinity of property-based testing, AFL fuzzing, and concurrency.

Property-based fuzzing combines property-based testing and AFL fuzzing as

implemented by Crowbar. PBCF extends property-based fuzzing with concurrency.
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We apply PBCF to event-driven and parallel OCaml programs. We implement PBCF

in directed concurrency bug-finding tool ConFuzz and ParaFuzz for event-driven

OCaml and Multicore OCaml programs respectively as shown in Figure 3.1. While we

apply PBCF to OCaml programs, PBCF can be replicated for other AFL-compatible

languages too.

We instantiate PBCF in two new practical concurrency testing tools: ConFuzz

and ParaFuzz for testing event-driven concurrent and multi-threaded parallel OCaml

programs respectively. We discuss ConFuzz and ParaFuzz in detail in Chapter 4 and

Chapter 5 respectively.
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CHAPTER 4

CONFUZZ

Event-driven concurrent programming is used in I/O heavy applications such as web

browsers, network servers, web applications and file synchronizers. On the client-

side, JavaScript natively supports event-driven programming through promises and

async/await [AsynchronousJavaScript (2021)] to be able to retrieve multiple resources

concurrently from the Web, without blocking the user-interface rendering. On the

server-side, several popular and widely used frameworks such as Node.js (JavsScript)

[Node.js (2021)], Lwt (OCaml) [Lwt (2021); Vouillon (2008)], Async (OCaml) [Async

(2021)], Twisted (Python) [Twisted (2021)], use event-driven concurrent programming

model for building scalable network services.

Event-driven programs are typically single-threaded, with the idea that rather than

performing I/O actions synchronously, which may block the execution of the program,

all the I/O is performed asynchronously, by attaching a callback function that gets

invoked when the I/O operation is completed. An event loop sits at the heart of

the programming model that concurrently performs the I/O operations, and schedules

the callback functions to be resumed when the corresponding I/O is completed. The

concurrent I/O is typically offloaded to a library such as libuv [libuv (2021)] and

libev [Libev (2021)], which in turn discharge concurrent I/O through efficient operating

system dependent mechanisms such as epoll [epoll (2021)] on Linux, kqueue [kqueue

21



(2021)] on FreeBSD, OpenBSD and macOS, and IOCP [IOCP (2021)] on Windows.

Single-threaded event-driven programs avoid concurrency bugs arising from multi-

threaded execution such as data races and race conditions. Despite this, event-driven

programs suffer from concurrency bugs due to the non-deterministic order in which the

events may be resolved. For example, callbacks attached to a timer event and DNS

resolution request may execute in different orders based on the order in which the

events arrive. As event-driven programs are single-threaded, they do not contain data

races related bugs which makes it unsuitable to apply data race detectors developed for

detecting multi-threading bugs [Flanagan and Freund (2009a); Yu et al. (2005)].

Moreover, the erroneous condition in a concurrent program may not be the mere

presence of a race, but a complex assertion expressed over the current program state.

For example, in the case of a timer event and DNS resolution request, the timer may be

intended for timing out the DNS resolution request. On successful resolution, the timer

event is canceled. Then, the safety property is that if the timer callback is running, then

the DNS resolution request is still pending. It is unclear how to express this complex

property as races.

To help uncover such complex concurrency bugs that may arise in event-driven

concurrent programs, we present a novel technique that combines property-based

testing on the lines of QuickCheck [Claessen and Hughes (2000)] with AFL fuzzer

[Zalewski (2021)], the state-of-the-art mutation-based, grey box fuzzer, and apply it to

generate not only inputs that may cause the property to fail, but also to drive the various

scheduling decisions in the event-driven program. AFL works by instrumenting the
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program under test to observe the control-flow edges, mutates the input such that new

paths are uncovered. In addition to different paths, a concurrent program also has to

contend with the exponential number of schedules available, many of which may lead

to the same behavior. Our key observation is that we can use AFL’s grey box fuzzing

capability to direct the search towards new schedules, and thus lead to property failure.

We have implemented this technique in ConFuzz, a concurrent property fuzz testing

tool for concurrent OCaml programs using the popular Lwt [Lwt (2021); Vouillon

(2008)] library (asynchronous I/O library). Properties are expressed as assertions in the

source code, and ConFuzz aims to identify the input and the schedule that will cause

the assertion to fail. ConFuzz supports record and replay to reproduce the failure.

Once a bug is identified, ConFuzz can deterministically reproduce the concurrency

bug. ConFuzz is developed as a drop-in replacement for the Lwt library and does not

require any change to the code other than writing the assertion and the wrapper code to

drive the tool.

The main contributions of ConFuzz work are as follows:

• We present a novel technique that combines property-based testing with mutation-
based, grey box fuzzer applied to test the schedules of event-driven OCaml
programs.

• We implement the technique in ConFuzz, a drop-in replacement for testing
event-driven OCaml programs written using the Lwt library.

• We show by experimental evaluation that ConFuzz is more effective and efficient
than the state-of-the-art random fuzzing tool Node.Fz and stress testing in finding
concurrency bugs. We reproduce known concurrency bugs by testing ConFuzz
on 8 real-world concurrent OCaml programs and 3 benchmark programs.

The remainder of this chapter is organized as follows. We present a motivating example
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let linear_eq i =
let x = ref i in
let p1 = pause () >>= fun () ->

x := !x - 2; return_unit in
let p2 = pause () >>= fun () ->

x := !x * 4; return_unit in
let p3 = pause () >>= fun () ->

x := !x + 70; return_unit in
Lwt_main.run (join[p1;p2;p3]);
assert (!x <> 0)

Figure 4.1: A program with a concurrency bug

in Section 4.1 that illustrates the effectiveness of ConFuzz on an adversarial example.

Section 4.2.1 provides an overview of the event-driven model in Lwt. ConFuzz

is introduced in Section 4.3 along with a discussion of non-determinism arising in

event-driven programs. Section 4.4 discusses the implementation details of ConFuzz.

Experimental evaluation is described in Section 4.5. The limitations of our approach

are discussed in Section 4.6. Related work is discussed in Section 4.7, and we conclude

the chapter with Section 4.8.

4.1 MOTIVATING EXAMPLE

We describe a simple, adversarial example to illustrate the effectiveness of ConFuzz

over Node.Fz and stress testing. Figure 4.1 shows an OCaml concurrent program

written using the Lwt library [Vouillon (2008)]. The program contains a single

function linear_eq that takes an integer argument i. linear_eq creates three

concurrent tasks p1, p2, and p3, each modifying the shared mutable reference x. The

pause operation pauses the concurrent task, registering the function fun ()-> ...
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Table 4.1: Comparing different testing techniques

Testing
Technique

Executions
(millions)

Time
(minutes) Bug Found

ConFuzz 3.26 18 Yes
Node.Fz [Davis et al. (2017)] 110 60 No

Stress 131 60 No

following the >>= operator as a callback to be executed in the future. Importantly, the

tasks p1, p2, and p3 may be executed in any order.

This program has a concurrency bug; there exists a particular combination of input value

i and interleaving between the tasks that will cause the value of x to become 0, causing

the assertion to fail. There are 263 1 possibilities for the value of i and 6 (3!) possible

schedules for the 3 tasks. Out of these, there are only 3 possible combinations of input

and schedule for which the assertion fails.

• i = -17 and schedule = [p2; p1; p3] : ((−17 ∗ 4)− 2) + 70 = 0.

• i = -68 and schedule = [p1; p3; p2] : ((−68− 2) + 70) ∗ 4 = 0.

• i = -68 and schedule = [p3; p1; p2] : ((−68 + 70)− 2) ∗ 4 = 0.

As the bug in the example program depends on input and interleaving, concurrency

testing techniques focusing only on generating different interleavings will fail to

find this bug. This is evident when the program is executed under different testing

techniques. Table 4.1 shows a comparison of ConFuzz with the random concurrency

fuzzing tool Node.Fz [Davis et al. (2017)] and stress testing for the example program.

1OCaml uses tagged integer representation [Leroy (1990)] where 1 bit is used to distinguish
immediate values from pointers.
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let pipe_chars a b c =
let res = ref [] in
let ic, oc = pipe () in
let sender =
write_char oc a >>= fun () ->
write_char oc b >>= fun () ->
write_char oc c >>= fun () ->
return_unit

in
let recvr () =
read_char ic >>= fun c ->
res := Char.uppercase_ascii c::!res;
return_unit

in
Lwt_main.run (join [recvr(); recvr();

recvr(); sender]);
assert (!res <> ['B';'U';'G'])

Figure 4.2: A program with a concurrency bug

Node.Fz is a concurrency fuzzing tool similar to ConFuzz, which generates random

interleavings rather than being guided by AFL. Node.Fz focuses only on finding buggy

interleavings. As Node.Fz is implemented in JavaScript, we port the underlying

technique in OCaml. We refer to the OCaml port of Node.Fz technique when referring

to Node.Fz. Stress testing runs a program repeatedly with random input values. We test

the example program with each technique until a bug is found or a timeout of 1 hour is

reached. We report the number of executions and time taken if the bug was found. Only

ConFuzz was able to find the bug. Although this example is synthetic, we observe

similar patterns in real-world programs where the bug depends on the combination of

the input value and the schedule, and cannot be discovered with a tool that only focuses

on one of the sources of non-determinism.
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Real-world event-driven programs also involve file and network I/O, timer completions,

etc. ConFuzz can test unmodified programs that involve complex I/O behavior.

Figure 4.2 shows a function pipe_chars that takes three character arguments. The

function creates a shared pipe as a pair of input (ic) and output (oc) file descriptors.

The sender task sends the characters over oc. The three recvr tasks each receive a

single character, convert that to the corresponding upper case character, and append it

to a global list reference res. The assertion checks that the final result in res is not

['B';'U';'G']. Due to input and scheduling non-determinism, there are plenty of

schedules. However, the assertion failure is triggered with only 6 distinct inputs, each

of which is a permutation of 'b', 'u', 'g' for the input arguments to the function, and

a corresponding permutation of the recvr tasks. ConFuzz was able to find a buggy

input and schedule in under a minute. This illustrates that ConFuzz is applicable to

real-world event-driven concurrent programs.

4.2 CONCURRENCY BUGS IN LWT

In this section, we discuss the event-driven model in Lwt and then give an overview of

concurrency bug patterns in Lwt programs. Lwt is the most widely used asynchronous

I/O library in the OCaml ecosystem. Lwt lies at the heart of the stack in the MirageOS

[Madhavapeddy et al. (2013)], a library operating system for constructing Unikernels.

MirageOS is embedded in Docker for Mac and Windows apps [Docker (2021)] and

hence, runs on millions of developer machines across the world. Hence, our choice of

Lwt is timely and practical. That said, the ideas presented in this chapter can be applied

to other event-driven libraries such as Node.js [Node.js (2021)].
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Figure 4.3: Lwt event model

4.2.1 Lwt: Event-driven model

Lwt (Lightweight threads) [Vouillon (2008)] is a cooperative threading library for

writing concurrent programs in OCaml. Under cooperative threading, each task

voluntarily yields control to other tasks when it is no longer able to make progress.

Lwt event model is shown in Figure 4.3. The event handling model is similar to that of

Node.js [Node.jsEventLoop (2021)]. Lwt event model consists of an event loop engine

and a worker pool. The event loop engine manages timers, read and write I/O events on

registered file descriptors and executes the callbacks registered with the events. Lwt

event loop engine can be configured to use various engines such as libev [Libev

(2021)], Unix’s select [Select (2021)] and poll [Poll (2021)]. As libev is the default

event loop engine, in the sequel, we refer to libev when referring to Lwt’s event loop

engine.

The looper thread executing the event loop engine waits for the events to occur and then

executes user callbacks registered with respective events. The looper thread executes

every callback atomically, without any interruption, until the callback itself gives up
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control. The computationally intensive tasks and blocking system calls are offloaded

to the worker pool of threads that execute the tasks so that they do not block the event

loop.

Lwt event loop consists of three event queues, each holding a different class of events

with their attached callbacks. The three queues are yield, pause and I/O queue. All

yielded and paused callbacks are inserted in the yield and pause queue respectively.

The primitives yield and pause both yield control to the looper thread allowing it to

execute other event callbacks in the queue. The difference is that yield allows I/O to be

handled in between, but pause does not. The I/O queue comprises the timer and I/O

events and is handled by libev engine.

The event loop examines each of the queues for pending callbacks. The looper thread

executes all the callbacks in an event queue before moving on to the next queue. Lwt

does not guarantee the relative execution order between two events in the same or

different queues. For example, two yield events, as well as yield and an I/O event, can

be processed in any order. The non-determinism in the execution order of the events

gives rise to concurrency bugs. The asynchronous I/O operations like network I/O and

file read-write invoked in the callbacks are offloaded to the worker pool. The worker

thread on completion of the offloaded task signals libev to indicate task completion

(Done event). The callbacks associated with the asynchronous tasks are then executed

by the libev engine.
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1 let connect host port =
2 let open Lwt_unix in
3 let conn =
4 socket (Unix.PF_INET) Unix.SOCK_STREAM 0
5 in
6 let port = string_of_int port in
7 getaddrinfo host port [] >>= function
8 | [] -> failwith "Could not resolve redis host!"
9 | addrinfo::_ -> return addrinfo.Lwt_unix.ai_addr

10 >>= fun sock_addr ->
11 - ignore (Lwt_unix.connect conn sock_addr);
12 + Lwt_unix.connect conn sock_addr >>= fun () ->
13 return conn
14
15 let ping connection =
16 let command = [ "PING" ] in
17 IO.try_bind
18 (fun () -> send_request connection command)
19 (function
20 |`Status "PONG" -> IO.return true
21 | _ -> IO.return false)
22 (fun e -> IO.fail e)

Figure 4.4: ocaml-redis#25: Order violation in ocaml-redis. Both Lwt_unix.connect
and send_request are asynchronous, and can execute in any order.

4.2.2 Bug patterns

Bugs in Lwt programs are classified into two types: order violations and atomicity

violations.

Order violation

An order violation occurs when the intended order between events or asynchronous

operations is not enforced by the execution. A developer may assume that some

sequence of operations will execute in a certain order. It may be the case that the

operations are actually executed in a different order due to non-determinism.
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Figure 4.4 shows an order violation in the ocaml-redis library [ocaml redis (2021)]

issue 25 2. The connect method creates a connection to a Redis server asynchronously.

ping sends a ping message using send_request asynchronous operation. The

developer’s intention to execute the connect and the ping operations sequentially by

issuing them one after the other is violated due to asynchronous operations Lwt_unix

.connect and send_request. As the operations are asynchronous, they can be

executed in any order resulting in a buggy execution where ping message is sent before

the connection is established. To fix this order violation, connect should wait for

Lwt_unix.connect to establish a connection before returning the connection.

Atomicity violation

An atomicity violation occurs when two or more operations are assumed to be executed

atomically, but another operation happens to be interleaved between them, such that

the effect is no longer atomic. In Lwt programs, atomicity violation is the violation of

the intended atomic execution of a sequence of callbacks or asynchronous operations.

Several concurrency studies [Wang et al. (2017); Davis et al. (2017)] have shown that a

vast majority of concurrency bugs in the wild are caused by atomicity violations.

One such example of atomicity violation, ocaml-redis issue #40 3, is illustrated in

Figure 4.5. The function read_reply reads the reply from the input channel ch by

invoking one of the asynchronous operations, read_line and read_integer, based

2https://github.com/0xffea/ocaml-redis/issues/25
3https://github.com/0xffea/ocaml-redis/issues/40
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1 let read_reply ch =
2 + IO.atomic (fun ch ->
3 IO.input_char ch >>= fun c ->
4 match c with
5 | '+' ->
6 read_line ch
7 | ':' ->
8 read_integer ch
9 + ) ch

Figure 4.5: ocaml-redis#40: Atomicity violation in ocaml-redis.

on the reply type c. The reply type is read asynchronously by IO.input_char before

the rest of the reply is read. Thus the order between these two asynchronous operations

cannot be violated. But another asynchronous operation can be interleaved between

IO.input_char and read_*, making read_reply non-atomic.

The execution of two concurrent read_reply operations may conflict with each other

and read corrupted data. Before the first read_reply completes reading the reply,

a second read_reply may start reading the reply from the input channel. If they

are of different types, then they will read incorrect replies. The fix for this bug is to

make read_reply atomic by wrapping the body of the read_reply function in IO.

atomic.

4.3 CONFUZZ

In this section, we present the architecture of the ConFuzz tool and show how to test

event-driven concurrent programs using ConFuzz.
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Figure 4.6: ConFuzz architecture

4.3.1 Architecture

We have implemented the novel technique of concurrent property-based testing using

the AFL fuzzer in ConFuzz tool. ConFuzz tool can handle OCaml programs written

using the Lwt library. Figure 4.6 shows ConFuzz’s architecture. ConFuzz combines

property-based testing and AFL (through crowbar library) with concurrency testing.

ConFuzz uses the crowbar library to enable programmers to write concurrency tests as

properties. Concurrency tests are then compiled with AFL compatible instrumentation.

The resulting instrumented binary is then executed using AFL for fuzzing.

ConFuzz controls Lwt’s scheduler by capturing the non-determinism present in the

Lwt programs. To explore properties on a wide range of different schedules, ConFuzz

generates various legal event schedules by alternating the order of event callback

execution with the help of AFL. AFL generates execution order (shuffle order) for the
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captured concurrent events, which is then enforced by a controlled scheduler (fuzzed

callbacks). The properties are tested repeatedly with different test inputs and event

schedules. The test input and the event schedules that result in property failures are

detected as a crash by AFL, resulting in the detection of a concurrency bug. ConFuzz

also offers a random testing mode where shuffle order is generated by OCaml pseudo-

random number generator (PRNG) instead of AFL. We use this mode to evaluate AFL’s

performance to generate shuffle order effectively in Section 4.5.

To capture the non-determinism in Lwt concurrent programs, ConFuzz captures the

concurrent event callbacks in the Lwt event loop in a list. To change the order of

callbacks, AFL fuzzes the callback list while recording the fuzzer input. As the test

program is instrumented, AFL can classify crashes as duplicates by looking at the

execution path taken, which corresponds to the same bug that can be exposed in multiple

schedules. AFL, being a coverage-guided fuzzer aims to maximize the code coverage

by generating unique callback orders, thus leading to generating newer event schedules.

ConFuzz aims to provide a quick testing solution to enable programmers to test their

concurrent code on a wide variety of schedules, giving them the confidence to run

programs in production.

Many of the concurrency testing tools [Davis et al. (2017); Musuvathi and Qadeer

(2007a)] focus on generating and enforcing different schedules to find concurrency

bugs that occur only in some specific schedule. This works well when test input to

the program is fixed, leaving the concurrency tool to just find a buggy schedule. But

in the case where a concurrency bug occurs on some specific test input and schedule,
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these testing tools are unable to catch the bug. ConFuzz is also designed to catch bugs

that depend on some combination of inputs and buggy schedules. Test input and buggy

schedule to programs are sourced from AFL.

Similar to other concurrency testing tools, ConFuzz also supports the record and replay

feature, which records the event schedule that leads to a concurrency bug. The input and

the buggy schedule are saved in a separate file, which when executed with test binary,

deterministically reproduces the bug. Thus, ConFuzz helps to debug concurrency bugs

by reliably reproducing it.

4.3.2 ConFuzz on the motivating example

In this section, we describe how to test the example shown in Figure 4.1 with ConFuzz.

let () =

Confuzz.(add_test ~name:"test_linear_eq"

[Confuzz.int] (fun i -> linear_eq i ))

To test linear_eq function, a test should be registered with Confuzz.add_test. As

linear_eq takes an integer argument, the Confuzz.int generator is specified, which

will generate random numbers. Last argument to Confuzz.add_test takes a callback

function that takes an integer and calls linear_eq with generated integer i. ConFuzz

tests linear_eq repeatedly by calling callback function with different integers and

executing linear_eq with different event schedules. Observe that integrating and

testing the concurrent program with ConFuzz does not require any change to the

function under test. Hence, the technique is readily applicable to the production code.
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4.4 FUZZING UNDER NON-DETERMINISM

In this section, we discuss the non-determinism present in Lwt concurrent programs.

We then show how ConFuzz captures and explores the non-determinism.

4.4.1 Non-determinism in Lwt

I/O and timer non-determinism

The I/O events registered with the event loop such as file and network operations (read

and write) are highly non-deterministic. The I/O events can be triggered in any order

as there is uncertainty regarding the completion time of the operations. There is also

the possibility of races between the callbacks of different I/O events to shared resources

such as sockets and file descriptors.

The timer API is used to defer action until a certain time duration has passed. The timers

are also often used for ad-hoc synchronization and timeout. Lwt does not guarantee the

precise expiration of timers. For example, a timer registered for t seconds will expire

at least t seconds in the future. Thus, the assumption regarding the precise expiration

of timers in a concurrent program could lead to bugs.

As described in Section 4.2.1, the timer and the I/O events are processed in the I/O

event queue. The non-deterministic nature of the execution of I/O and timer events in

the I/O queue leads to a large number of callback schedules. For example, a user code

expecting a network request to complete within a certain time period can go wrong.

This bug can be caught by fuzzing the I/O event queue.

36



Worker pool non-determinism

Blocking system calls and long-running user tasks handled by the worker pool are

other sources of non-determinism in Lwt programs. The worker pool comprises a pre-

configured number of kernel threads for task execution. Due to the fixed number and

dynamic scheduling of threads, the order of execution of tasks by the worker pool is

non-deterministic. As the processing time of each task varies, the completion order of

tasks relative to each other also varies. To indicate task completion, the worker thread

writes to a common file descriptor, which is processed as an I/O event. This results in

the relative order of execution between task callbacks and other callbacks to be non-

deterministic.

Callback non-determinism

As callbacks are executed atomically, yield and pause primitives enable long-running

computation to give up execution to another callback voluntarily. The yielded callbacks

are guaranteed to be called sometime in the future. A sequence of yield and paused

callbacks can be executed in any order. Also, there can be multiple callbacks attached

to a single event. In that case, Lwt does not guarantee the order of execution of

callbacks. The alternative ordering of yielded and paused callbacks and the event

callbacks leads to an increase in the number of schedules. The assumptions regarding

the callback execution order between the yield paused and I/O event callbacks can lead

to inconsistent program states or bugs. These types of bugs can be caught by fuzzing

yield, pause and I/O event callback queues.
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4.4.2 Capturing Non-determinism

In this section, we discuss how ConFuzz controls the non-determinism described

in Section 4.4.1. The captured non-deterministic events are controlled by ConFuzz

scheduler (Section 4.4.3) to generate alternative callback execution schedules.

Event loop queues

Lwt event loop queues (Section 4.2.1) such as yield, pause and I/O are the primary

sources of non-determinism in an Lwt program. To capture and control the non-

determinism arising out of these queues, we have made architectural changes to the

event loop. We have inserted calls to ConFuzz scheduler in the event loop before

executing the callbacks of yield and pause queues. ConFuzz scheduler then changes

the order of callbacks to generate alternative schedules. To capture I/O queue non-

determinism, expired timers and ready file descriptors (I/O events) are inserted in a list

by the event loop. The list is then passed to ConFuzz scheduler to change the order of

I/O events. By fuzzing the I/O queue, we are able to generate schedules with alternative

timer and I/O event order.

Worker pools

Non-determinism in the worker pool is influenced by multiple factors such as the

number of threads, the thread scheduling by the operating system and the order in

which the tasks are offloaded. We take a systematic approach to capture the worker pool

non-determinism. First, for deterministic processing and completion order of tasks, we
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reduce the worker pool size to one. This change serializes the tasks handled by the

worker pool. The worker pool tasks are executed one after another. By reducing the

worker pool to one thread, ConFuzz can deterministically replay the order of worker

pool task execution.

To signal task completion, the worker pool thread writes to a single common file

descriptor registered with libev. The write to a common file descriptor is intercepted

by the event loop and processed as an I/O event. The single file descriptor is shared

by all the tasks for indicating task completion. Thus, Lwt multiplexes a single file

descriptor for many worker pool tasks. Multiplexing prevents changing the order of

task completion relative to I/O and timer events. ConFuzz can still change the task

completion order relative to other tasks. But this prevents ConFuzz from generating

broader schedule space and as a result, misses some of the bugs.

To overcome this, ConFuzz eliminates multiplexing by assigning a file descriptor per

task. The assigned file descriptors are registered with libev. On task completion, the

respective file descriptor is written with a byte which is then processed as an I/O event.

During the event loop I/O phase, task completion I/O events are fuzzed along with other

I/O events and timers. De-multiplexing enables ConFuzz to shuffle the order of task

completion relative to other tasks as well as timer and I/O events.

To change the processing order of worker pool tasks, we delay the execution of tasks.

During each iteration of the event loop, the tasks are collected in a list. At the start of

the next iteration of the event loop, ConFuzz scheduler shuffles the processing order of

the tasks. The tasks are then executed synchronously. By delaying the task execution by
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one iteration, ConFuzz collects enough tasks to shuffle. We believe that delaying tasks

by one iteration would suffice to generate the task processing orders that would occur

in production environments. It is highly unlikely that a task from the second iteration

is started and completed before tasks from first the iteration, given that Lwt tasks are

started off in a FIFO manner.

Executing tasks synchronously enables greater control over the completion order of

tasks. As tasks are already completed, ConFuzz can change the order of task

completion to generate alternate completion orders. In addition, the task completion

order is shuffled relative to the I/O events by the I/O queue fuzzing. Synchronous task

execution also helps in deterministically generating a buggy schedule. As the number

of completed tasks remains the same in every schedule, ConFuzz has to just reorder

tasks to reproduce a bug. This design choice let ConFuzz generate task processing and

completion order independently.

However, delaying and synchronous task execution can prevent ConFuzz from missing

schedule containing bugs arising from the worker pool. In ConFuzz, we trade-off

schedule space generation to reliably reproduce concurrency bugs by deterministic

schedule generation. ConFuzz does not guarantee the absence of bugs but reliably

reproduces discovered concurrency bugs.

Promise callbacks

As promise callbacks are executed non-deterministically, promise callback ordering is

also fuzzed by ConFuzz. Before execution, the order of callbacks attached to a promise

40



Pause queue

I/O queue

Yield queue

Worker pool
(1 thread)

Asynchronous op

Looper thread

ConFuzz scheduler

Task queue

Done event

Figure 4.7: ConFuzz scheduler

is changed by ConFuzz scheduler. By fuzzing promise callbacks, ConFuzz generates

alternative ordering of callback execution.

4.4.3 ConFuzz scheduler

To generate varied event schedules, ConFuzz scheduler controls the Lwt event loop

and the worker pool as shown in Figure 4.7. To change the order of events, ConFuzz

scheduler exposes fuzz_list : 'a list -> 'a list function, which takes a list

and returns a shuffled list. The changes to the Lwt scheduler that require changing the

order of events (Section 4.4.2) call this function to shuffle the callback list. On executing

the shuffled list, the program is executed under a particular schedule.

To reorder callbacks, ConFuzz scheduler asks AFL to generate random numbers.

The random numbers then determine the ordering of the callbacks. On detecting

a concurrency bug, the generated random numbers are saved in a separate file as a
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schedule trace. With the schedule trace, the scheduler can reproduce a schedule. Using

this capability of the scheduler, ConFuzz can replay a schedule to reliably expose

the detected concurrency bugs. Deterministic replay helps programmers find the exact

cause of concurrency bugs.

The order of callback execution affects the program’s execution path. Due to the

program instrumentation, AFL recognizes the program execution path in every program

run. AFL being a coverage-guided fuzzer, tries to increase coverage (execution paths).

AFL thus generates random numbers that produce alternative callback orderings.

Alternative callback orderings result in new schedules that exercise new program

execution paths. ConFuzz scheduler keeps on generating new schedules until AFL

is able to find new execution paths. ConFuzz thus uses AFL fuzzing to execute a

program under different execution schedules.

4.5 EVALUATION

In this section, we evaluate the effectiveness of ConFuzz in finding concurrency

bugs in real-world OCaml applications and benchmark programs. Additionally, we

check the efficiency of ConFuzz in terms of time required to detect concurrency

bugs in comparison to Node.Fz and stress testing. Node.Fz [Davis et al. (2017)] is a

concurrency bug-finding fuzzing tool for event-driven JavaScript programs. As Node.Fz

randomly perturbs the execution of a JavaScript program, we use ConFuzz’s random

testing mode (Section 4.3.1) to simulate Node.Fz technique. Stress testing runs a

program repeatedly with random input values. Stress testing does not generate program

interleavings as done by ConFuzz and executes programs directly under OS scheduler.
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Table 4.2: Experimental subjects

Type Name (abbreviation) Description GitHub
Stars

Size
(LoC) Issue #

Real world
applications

irmin (IR) Distributed database 1,284 18.6K 270
lwt (LWT) Concurrent programming library 448 12.2k 583

mirage-tcpip (TCP) Networking stack for Mirage OS 253 4.9K 86
ghost (GHO) Blogging engine 35,000 50K 1834
porybox (PB) Pokémon platform 29 7.9K 157

node-mkdirp (NKD) Recursive mkdir 2,200 0.5K 2
node-logger-file (CLF) Logging module 2 0.9K 1

fiware-pep-steelskin (FPS) Policy enforcement point proxy 11 8.2K 269

Benchmark
programs

Motivating example (MX) Linear equation with concurrency - - -
Benchmark 1 (B1) Bank transactions - - -
Benchmark 2 (B2) Schedule coverage - - -

We design and conduct experiments to answer the following questions:

1. RQ1: Effectiveness – How frequently is ConFuzz able to find bugs?

2. RQ2: Efficiency – How many executions are required to detect bugs by
ConFuzz as compared to Node.Fz and stress testing?

3. RQ3: Practicality – Can ConFuzz detect and reproduce known concurrency
bugs in real-world OCaml applications?

4.5.1 Experimental subjects and setup

We evaluated ConFuzz on both real-world OCaml applications and benchmark

programs. Table 4.2 summarises the applications and benchmark programs used for the

evaluation. We have used eight real-world applications and three benchmark programs

as experimental subjects for evaluating ConFuzz. All of the programs contain at least

one known concurrency bug.

To identify known concurrency bugs, we searched across GitHub bug reports for closed
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bugs in Lwt based OCaml projects. We select a bug only if the bug report contains a

clear description or has an automated test case to reproduce the bug. We found three Lwt

based OCaml bugs - IR, LWT and TCP as shown in Table 4.2. Apart from OCaml bugs,

we have build a dataset of 15 known concurrency real-world JavaScript bugs mentioned

in the related work [Chang et al. (2019); Davis et al. (2017); Wang et al. (2017)]. We

abstracted the buggy concurrent code of JavaScript bugs and ported it to standalone

OCaml programs. We excluded those bugs from the JavaScript dataset which could not

be ported to OCaml or have an incomplete bug report. We were able to port 5 JavaScript

bugs from the dataset. The five JavaScript bugs used in the evaluation are GHO, PB,

NKD, CLF and FPS. MX is the motivating example from section 4.1. Benchmark

B1 simulates concurrent bank transactions, adapted from the VeriFIT repository of

concurrency bugs [Repository (2021)]. Concurrent bank transactions in B1 cause the

bank account log to get corrupted. Benchmark B2 simulates a bug depending on a

particular concurrent interleaving and gets exposed only when B2 is executed under

that buggy interleaving. B2 is explained in detail in section RQ2.

We design our experiments to compare ConFuzz’s bug detection capability with

Node.Fz and stress testing (hereby referred to as the testing techniques). We perform 30

testing runs for each experimental subject (Table 4.2) and testing technique. A testing

run is a single invocation of the testing technique. The performance metric we focus

on is mean time to failure (MTTF), which measures how quickly a concurrency bug is

found in terms of time. A single test execution indicates one execution of the respective

application’s test case. For each subject and testing technique, we execute the respective
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Table 4.3: Bug detection capability of the techniques. Each entry is the fraction of the
testing runs that manifested the concurrency bug.

Stress Node.Fz ConFuzz

IR 1.00 0.00 1.00
LWT 0.00 1.00 1.00
TCP 0.00 1.00 1.00
GHO 0.00 0.00 1.00
PB 0.00 0.00 1.00

NKD 0.4 0.53 1.00
CLF 0.43 0.56 1.00
FPS 0.00 0.96 1.00

MX 0.00 0.00 1.00
B1 0.87 0.6 1.00
B2 0.00 0.00 1.00

Avg 0.24 0.42 1.00

subject application until the first concurrency bug is found or a timeout of 1 hour occurs.

For each such run, we note the time taken to find the first concurrency bug and whether

a bug was found or not. We ran all of our experiments on a machine with a 6-Core Intel

i5-8500 processor, 16GB RAM, running Linux 4.15.0-1034.

4.5.2 Experimental results

RQ1: Effectiveness

Table 4.3 shows the bug detection capabilities of the three testing techniques. The

first column shows the abbreviation of the experimental subjects. The second to fourth

column shows the bug detection results of Stress, Node.Fz and ConFuzz testing,

respectively. Each cell in the table shows the fraction of the testing runs that detected

a concurrency bug out of the total 30 testing runs per experimental subject and testing
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Table 4.4: Mean time to find the concurrency bug (seconds)

Stress Node.Fz ConFuzz

IR 37.7 - 1.03
LWT - 295.73 243.3
TCP - 315.03 94.16
GHO - - 0.33
PB - - 0.3

NKD 1738.83 1104.62 42.23
CLF 685.1 1086.2 231.96
FPS - 696.55 103.13

MX - - 981.17
B1 918.8 1333.89 384.6
B2 - - 59.26

technique.

As shown in Table 4.3, ConFuzz detected concurrency bugs in every testing run for all

experimental subjects (all cells are 1.00). In the case of GHO, PB, MX and B2, only

ConFuzz was able to detect a bug. Despite capturing the non-determinism, Node.Fz

could not detect a bug in IR, GHO, PB, MX and B2. This confirms that ConFuzz

was able to generate concurrent schedules along with inputs more effectively. Stress

testing was more effective in the case of IR and B1 than Node.Fz with a ratio of

1.00 and 0.87 respectively. Both IR and B1 comprise a lot of files I/O. We suspect

that due to OS-level non-determinism, stress testing is more effective than Node.Fz, as

Node.Fz finds it difficult to generate the exact buggy schedule for file I/O. This provides

a helpful insight that ConFuzz is good at generating a prefix or exact schedule that

can cause concurrency errors. In addition, ConFuzz does not produce false positives,

as schedules explored by ConFuzz are all legal schedules in Lwt. Thus, the results

confirm that ConFuzz is effective at detecting concurrency bugs.
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Figure 4.8: Efficiency of ConFuzz as schedule space increases. The total number of
schedules is given by f(n) = (3!)(10∗n+20)/2). The labels on the x-axis show
(n, f(n)).

RQ2: Efficiency

Table 4.4 shows the efficiency results of the three testing techniques. The second to

fourth column shows the efficiency results of stress, Node.Fz and ConFuzz testing

respectively. Each cell represents the average time (in seconds) taken to detect the first

concurrency bug per experimental subject and testing technique over 30 testing runs. ’-’

in the cell indicates that none of the 30 testing runs detected a concurrency bug within

the timeout of 1 hour.

As shown in Table 4.4, for every experimental subject, ConFuzz took significantly

less time (column 4) to find bugs than other techniques. ConFuzz is 26×, 6× and

4.7× faster than Node.Fz for NKD, FPS and CLF bugs respectively. For NKD and IR

bugs, ConFuzz is 41× and 36× faster than stress testing respectively. Except for LWT,

ConFuzz is at least 2× faster than second-fastest technique.
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Note that for NKD, CLF, FPS and B1 bugs, the average time of Node.Fz and stress

testing does not include testing runs which failed to detect concurrency bug. Due to

its efficiency, ConFuzz enables a developer to explore a broader schedule space of the

concurrent program than Node.Fz and other techniques with the same test time budget.

Thereby increasing the chances of finding bugs in the same limited test time budget.

Thus, these results illustrate that ConFuzz is efficient in detecting concurrency bugs.

To evaluate the efficiency of ConFuzz on a program containing a large schedule space,

we modify the motivating example in Figure 4.1 to have a large number of concurrent

schedules. We define a concurrent schedule as the order in which the callbacks attached

to the events are executed. The total number of concurrent schedules of the modified

program is given by the following formula parameterized over n:

Total number of schedules = (3!)(10∗n+20)/2 (4.1)

where n controls the degree of concurrency in the program. Only one concurrent

schedule out of the many schedules results in a concurrency bug. Figure 4.8 shows

the efficiency of ConFuzz over large schedule spaces. We increase n from 1 to 5

to generate a large schedule space. Note that benchmark B2 used as an experimental

subject in evaluation is a modified program with n equals to 1. Figure 4.8 graph shows

mean time to failure (MMTF) as the schedule space is increased. As evident from the

graph, even for the program with a large schedule space, ConFuzz was able to detect

the bug within minutes. Note that Node.Fz and stress testing fail to detect the bug for the
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let start_watchdog ~delay dir =
match watchdog dir with
| Some _ ->
assert (nb_listeners dir <> 0);
Lwt.return_unit

| None ->
- Log.debug "Start watchdog for %s" dir;
+ (* Note: multiple threads can wait here *)

listen dir ~delay ~callback >|= fun u ->
- Hashtbl.add watchdogs dir u
+ match watchdog dir with
+ | Some _ -> u ()
+ | None ->
+ Log.debug "Start watchdog for %s" dir;
+ Hashtbl.add watchdogs dir u

Figure 4.9: Irmin bug #270

modified program. Despite the number of schedules increasing exponentially, MTTF

increased linearly. This shows the efficiency of ConFuzz to find bugs even in programs

with large schedule spaces.

RQ3: Practicality

As shown in results regarding RQ1 and RQ2, ConFuzz can effectively and efficiently

detect concurrency bug in real-world applications. Moreover, tested real-world

applications are widely used and have large codebase. We were able to reproduce

detected bug reliably in real-world application as shown in Table 4.3. We shall look

at each of these three bugs in detail:

4https://github.com/mirage/irmin/issues/270
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Irmin #270 4 Irmin is a distributed database built on the principles of Git. Similar

to Git, the objects in Irmin are organized into directories. Irmin allows users to install

watchers on directories which are callback functions that get triggered once when for

every change in the directory. The bug had to do with the callbacks begin invoked

multiple times if multiple watchers were registered to the same directory in quick

succession. The patch is shown in Figure 4.9. When there are concurrent calls to

start_watchdog in succession, it might turn out that all of them are blocked at

listen. When the callback is triggered, each of these callbacks now adds an entry

to the watchdogs hash table. The fix is to only add one entry to the hash table and

for the rest, directly call the callback function. The property that we tested was that the

callback function is invoked only once. Observe that the bug is input dependent; the bug

is triggered only if concurrent calls to start_watchdog work on the same directory

dir and the delay is such that they are all released in the same round.

Lwt #583 5 Lwt has support for concurrent processing of an event stream through

the Lwt_react module. An event stream can be thought of as a broadcast channel.

When values are pushed into the channel, all of the receivers are notified with the value.

Lwt_react has a function limit to rate an event stream event_stream.

let limited_stream =

limit (fun _ -> sleep 1.0) event_stream

limit takes a callback function and an event_stream and returns a new event stream

limited_stream, which only emits an event when the event_stream has a new

5https://github.com/ocsigen/lwt/issues/583
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let query t ip =
if Hashtbl.mem t.cache ip then (

Hashtbl.find t.cache
) else (

let cond = Lwt_condition.create () in
Hashtbl.add t.cache ip (Incomplete cond);

+ let result = Lwt_condition.wait cond in
output_probe t ip >>= fun () ->
(* Note: cond can be signalled here *)

- Lwt_condition.wait cond
+ result

)

Figure 4.10: Mirage-tcpip bug #86

event and the callback function is resolved. Here, limited_stream emits an event

once per second if the event stream emits an event more frequently. The problem

occurs when the callback function itself emits an event on event_stream. In this

case, limited_stream does not rate-limit this event and is emitted immediately. The

property that we tested with ConFuzz is that no more than one event is emitted in the

one-second time period from the limited_stream.

Mirage-tcpip #86 6 Mirage-tcpip provides a networking stack for MirageOS

[Madhavapeddy et al. (2013)]. It provides implementations for networking protocols

such as IP, ICMP, UDP and TCP. The bug in mirage-tcpip occurs in the implementation

of the ARP query. The query as shown in Figure 4.10 takes an IP address and returns

the corresponding MAC address. The bug occurs when an IP address is not found in the

internal ARP cache cache which results in initiating an external query output_probe

to fetch the IP-MAC entry. To get notified about the cache update for the corresponding

6https://github.com/mirage/mirage-tcpip/pull/86
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IP, query registers a condition variable cond with cache and starts waiting on it. The

response handling of output_probe and notification of cond happens asynchronously

outside query. The bug manifests in a particular situation when, before query starts

waiting on cond, the output_probe response arrives and updates the cache notifying

all the waited condition variables attached to it except cond. As cond was not waited

upon, query waits indefinitely on it. The patch is shown in Figure 4.10 involving

waiting on cond before initiating probe_request. The property that we tested was

query should not be waiting when cache has corresponding IP entry.

These results show that ConFuzz can detect and reproduce concurrency bugs in real-

world applications.

4.6 LIMITATIONS

While our experimental evaluation shows that ConFuzz is highly effective in finding

bugs, we discuss some of the limitations of our approach. While ConFuzz captures

most of the non-determinism present in event-driven concurrent programs, it cannot

capture and control external non-determinism such as file read/write or network

response. External non-determinism arises when interacting with external resources

like file system, database, etc. which are outside the scope of ConFuzz.

To be completely certain about the order in which the asynchronous tasks are executed,

ConFuzz serializes the worker pool tasks which might result in missing some of the

concurrency bugs arising out of the worker pool-related races (although the concurrency

bug study by Davis et al. [Davis et al. (2017)] did not identify any such races).
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Serializing worker pool tasks help ConFuzz to deterministically reproduce detected

bugs. We trade-off missing some of the worker pool-related concurrency bugs with

the deterministic reproducibility of the detected bugs. Being a property-based testing

framework, ConFuzz aims to generate failing tests cases that falsify the property.

Hence, ConFuzz does not aim to detect traditional concurrency bugs such as data races

and race conditions.

4.7 RELATED WORK

To the best of our knowledge, ConFuzz is the first tool to apply coverage-guided

fuzzing, not just to maximize the coverage of the source code of program, but also to

maximize the schedule space coverage introduced by a non-deterministic event-driven

program. In this section, we compare ConFuzz to related work.

Concurrency fuzzing: AFL has been used previously to detect concurrency

vulnerabilities in a Heuristic Framework [Liu et al. (2018)] for multi-threaded

programs. Unlike ConFuzz, Heuristic Framework generates interleavings by changing

thread priorities instead of controlling the scheduler directly, thereby losing the bug

replay capability. Due to its approach, the Heuristic Framework can only find a specific

type of concurrency bugs and has false positives. Heuristic Framework is applied to

multi-threaded programs whereas ConFuzz is applied to event-driven programs. The

most similar work to ConFuzz is the concurrency fuzzing tool Node.Fz [Davis et al.

(2017)]. Node.Fz fuzzes the order of events and callbacks randomly to explore different

schedules. Node.Fz can only find bugs that manifest purely as a result of particular

scheduling, not as a property of program inputs. As Section 4.5 illustrates, the coverage-
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guided fuzzing of ConFuzz is much more effective than Node.Fz at finding the same

concurrency bugs.

Multithreaded programs: Many approaches and tools have been developed to identify

concurrency bugs in multi-threaded programs. FastTrack Flanagan and Freund (2009b),

Eraser [Savage et al. (1997)], CalFuzzer [Joshi et al. (2009)] aims to detect multi-

threaded concurrency bugs like data races, deadlock. ConTest [Edelstein et al. (2003)],

RaceFuzzer [Sen (2008)] uses random fuzzing to generate varied thread schedules.

These approaches apply to multi-threaded programs for detecting concurrency bugs

such as atomicity violations and race conditions on shared memory and are not directly

applicable to event-driven programs interacting with the external world by performing

I/O. Systematic exploration techniques such as model checking attempt to explore the

schedule space of a given program exhaustively to find concurrency bugs. CHESS

[Musuvathi and Qadeer (2007a)] is a stateless model checker exploring the schedule

space in a systematic manner. While exhaustive state-space exploration is expensive

and given a limited test time budget, ConFuzz explores broader input and schedule

space, which is more likely to detect bugs.

Application domains: There are bug detection techniques to identify concurrency

errors in client-side JavaScript web applications. WAVE [Hong et al. (2014)],

WebRacer [Petrov et al. (2012)] and EventRacer [Raychev et al. (2013)] propose to find

concurrency bugs in client-side elements like browser’s DOM and webpage loading

through static analysis or dynamic analysis. Though client-side web apps are event-

driven, these techniques are tuned for client-side key elements like DOM and web page
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loading which are not present in server-side like OCaml concurrent programs. Thus,

the above approaches cannot be directly applied to event-driven OCaml applications.

Android is another event-driven programming environment in combination with a

multi-threaded programming model. Several dynamic data race detectors [Hsiao et al.

(2014); Maiya et al. (2014); Bielik et al. (2015)] have been proposed for Android

apps. These tools are tightly coupled with the Android system and target mainly shared

memory races rather than violations due to I/O events.

4.8 CONCLUSION

In this chapter, we have presented, ConFuzz, a directed concurrency fuzzing tool that

employs novel concurrency fuzzing technique PBCF for finding concurrency bugs

in event-driven OCaml programs written using the Lwt library. Our performance

evaluation shows that coverage-guided fuzzing of ConFuzz is more effective and

efficient than the random fuzzing tool Node.Fz in finding the bugs. We also show

that ConFuzz can detect bugs in large and widely used real-world OCaml applications

without having to modify the code under test.
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CHAPTER 5

PARAFUZZ

With the advancement in processor technology, multicore processors have become

the norm in mobile, desktop and enterprise computing. Fast multicore machines are

easily accessible at the click of a button thanks to cloud computing. Programmers

must write multi-threaded softwares to realize the processing potential of multicore

processors. Multi-threaded programming allows programmers to use threads to

parallelize computation and reduce application processing time.

In this chapter, we apply novel technique of coverage-guided property-based

concurrency fuzzing (PBCF) described in Chapter 3 to test multi-threaded programs.

We instantiate PBCF technique in ParaFuzz, a concurrent property fuzz testing tool

for Multicore OCaml parallel programs as an extension to ConFuzz. ParaFuzz

also supports record and replay to deterministically reproduce the concurrency bug.

ParaFuzz is developed as a drop-in replacement for the Multicore OCaml compiler

and employs a novel approach to control threads of multi-threaded parallel programs

without requiring the any changes to the test programs.

Unlike model checking, ParaFuzz does not guarantee testing on all possible thread

schedules, but generate and test programs on interesting inputs and thread schedules

that maximize the likely hood of finding a property failure. Due to its efficiency,

ParaFuzz enables a programmer to explore a broader schedule space of the multi-
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threaded program with a limited test time budget, thereby increasing the chances of

finding bugs in the same limited time. This makes ParaFuzz an efficient and practical

concurrency testing tool for programmers wanting to test their multi-threaded code in a

reasonable amount of time.

The main contributions of ParaFuzz work are as follows:

• We implement the PBCF technique in ParaFuzz, a drop-in replacement for
testing Multicore OCaml parallel programs.

• We present a novel approach to implement thread scheduler by effect handlers to
control threads without changing thread API.

• We show by experimental evaluation that ParaFuzz is more effective and
efficient than random and stress testing in finding concurrency bugs. ParaFuzz
was able to find 1 previously unknown concurrency bug in widely used Multicore
OCaml library.

The remainder of this chapter is organized as follows. We present a motivating example

in Section 5.1 that illustrates the effectiveness of ParaFuzz on an adversarial example.

Section 5.2 provides an overview of the parallel programming in Multicore OCaml.

ParaFuzz is introduced in Section 5.3. Section 5.4 discusses the implementation details

of ParaFuzz. Assumptions made by ParaFuzz along with reasonable justification are

described in Section 5.5. Experimental evaluation is described in Section 5.6. Related

work is discussed in Section 5.7, and we conclude the chapter with Section 5.8.

5.1 MOTIVATING EXAMPLE

We describe a simple, adversarial example to illustrate the effectiveness of ParaFuzz

in finding concurrency bugs in parallel programs that depend on both input and thread
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1 let test i =
2 let x = Atomic.make i in
3 let y = Atomic.make 0 in
4 let dom = Domain.spawn(fun () ->
5 if (Atomic.get x = 10) then Atomic.set y 2)
6 in
7 Atomic.set y 1;
8 Domain.join dom;
9 assert (Atomic.get y <> 2)

Figure 5.1: A program with input+schedule concurrency bug

schedule. Figure 5.1 shows a Multicore OCaml parallel program. The program contains

a single function test that takes an integer parameter i. test function initializes two

atomic variables x and y with value i and 0 respectively. Domain.spawn creates a

different thread the runs in parallel with the main thread. dom thread set the y to 2 if the

value of x is 10. test function on line 7 sets y to 1. Domain.join waits for dom to

terminate. Line 5 and Line 7 execute in parallel by different threads. At the end test

function asserts the value of y to be not equal to 2.

This program has a concurrency bug; there exists a particular combination of input

value i and schedule between the two threads that will cause the value of y to become

equal to 2, causing the assertion to fail. There are 263 1 possibilities for the value of i

and therefore the value of x and 3 possible thread schedules for the 2 threads. Out of

these, there is only one possible combination of input and thread schedule for which the

assertion fails.

• i = 10 and schedule = [Atomic.get x = 10; Atomic.set y 1; Atomic.set y 2].

1OCaml uses tagged integer representation [Leroy (1990)] where 1 bit is used to distinguish
immediate values from pointers.
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Table 5.1: Comparing different testing techniques

Testing
Technique

Executions
(millions)

Time
(minutes) Bug Found

ParaFuzz 0.55 10.5 Yes
Random 108.6 60 No

Stress 25.2 60 No

ParaFuzz aims to find concurrency bugs that depend on a combination of input and

thread schedule alongside bugs that only depend on a particular thread schedule. As

the bug in example program depends on input and interleaving, concurrency testing

techniques focusing only on generating different interleavings will fail to find this bug.

This is evident when the program is executed under different testing techniques. Table

5.1 shows a comparison of ParaFuzz with the random and stress testing for the example

program.

Random testing controls the thread scheduling decisions and randomizes the order

of thread executions. Stress testing runs the program normally without controlling

the scheduling decisions. Inputs to the programs are generated randomly in stress

and random testing, whereas in ParaFuzz, inputs are generated by AFL. We test the

example program with each technique until a bug is found or a timeout of 1 hour is

reached. We report the number of executions and time taken if the bug was found.

Only ParaFuzz was able to find the bug. Random and Stress testing were not able to

find the bug despite running significantly longer with far more executions. Although

this example is synthetic, we observe similar patterns in real-world programs where the

bug depends on the combination of the input value and the schedule, and cannot be
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discovered with a tool that only focuses on one of the sources of non-determinism.

5.2 MULTICORE OCAML

Recall from Section 2.5.2 that, Multicore OCaml adds native support for concurrency

and parallelism to the OCaml language. Multicore OCaml implements parallelism and

concurrency abstraction through domains and fibers respectively. We shall discuss them

in detail now.

5.2.1 Domains

Multicore OCaml implements shared-memory parallelism through domains. A domain

is a unit of parallelism in Multicore OCaml. Domains map one-to-one with OS threads

and thus execute in parallel with other domains. Domains are fairly heavyweight as

they include their own heap and the synchronization required to manage a multicore

garbage collection (GC). The domainslib library [domainslib (2021)] - a high-level

parallel programming library makes it easy to write parallel programs over domains.

From here onwards, we refer to the parallel thread of execution as a domain to avoid.

5.2.2 Effect handlers

Effect handlers [Plotkin and Pretnar (2009)] provide a modular foundation for user-

defined effects. The key idea is to separate the definition of the effectful operations from

their interpretations, which are given by handlers of the effects. Effect handlers are a

generalization of exception handlers, where, in addition to the effect being handled,

the handler is provided with the delimited continuation [Danvy and Filinski (1990)]
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of the perform site. Effect handlers allow for non-local control flow mechanisms

such as generators, async/await, lightweight threads and coroutines to be composably

expressed. Effect handlers in Multicore OCaml are implemented using efficient runtime

managed stack segments called fibers [Sivaramakrishnan et al. (2021)].

Multicore OCaml extends OCaml with the ability to declare user-defined effects with

the help of the effect keyword. For example,

effect E: int -> int

declares an effect E, which is parameterized with an integer, which when performed

returns an integer. A computation can perform the effect E without knowing how the

effect E is implemented. This computation may be enclosed by different handlers

that handle E differently. Effects are performed with the perform primitive, which

performs the effect and returns the result.

let v = try perform (E 42) with

| effect (E i) k -> continue k (i+1)

In the code above, effect E is performed with 42 as the argument. To handle this effect

E, effect handler are used. The pattern effect (E i)k is the effect handler which

handles the effect E, i is the parameter passed to E while performing it, and k is

the delimited continuation. Intuitively, k represents suspended computation between

the site where the effect was performed and the effect handler. You can continue the

continuation using continue keyword and program control will resume from the effect

perform site. Here in this case effect E is continued with i+1. This results in perform
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E 42 returning with value 43 and variable v is assigned 43. This capability of effect

handlers to resume suspended computations later enables Multicore OCaml to have

asynchronous I/O in direct-style instead of callback-oriented style found in languages

like JavaScript.

5.3 PARAFUZZ

AFL Instrumented 
program

Scheduler

Input

Thread execution 
order

Thread
schedule

Execution path

Figure 5.2: ParaFuzz architecture

We have implemented the PBCF technique for Multicore OCaml parallel programs in

ParaFuzz tool. ParaFuzz combines property-based testing and AFL with concurrency

testing for parallel programs. Figure 5.2 shows ParaFuzz ’s architecture. Unlike

ConFuzz, where the scheduler is implemented in OCaml code, the scheduler of

Multicore OCaml parallel programs written using domains, is controlled by OS. This

poses a challenge in the form of how to perform ConFuzz style concurrency fuzzing

for parallel programs? The key observation is to simulate the Domain programming
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interface using a user-defined scheduler written using effect handlers (Section 5.2.2).

Since effect-handlers allow you to write concurrent programs in direct style, we

can implement the Domain programming interface as a drop-in replacement for the

Multicore OCaml standard library. As a result, ParaFuzz can test unmodified programs

developed using standard library’s Domain programming interface or any other library

built on top of it (domainslib). ParaFuzz being an extension of ConFuzz for Multicore

OCaml programs supports all the features of ConFuzz such as record and replay, no

false positives etc.

5.3.1 ParaFuzz scheduler

ParaFuzz scheduler is the core part of the ParaFuzz. ParaFuzz scheduler’s main job

is to generate domain schedule with the help of AFL.The changes made in Multicore

OCaml compiler to capture non-determinism (Section 5.4.2) call ParaFuzz scheduler’s

API (Figure 5.3). Scheduler tracks domain ready to execute next in a ready list.

ParaFuzz scheduler then chooses the next domain to run with the number generated by

AFL. By choosing a domain to run at each step, ParaFuzz scheduler generates domain

schedules. On detecting a concurrency bug, the AFL-generated random numbers are

saved in a separate file as a schedule trace. With the schedule trace, the ParaFuzz

scheduler can reproduce and enforce a domain schedule. Using this capability of the

scheduler, ParaFuzz can replay a domain schedule to reliably expose the detected

concurrency bugs. Deterministic replay helps programmers find the exact cause of

concurrency bugs in parallel programs.

The order in which each domain is executed to run next affects the parallel program’s
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execution path. We make every context switch between domains seem as a branching

condition to AFL as AFL can recognize branching conditions in programs and

interprets the sequence of branching conditions as program’s execution path. ParaFuzz

essentially converts domain schedule to sequential program’s execution path which can

be recognized by AFL. Due to the program instrumentation inserted in programs, AFL

recognizes the program execution path in every program run. AFL being a coverage-

guided fuzzer, tries to increase coverage (execution paths). AFL thus generates

random numbers that produce alternative domain execution orderings. Alternative

domain execution orderings result in new domain schedules that exercise new program

execution paths. ParaFuzz scheduler keeps on generating new domain schedules until

AFL is able to find new execution paths. ParaFuzz thus uses AFL fuzzing to generate

and execute programs under varied domain schedules.

We now describe the novel approach used in ParaFuzz scheduler to control domains

without requiring the test programs to change. ParaFuzz scheduler uses effect handlers

(Section 5.2.2) to mock domains. ParaFuzz scheduler internally implements domain as

fibers (Section 5.2.2) instead of OS threads which can be executed concurrently (time-

sharing fashion) with other domains. This enables ParaFuzz to have tight control over

domain executions which is necessary for precisely enforcing domain schedules. There

are mainly two major advantages of using effect handlers in ParaFuzz scheduler. First,

the Domain API is not modified which helps ParaFuzz to test programs without any

modification. This makes ParaFuzz easier to adopt and test a wide variety of parallel

programs. Second, ParaFuzz essentially converts a Multicore OCaml parallel program
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type 'a cont
(** Represents a blocked computation that waits for a value of

type 'a. *)

val context_switch : unit -> unit
(** [context_switch] switches to the next runnable as

determined
by scheduler. *)

val fork : (unit -> unit) -> int
(** [fork f] spawns a new runnable in the scheduler and returns

[id] of the forked runnable. *)

val suspend : (('a cont * int) -> unit) -> 'a
(** [suspend f] applies [f] to the current continuation, and

suspends the execution of the current runnable, and
switches to the next runnable in the scheduler's queue. *)

val resume : ('a cont * 'a * int) -> unit
(** [resume (k,v,id)] prepares the suspended continuation [k]

with value [v], domain identifier [id] and enqueues it as
well current runnable to the scheduler queue. *)

val resume_without_context_switch : ('a cont * 'a * int) ->
unit

(** [resume_without_context_switch (k,v,id)] prepares the
suspended continuation [k] with value [v], domain
identifier [id] and enqueues it to the scheduler queue and
continues with the current runnable. *)

val run : (module AFLQueue) -> (unit -> unit) -> unit
(** [run m f] runs [f] with the AFL controlled queue [m]. *)

val get_current_domain_id : unit -> int
(* Returns the ID of the current thread running *)

Figure 5.3: Scheduler API
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to a single domain sequential OCaml program by mocking parallelly executed domains

as concurrently executed fibers running on a single OS thread. AFL doesn’t work with

parallel programs and requires programs to be single-threaded. The effect handlers

approach makes it possible for ParaFuzz to use AFL to test Multicore OCaml parallel

programs.

To mock domains using effect handlers, ParaFuzz scheduler API functions (Figure

5.3) called for capturing non-determinism are internally implemented as simply

performing effects using perform primitive. The effect implementation is shown in

Figure 5.4. For instance ParaFuzz scheduler’s context_switch function performs

effect Context_switch. The Context_switch effect yields control to ParaFuzz

scheduler. The Fork effect takes a thunk which is spawned as a concurrent domain.

Effect Suspend and Resume suspends and resumes a domain respectively. The Id

effect returns the id of the calling domain. We also implement our version of

synchronization primitives: Mutex and Condition variables using effect handlers to

enable ParaFuzz scheduler to control the order in which a Mutex is acquired/released

or a Condition is waited upon/signalled.

The scheduler effects are handled by effect handlers defined in run function. run

is the core function of the ParaFuzz scheduler. Figure 5.5 describes the run

function. It takes the program to test as a thunk (main argument) and handles the

effect performed in the test program. afl_module is the AFL controlled queue

required by ParaFuzz scheduler. current_id tracks currently executing domain
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type 'a cont = ('a,unit) continuation
effect Context_switch : unit
effect Fork : (unit -> unit) -> int
effect Suspend : (('a cont * int) -> unit) -> 'a
effect Resume : ('a cont * 'a * int) -> unit
effect Id : int

let fork f = perform (Fork f)
let suspend f = perform (Suspend f)
let resume (k,v, id) = perform (Resume (k,v,id))
let context_switch () = perform Context_switch
let get_current_domain_id () = perform Id

Figure 5.4: ParaFuzz Scheduler effect implementation

id, next_id provides for id for next spawned domain and domains_finished

denotes number of domains terminated. Apart from generating and enforcing domain

schedules ParaFuzz scheduler, scheduler checks for deadlock in parallel programs

through check_for_deadlock function. check_for_deadlock checks whether all

spawned threads are terminated or not. The function spawn (line 17) evaluates the

computation f in an effect handler. The computation f may return normally with a

value, or perform scheduler effects. The pattern effect Context_switch k handles

the effect Context_switch and binds k to the continuation of the corresponding

perform delimited by this handler. The scheduler queue M backed by AFL-controlled

queue afl_module maintains a queue of these continuations. enqueue pushes

functions into the queue which when called resumes the continuations using the

continue primitive and updates the current domain id. dequeue pops functions

from the queue and calls it. If the queue is empty, we check for deadlock using

check_for_deadlock. In the case of the Context_switch effect, we enqueue the

current continuation k and resume the next available continuation. In the case of the

Fork f effect, we enqueue the current continuation, update the current_id with the
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id of the newly spawned domain next_id and recursively call spawn on f in order

to run f concurrently. For Suspend f effect, we first call the function f with current

continuation k and currently executing domain id current_id. Then we resume the

next available continuation using deqeue. In the case of Resume k',v,id effect, we

enqueue the current continuation and the continuation to be resumed k with value v

and domain id id. Finally, resuming the next available continuation. Effect Id simply

continues current continuation with the calling domain id current_id.

5.4 FUZZING UNDER NON-DETERMINISM

In this section, we discuss the non-determinism present in Multicore OCaml programs.

We then show how ParaFuzz captures and fuzzes this non-determinism.

5.4.1 Synchronization points in Multicore OCaml

Non-determinism in Multicore OCaml mainly comes from non-determinism in domains

execution. To generate domain schedule ParaFuzz context switches only before every

synchronization point due to the optimization mentioned in Section 5.5. In this section,

we discuss the synchronization points present in Multicore OCaml parallel program.

Domain synchronization points Domains in Multicore OCaml execute in parallel and

are scheduled by operating system which makes the order of execution of domains at

runtime non-deterministic. Concurrency bugs that depend on a particular schedule of

domain execution can be caught by fuzzing the order of domain executions. Multicore
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1 let run afl_module main =
2 let current_id = ref 0 in
3 let next_id = ref 1 in
4 let domains_finished = ref 0 in
5
6 let check_for_deadlock () =
7 if (!next_id - !domains_finished) = 0 then ()
8 else failwith "Deadlock!" in
9

10 let module M = (val afl_module : AFLQueue) in
11 let enqueue id k v =
12 M.enqueue (fun () -> current_id := id; continue k v) in
13 let dequeue () =
14 if M.is_empty () then check_for_deadlock ()
15 else M.dequeue () () in
16
17 let rec spawn f =
18 match f () with
19 | () -> incr domains_finished; dequeue ()
20 | effect Context_switch k ->
21 enqueue !current_id k ();
22 dequeue ()
23 | effect (Fork f) k ->
24 enqueue !current_id k (!next_id);
25 current_id := !next_id;
26 incr next_id;
27 spawn f
28 | effect (Suspend f) k ->
29 f (k,!current_id);
30 dequeue ()
31 | effect (Resume (k',v, id)) k ->
32 enqueue id k' v;
33 enqueue !current_id k ();
34 dequeue ()
35 | effect (Id) k ->
36 continue k (!current_id)
37 in
38 spawn main

Figure 5.5: ParaFuzz Scheduler run function
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OCaml exposes threading abstraction via Domain API. Domain API provides methods

for programs to create domain for parallel execution and wait for it to terminate.

Domain API is shown in Figure 5.6.

val spawn : (unit -> 'a) -> 'a t
(** [spawn f] creates a new domain that runs in parallel with

the current domain. *)

val join : 'a t -> 'a
(** [join d] blocks until domain [d] runs to completion.

If [d] results in a value, then that is returned by
[join d]. If [d] raises an uncaught exception, then
that is thrown by [join d]. Domains may only be joined
once: subsequent uses of [join d] raise Invalid_argument.

*)

Figure 5.6: Domain API

Atomic synchronization points Multicore OCaml provides two types of mutable

variables: atomic and non-atomic mutable variables. Accesses to atomic mutable

variables are executed atomically and are therefore synchronized with respect to

accesses from different domains. Atomic API in Multicore OCaml provides support

for mutable atomic variables and supporting methods that operate on them. Figure 5.7

shows Multicore OCaml atomics API. During parallel program execution, order of each

of the method in Atomic API affects the shared variable state. Any assumption on the

order in which Atomic methods are executed may lead to concurrency bugs.

Synchronization primitives synchronization points Synchronization primitives

namely locks and condition variables (CV) are used to provide synchronized access
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(** Create an atomic reference. *)
val make : 'a -> 'a t

(** Get the current value of the atomic reference. *)
val get : 'a t -> 'a

(** Set a new value for the atomic reference. *)
val set : 'a t -> 'a -> unit

(** Set a new value for the atomic reference, and return the
current value. *)

val exchange : 'a t -> 'a -> 'a

(** [compare_and_set r seen v] sets the new value of [r] to [v]
only if its current value is physically equal to [seen] --
the comparison and the set occur atomically. Returns [true]
if the comparison succeeded (so the set happened) and
[false] otherwise. *)

val compare_and_set : 'a t -> 'a -> 'a -> bool

(** [fetch_and_add r n] atomically increments the value of [r]
by [n], and returns the current value (before the
increment). *)

val fetch_and_add : int t -> int -> int

(** [incr r] atomically increments the value of [r] by [1]. *)
val incr : int t -> unit

(** [decr r] atomically decrements the value of [r] by [1]. *)
val decr : int t -> unit

Figure 5.7: Atomic API

to mutable non-atomic variables in Multicore OCaml. Non-synchronization access of

non-atomic variables can lead to data races. Still, usage of synchronization primitives

cannot eliminate the risk of race conditions in parallel programs. The order of

acquiring/releasing a lock or waiting/signalling a CV by domains can affect the state

of non-atomic variables. Race conditions arising out of synchronization primitives can

be caught by fuzzing the order of execution of synchronization primitives. Multicore

OCaml provides two synchronization primitives to use in parallel programs: Mutex
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val create : unit -> t
(** Return a new mutex. *)

val lock : t -> unit
(** Lock the given mutex. Only one thread can have the mutex

locked at any time. A thread that attempts to lock a mutex
already locked by another thread will suspend until the
other thread unlocks the mutex. *)

val try_lock : t -> bool
(** Same as {!Mutex.lock}, but does not suspend the calling

thread if the mutex is already locked: just return [false]
immediately in that case. If the mutex is unlocked, lock it
and return [true]. *)

val unlock : t -> unit
(** Unlock the given mutex. Other threads suspended trying to

lock the mutex will restart. The mutex must have been
previously locked by the thread that calls {!Mutex.unlock}.

*)

Figure 5.8: Mutex API

and Condition for locks and CV respectively. Figure 5.8 and 5.9 describe Mutex and

Condition API respectively.

5.4.2 Capturing synchronization points in Multicore OCaml

In this section, we discuss how ParaFuzz controls and captures the synchronization

points described in Section 5.4.1. ParaFuzz scheduler (Section 5.3.1) uses captured

synchronization points to generate varying domain schedules.

Capturing Domain synchronization points To capture domain synchronization points

we insert calls to ParaFuzz scheduler in Domain API described in Figure 5.6. The
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val create : unit -> t
(** Return a new condition variable. *)

val wait : t -> Mutex.t -> unit
(** [wait c m] atomically unlocks the mutex [m] and suspends

the calling process on the condition variable [c]. The
process will restart after the condition variable [c]
has been signalled. The mutex [m] is locked again before
[wait] returns. *)

val signal : t -> unit
(** [signal c] restarts one of the processes waiting on the

condition variable [c]. *)

val broadcast : t -> unit
(** [broadcast c] restarts all processes waiting on the

condition variable [c]. *)

Figure 5.9: Condition API

inserted calls in Domain API inform ParaFuzz scheduler about domains creation and

termination. This enables ParaFuzz scheduler control precisely when a particular

domain starts execution and when it is allowed to terminate. By delaying domain

execution and termination, ParaFuzz scheduler can catch concurrency bugs that

depend upon fixed order/time of domain creation and termination. The inserted calls to

ParaFuzz scheduler do not modify Domain API in any way, which makes it possible

to test unmodified Multicore OCaml programs to be tested by ParaFuzz. Domain

.spawn creates a new domain to execute function passed in parallel. We insert

calls to ParaFuzz scheduler’s fork method Scheduler.fork in Domain.spawn.

Scheduler.fork as shown in Figure 5.10 takes a function that forms the code to be

executed parallelly in a separate domain and returns an integer id of the newly created

domain. Scheduler.fork enables ParaFuzz scheduler start tracking and controlling
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val fork : (unit -> unit) -> int
(** [fork f] spawns a new runnable in the scheduler and returns

[id] of the forked runnable. *)

Figure 5.10: Scheduler.fork

the newly created domain’s execution.

Capturing Atomics synchronization points ParaFuzz treats Atomic methods

described in Figure 5.7 as synchronized regions and makes domains context switch

before executing each Atomic method to generate domain schedule that can violate

property defined on a shared variable. By making domain context switch before each

atomic access, ParaFuzz scheduler can control the order in which domains access a

particular atomic variable. ParaFuzz scheduler can generate domain schedule that

can manifest concurrency bugs that depend on a particular access order of atomic

variables. To enable ParaFuzz scheduler to context switch to different domain before

accessing an atomic variable, we insert calls to ParaFuzz scheduler in each of the

Atomic API methods. We insert calls to scheduler’s Scheduler.context_switch

method that transfers the control to ParaFuzz scheduler. Once the control is transferred

to ParaFuzz scheduler, the next domain to be executed is chosen according to the

generated domain schedule. Figure 5.11 describes Scheduler.context_switch

method.
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val context_switch : unit -> unit
(** [context_switch] switches to the next runnable as

determined by scheduler. *)

Figure 5.11: Scheduler.context_switch

Capturing synchronization primitives synchronization points Multicore OCaml

synchronization primitives Mutex and Condition provides synchronized access to non-

atomic variables. Still, race conditions can arise on the state of non-atomic variables.

This type of race condition can be caught by controlling the order in which a Mutex

is acquired/released or when a Condition is waited upon/signaled. We insert calls

to ParaFuzz scheduler before executing Mutex and Condition API. The inserted

calls enable ParaFuzz scheduler to fuzz the order of acquiring/releasing a Mutex or

waiting/signaling a Condition.

To capture the synchronization points in Mutex API shown in Figure 5.8, we insert

calls to Scheduler.context_switch (Figure 5.11) to let ParaFuzz scheduler

context switch before acquiring/releasing a Mutex. Further, to handle domains blocked

waiting on a Mutex, we insert calls to Scheduler.suspend while acquiring a Mutex.

Scheduler.suspend shown in Figure 5.12 takes a function f and blocks waiting to be

unblocked by Mutex release. The function f pushes domain wanting to acquire Mutex

in the list of domains waiting for the Mutex to be released. Scheduler.suspend

enables ParaFuzz scheduler to stop tracking blocked domain for schedule generation

by removing it from the list of ready domains.
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val suspend : (('a cont * int) -> unit) -> 'a
(** [suspend f] applies [f] to the current computation, and

suspends the execution of the current runnable, and
switches to the next runnable in the scheduler's queue. *)

Figure 5.12: Scheduler.suspend

Similarly, to unblock domains waiting on a Mutex, we insert calls to Scheduler.

resume in Mutex.unlock. Scheduler.resume calls into ParaFuzz scheduler to

unblock and resumes a waiting domain on a Mutex. Figure 5.13 describes Scheduler.

resume that takes blocked domain enqueued while executing Scheduler.suspend, a

value to resume with and a domain identifier. Scheduler.resume enables ParaFuzz

scheduler to resume tracking of the blocked domain and include blocked domain in the

list of domains ready to be run next.

val resume : ('a cont * 'a * int) -> unit
(** [resume (k,v,id)] prepares the suspended computation [k]

with value [v], domain identifier [id] and enqueues it
as well current runnable to the scheduler queue. *)

Figure 5.13: Scheduler.resume

For capturing the synchronization points in Condition API described in Figure 5.9, we

insert calls to Scheduler.context_switch (Figure 5.11) in similar way like done in

Mutex to let ParaFuzz scheduler context switch before waiting/signaling a Condition.

As Condition internally uses Mutex, we do not insert calls to either Scheduler.

suspend or Scheduler.resume to simulate domains waiting on condition or released

from waiting on condition respectively as those calls are called by Mutex API internally.
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5.5 ASSUMPTIONS

To make ParaFuzz an efficient and practical tool to find concurrency bugs in Multicore

OCaml programs, we make certain assumptions which we discuss next. To generate

domain schedules, ParaFuzz controls domains execution by context switching at pre-

defined program location in each domain execution. Theoretically, as each domain can

context switch before each instruction, ParaFuzz should context switch before every

instruction instead of pre-defined program locations to generate domain schedule. But

this would make ParaFuzz too slow to be a practical tool to find concurrency bugs.

As shown by D.Bruening [Bruening (1999)], it is sufficient just to enumerate possible

orders of the synchronized regions of the program to covers all possible behaviors of

the program. Synchronized regions are atomic blocks of the program that accesses

shared variables and are protected by synchronized primitives. By enumerating only

synchronized regions, the number of schedules to consider are reduced considerably.

Rather than considering all possible schedules at the instruction level, it is sufficient to

only consider schedules of the program’s atomic blocks. To apply this optimization, a

program should follow the mutual-exclusion locking discipline. A mutual-exclusion

locking discipline dictates that each shared variable is associated with at least one

mutual-exclusion lock and that the lock or locks are always held whenever any thread

accesses that variable. To see why enumerating the orders of the atomic blocks is

sufficient, consider the following. The order of two instructions in different threads

can only affect the behavior of the program if the instructions access some common

variable - one instruction must write to a variable that the other reads or writes. In a

program that correctly follows a mutual-exclusion locking discipline, there must be at
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least one lock that is always held when either instruction is executed. Thus they cannot

execute simultaneously, and their order is equivalent to the order of their synchronized

regions.

ParaFuzz uses D.Bruening’s optimization to reduce the number of domain schedule to

be explored to find concurrency bugs. For this optimization, ParaFuzz requires each

shared variable in a Multicore OCaml program to be either atomic variable or every

read/write access be properly synchronized using synchronization primitives so as to

follow mutual-exclusion locking discipline as required by the optimization.

But this limits the application of ParaFuzz to Multicore OCaml programs not

containing data races. Data race occurs when more than one thread tries to access shared

data without using any synchronization like locks and one of the access being write.

Due to data races, programs containing data races do not follow the mutual-exclusion

locking discipline required by ParaFuzz. Programs with data races also exhibit relaxed

memory ordering due to compiler optimizations and modern multicore hardware that

exhibits relaxed behaviours. So it is not sufficient to just simulate the interleaving

of threads, which would only simulate sequential consistency behaviours. Also, data

races in Multicore OCaml have well-defined semantics [Dolan et al. (2018)] unlike

undefined behavior in the C++ memory model. In Multicore OCaml, reads involved in

data races can return a set of values. To simulate the data race behavior, we need to keep

track of every read and write of every memory location, which can affect ParaFuzz’s

performance. Due to this, ParaFuzz makes a only single assumption that the program

to be tested should be data race-free. To make ParaFuzz a practical technique, we
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make this trade-off of missing some data race bugs. Still, we believe that this is a

reasonable assumption to make. Why?

Multicore OCaml programs are mainly written using a high level parallel programming

library - domainslib [domainslib (2021)]. The domainslib is being developed and

maintained by the core Multicore OCaml team, which make it less likely for a program

written using domainslib to contain data races. Even if the program to be tested contains

a data race, it is possible that ParaFuzz may actually find the bug. The bug may not

be due to the data race and hence would be identified by interleaving at synchronization

points. As in some cases it is sufficient to context switch just before every synchronized

shared variable access to test the data race behavior. Finally, it is very easy to extend

ParaFuzz in the future to consider data race programs due to Multicore OCaml memory

model having a simple operational instantiation. However, the scalability of such a

technique is to be determined.

5.6 EVALUATION

In this section, we evaluate the effectiveness of ParaFuzz in finding concurrency bugs

in real-world Multicore OCaml applications and benchmark programs. Additionally,

we check the efficiency of ParaFuzz in terms of time required to detect concurrency

bugs in comparison to random and stress testing. In random testing, the thread

scheduler is controlled like ParaFuzz, but the thread schedule is generated randomly.

We use ParaFuzz ’s random testing mode (Section 5.3) to simulate random testing.

Stress testing runs the program normally without controlling the scheduling decisions.

ParaFuzz generates program input using AFL, while in random and stress testing
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Table 5.2: Experimental subjects

Name (abbreviation) Bug type

mysql-bug (SQL) race-condition
circular-list (CL) race-condition
deadlock3 (D3) deadlock

buffer-if (BI) deadlock
buffer-notify (BN) deadlock
RAX-jpf (RAX) deadlock
domainslib (DL) deadlock

motivating-example (MX) race-condition
effective-random-testing-example (ERT) race-condition

inputs are generated randomly. We design and conduct experiments to answer the

following questions:

• RQ1: Effectiveness – How frequently is ParaFuzz able to find input+schedule
dependent bugs?

• RQ2: Efficiency – How many executions are required to detect bugs by
ParaFuzz as compared to random and stress testing?

• RQ3: ParaFuzz’s Efficiency to explore schedules – Is ParaFuzz effective than
random testing in finding schedule-only dependent bug?

5.6.1 Experimental subjects and setup

We evaluated ParaFuzz on both real-world Multicore OCaml applications and

benchmark programs. Table 5.2 summarises the applications and benchmark programs

used for the evaluation. We have used nine experimental subjects comprising of real-

world applications and benchmark programs as experimental subjects for evaluating

ParaFuzz. All of the programs contain at least one known concurrency bug.

For experimental evaluation, we have build a dataset of 20 known parallel program
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bugs mentioned in related work [Bruening (1999); Yu et al. (2012); Visser et al. (2003);

Sen (2007)]. The dataset comprises bugs of real-world and benchmark programs

written mainly in C, C++ and Java. Each of the program in the dataset contains at

least one known concurrency bug. We select a bug only if the bug report contains

a clear description or has an automated test case to reproduce the bug. We exclude

data race bugs, as ParaFuzz requires test programs to be data race free. We port the

remaining testable bugs to standalone Multicore OCaml programs. We excluded those

bugs from the dataset which either could not be ported to Multicore OCaml or were

data race bugs. We were able to port 7 multi-threaded bugs from the dataset. Dataset

programs contain schedule-only dependent bugs. As ParaFuzz targets input dependent

concurrency bugs (exposed only when a program executes with a specific input and

thread schedule), we add additional input non-determinism in dataset programs and

modify it accordingly to make concurrency bugs in those programs input-dependent.

All the experimental subjects are taken from related work, except MX and DL. MX is

the motivating example from Section 5.1. DL is the previously unknown deadlock bug in

channel implementation found by ParaFuzz in Multicore OCaml parallel programming

library: domainslib [domainslib (2021)].

We design our experiments to compare ParaFuzz ’s bug detection capability with

random and stress testing (hereby referred to as the testing techniques). We perform 30

testing runs for each experimental subject (Table 5.2) and testing technique. A testing

run is a single invocation of the testing technique. The performance metric we focus

on is mean time to failure (MTTF), which measures how quickly a concurrency bug is

found in terms of time. A single test execution indicates one execution of the respective
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application’s test case. For each subject and testing technique, we execute the respective

subject application until the first concurrency bug is found or a timeout of 1 hour occurs.

For each such run, we note the time taken to find the first concurrency bug and whether

a bug was found or not. We ran all of our experiments on a machine with a 6-Core Intel

i5-8500 processor, 16GB RAM, running Linux 4.15.0-1034.

5.6.2 Finding novel bug in domainslib

We found one previously unknown concurrency bug in Multicore OCaml parallel

programming library: domainslib. While running the test suite of domainslib using

ParaFuzz, we observed that one of the test cases hangs in some of the runs. On

investigating further, we found a deadlock in domainslib’s channel implementation. The

deadlock had to with two receivers waiting for a message on the same channel. When

a message is sent by a sender to the same channel, it causes the message to be lost

resulting in a deadlock. The root cause is sender sends the message to the first receiver,

but it wakes up the second receiver. As a result the first receiver is not woken up and

the second receiver despite being woken up does not receive the message and goes back

to waiting. This results in the message being lost and the two receivers still waiting

leading to a deadlock. ParaFuzz was able to detect deadlock within 1 second every

time as shown discussed in Section 5.6.3. We reported 2 the deadlock to the domainslib

team, which was acknowledged as a real bug and a fix was introduce in the domainslib

library. This demonstrates the ParaFuzz’s capability in detecting concurrency bugs in

real-world programs and libraries.

2https://github.com/ocaml-multicore/domainslib/issues/25
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Table 5.3: Bug detection capability of the techniques. Each entry is the fraction of the
testing runs that manifested the concurrency bug.

Stress Random ParaFuzz

SQL 0.00 0.00 1.00
CL 0.00 0.00 0.96
D3 0.00 0.00 1.00
BI 0.00 0.03 1.00
BN 0.00 0.00 1.00

RAX 0.00 0.00 1.00
DL 0.00 1.00 1.00
MX 0.00 0.00 1.00
ERT 0.00 0.00 1.00

Avg 0.00 0.003 0.99

5.6.3 Experimental Results

RQ1: Effectiveness

Table 5.3 shows the bug detection capabilities of the three testing techniques. The

first column shows the abbreviation of the experimental subjects. The second to fourth

column shows the bug detection results of Stress, Random and ParaFuzz testing,

respectively. Each cell in the table shows the fraction of the testing runs that detected

a concurrency bug out of the total 30 testing runs per experimental subject and testing

technique.

As shown in Table 5.3, ParaFuzz detected concurrency bugs in every testing run for all

experimental subjects (all cells are 1.00) except CL. Even in the case of CL, ParaFuzz

was able to find concurrency bugs with the ratio of 0.96 (29 out of 30 testing runs),

as compared to stress and random testing which were not able to detect bugs even in

a single run. In-fact except BI and DL, ParaFuzz is the only technique able to detect
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Table 5.4: Mean time to find the concurrency bug (seconds)

Stress Random ParaFuzz

SQL - - 734.26
CL - - 971.16
D3 - - 469.63
BI - 100.76 20.36
BN - - 875.4

RAX - - 111
DL - 0 0
MX - - 625.36
ERT - - 88.83

concurrency bugs, that too in every testing runs. This confirms that ParaFuzz was

able to generate concurrent schedules along with inputs more effectively. Except for

BI and DL, random testing could not detect a bug in the remaining programs. For BI,

random testing managed to detect the bug only in single testing run (0.3). ParaFuzz

and random testing both were able to detect the novel deadlock bug in DL. DL is not

input-dependent and concurrency heavy which makes it easy for random testing to find

it. Stress testing failed to detect input dependent bugs in any program. In addition,

ParaFuzz does not produce false positives, as schedules explored by ParaFuzz are

all legal schedules in Multicore OCaml. Thus, the results confirm that ParaFuzz is

effective at detecting input-dependent concurrency bugs.

RQ2: Efficiency

Table 5.4 shows the efficiency results of the three testing techniques. The second to

fourth column shows the efficiency results of stress, Random and ParaFuzz testing

respectively. Each cell represents the average time (in seconds) taken to detect the first
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concurrency bug per experimental subject and testing technique over 30 testing runs. ’-’

in the cell indicates that none of the 30 testing runs detected a concurrency bug within

the timeout of 1 hour.

As shown in Table 5.4, for every experimental subject, ParaFuzz took significantly less

time (column 4) to find bugs than other techniques. AS discussed in RQ1, ParaFuzz is

the only technique to find bugs in all programs except BI and DL. Even in the case of

BI, random testing managed to detect bugs only in single testing run out of 30 testing

runs. Still, ParaFuzz is 5× faster than random testing. As DL is not input-dependent

and concurrency-heavy, both ParaFuzz and random testing detected the concurrency

bug in almost no time.

Note that for BI bug, the average time of random testing does not include testing

runs that failed to detect concurrency bug. In addition, due to implementation issue

with Multicore OCaml, ParaFuzz could not enable fork-server optimisation of AFL.

AFL’s fork-server optimization decreases testing time by a factor of at least 5. We have

reported the issue to Multicore OCaml team and the issue is being looked at actively.

Enabling AFL’s fork-server optimization, will further decrease the time ParaFuzz

takes to find concurrency bugs. Due to its efficiency, ParaFuzz enables a developer

to explore a broader schedule space of the concurrent program than other techniques

with the same test time budget. Thereby increasing the chances of finding bug in the

same limited test time budget. Thus, these results illustrate that ParaFuzz is efficient

in detecting concurrency bugs.
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RQ3: ParaFuzz’s Efficiency to explore schedules

ParaFuzz is more effective and efficient than random and stress testing in find input-

dependent bugs as demonstrated by RQ1 and RQ2. But is ParaFuzz still effective in

finding concurrency bugs that are schedule-dependent only compared to other testing

techniques? So we conducted an experiment on a parallel program (Figure 5.14) which

exposes a schedule-dependent concurrency bug only when the program is executed

under some thread schedules out of many possible. We gradually increase the state

space of the program while recording the bug detection time for each technique. We

exclude stress testing, as it was not effective in finding concurrency bugs in RQ1, RQ2

and directly compare ParaFuzz and random testing.

Figure 5.14 shows the test parallel program. The program spawns two threads each

executing write function n number of times. write function calls function f on each

value from 1 to n. First and second thread writes each value to atomic variable x and y

respectively. At the end, the program checks whether the value of either of the atomic

variables is not equal to half of n. Here n controls the degree of concurrency in the

program. Note that the test program contains more than one buggy thread schedules for

which the assertion fails. We increase n from 10 to 100 to generate large thread schedule

space. As seen, the schedule space is huge and increases exponentially as n increases.

The total number of thread schedules of the program is given by the following formula
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1 let n = 100
2
3 let rec write f i max =
4 if i <= max then (f i; write f (i+1) max)
5 else ()
6
7 let test () =
8 let x = Atomic.make 0 in
9 let y = Atomic.make 0 in

10 let d1 = Domain.spawn
11 (fun () -> write (Atomic.set x) 1 n) in
12 let d2 = Domain.spawn
13 (fun () -> write (Atomic.set y) 1 n) in
14 let xval = Atomic.get x in
15 let yval = Atomic.get y in
16 Crowbar.check @@ (xval <> (n/2) || yval <> (n/2));
17 Domain.join d1;
18 Domain.join d2
19
20 let () =
21 Crowbar.(add_test ~name:"Large schedule space test"
22 [Crowbar.const 1] (fun _ ->
23 Parafuzz_lib.run test
24 ))

Figure 5.14: A program with schedule-dependent concurrency bug
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Figure 5.15: Efficiency of ParaFuzz as schedule space increases. The total number
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)
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parameterized over n:

Total number of schedules f(n) =
(
2n

n

)
(5.1)

Figure 5.15 graph shows mean time to failure (MMTF) to find the concurrency bug

for ParaFuzz and random testing as the schedule space is increased. As seen in

the graph, initially random testing is on par with ParaFuzz, but with the degree of

concurrency exceeding 30, testing time increases drastically. Meanwhile ParaFuzz’s

testing time increases linearly as schedule space increases. With the degree of

concurrency exceeding 40, random testing is not able to find the bug, in contrast with

ParaFuzz which is able to find bugs in a reasonable amount of time. This demonstrates

that ParaFuzz is efficient in finding schedule-dependent concurrency bugs even in

programs with large thread schedule space. ParaFuzz usage of AFL shines really well

when the concurrency bug (like Figure 5.14 bug) requires a sequence of scheduling
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decisions to be made in order to expose it. In the case when thread schedule space is

small, random testing can be used for concurrency testing. But, for a program with large

schedule space or containing input-dependent bug or the concurrency bug does require

many sequence of scheduling decisions to be made, ParaFuzz’s AFL fuzzing is more

effective.

5.7 RELATED WORK

To the best of our knowledge, ParaFuzz is the first tool to apply coverage-guided

fuzzing, not just to maximize the coverage of the source code of program, but also

to maximize the schedule space coverage introduced by a non-deterministic execution

of multi-threaded programs by directly controlling the thread scheduler. In this section,

we compare ParaFuzz to related work.

Concurrency fuzzing: The closest work to ParaFuzz is the Heuristic Framework [Liu

et al. (2018)] to detect concurrency vulnerabilities in multi-threaded programs by AFL.

Heuristics Framework does not directly control thread scheduler, instead generates

thread schedule by influencing scheduling decisions at runtime by changing thread

priorities. Heuristics Framework focuses on finding concurrency bugs involving two

concurrent operations. Due to this approach, the Heuristics Framework may fail to

find concurrency bugs that require generating a series of scheduling decisions or that

involve more than two concurrent operations. Apart from that it cannot reproduce

found concurrency bugs deterministically. ParaFuzz does not produce false positives,

whereas the Heuristics Framework can generate false positives too. ParaFuzz can

expose bugs that depend on some combination of input and thread schedule, while
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Heuristics Framework requires input to be fixed for finding input+thread schedule

bugs. Another testing tool, Maple [Yu et al. (2012)] employs a coverage-driven

approach for testing multi-threaded programs. But unlike ParaFuzz, it aims to

maximise untested interleavings for a fixed test input to increase interleaving coverage.

Node.Fz [Davis et al. (2017)] is a concurrency fuzzing tool for event-driven JavaScript

programs that fuzzes the order of events and callbacks randomly to explore different

schedules. Node.Fz can only find bugs that manifest purely as a result of particular

scheduling, not as a property of program inputs and cannot be applied to multi-threaded

programs. MUZZ [Chen et al. (2020)] proposes a new grey-box fuzzing technique that

improves over AFL in both multithreading-relevant seed generation and concurrency-

vulnerability detection. ParaFuzz uses AFL as a source of randomness and can take

advantage of the improvements proposed by MUZZ.

Concurrency testing techniques: Stress and random testing are the common and

widely used approaches in software development to test multi-threaded programs.

Stress testing simply executes a parallel program for various days/months in the hope

to find concurrency bugs. Stress testing is not effective in testing parallel programs

as it does not control the thread scheduler and instead executes the program directly

under OS load which makes it highly dependent on OS environment. Random testing

techniques [Edelstein et al. (2003)] improves stress testing by randomizing the thread

interleavings in order to exercise different interleavings in different test runs. These

random testing techniques differ in the way they randomize thread interleavings. Both

random and stress testing does not recognize the tested interleavings and naively

executes the same interleavings multiple times. Also, the probability of finding the
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buggy interleaving out of huge interleaving state space is very low. ParaFuzz on

other hand directly controls the thread scheduler and recognizes the tested interleavings

making it more effective than stress and random testing techniques in finding buggy

interleavings that can cause concurrency bugs. Systematic exploration techniques such

as model checking [Godefroid (1997)] attempt to explore the schedule space of a given

program exhaustively to find concurrency bugs. Even with partial order reduction

techniques [Flanagan and Godefroid (2005); Godefroid (1995)], the number of thread

interleavings to test for a given input is still huge. Few heuristics like context and depth

bounding [Musuvathi and Qadeer (2007b)] have been proposed to further reduce the

testing time at the cost of missing potential concurrency errors. CHESS [Musuvathi

et al. (2019)] is a stateless model checker exploring the schedule space in a systematic

manner. Exhaustive state-space exploration is expensive and given a limited test time

budget, ParaFuzz explores broader input and schedule space, which is more likely to

detect concurrency bugs.

Bug detection tools: Many approaches and tools have been developed to identify

concurrency bugs in multi-threaded programs. Bug detection tools are categorised into

two types: static and dynamic concurrency bug detection tools. Static concurrency bug

detection tools aims to analyze programs statically without executing the concurrent

programs. Most of the static bug detection tools produce a lot of false positives,

preventing them from being widely used by programmers. Dynamic bug detection

tools executes the concurrent programs in various ways to expose concurrency bugs.

Dynamic bug detection tools such as FastTrack [Flanagan and Freund (2009b)], Eraser

[Savage et al. (1997)], CalFuzzer [Joshi et al. (2009)] aims to detect data races
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concurrency bugs in multi-threaded. These tools can complement ParaFuzz by finding

data races in concurrent programs, as ParaFuzz requires programs to be data-race free.

Another category of dynamic analysis tools such as ConTest [Edelstein et al. (2003)],

RaceFuzzer [Sen (2008)] and Sherlock [Eslamimehr and Palsberg (2014)] uses random

testing to generate varied thread schedules and trigger concurrency bugs. As shown

in Section 5.6, ParaFuzz is much more effective and efficient than random testing in

finding concurrency bugs in multi-threaded programs.

5.8 CONCLUSION

In this chapter, we have presented, ParaFuzz, a directed concurrency fuzzing tool

that employs novel concurrency fuzzing technique PBCF for finding concurrency bugs

in multi-threaded Multicore OCaml programs. ParaFuzz detected one previously

unknown novel concurrency bug in parallel programming library: domainslib. Our

performance evaluation shows that coverage-guided fuzzing of ParaFuzz is more

effective and efficient than the random and stress testing in finding the input-dependent

concurrency bugs. ParaFuzz also demonstrates a novel approach using effect-handlers

in testing multicore programs and libraries without requiring to modify the code under

test.
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CHAPTER 6

CONCLUDING REMARKS AND FUTURE WORK

Concurrent programming enables simultaneous execution of tasks and I/O operations to

reduce the time it takes for an application to process the user request. Non-determinism

arising in event-driven concurrent and multi-threaded parallel programs gives rise

to concurrency bugs. Non-determinism makes it hard to test concurrent programs

as concurrency bugs typically manifest only when the program is executed under a

particular buggy thread/event schedule. In this thesis, we present a novel concurrency

testing technique (PBCF) and its instantiation in two practical concurrency testing

tools ConFuzz and ParaFuzz to test event-driven and multi-threaded concurrent

programs respectively. In this chapter, we discuss the future possible extensions of our

contributions. The discussion is split based on the contributions : novel concurrency

testing technique (PBCF) and two new concurrency testing tools.

6.1 PBCF

Property-based concurrency fuzzing (PBCF) proposes a novel concurrency testing

technique called that combines property-based testing with coverage-guided fuzzing

applied to concurrent programs. PBCF uses AFL [Zalewski (2021)], the start-of-the-

art mutation-based, coverage-guided grey box fuzzer to provide fuzzing capability. We

apply PBCF to generate not only inputs that may cause the property to fail, but also
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to drive various scheduling decisions in the concurrent program. Our key observation

is that we can use AFL’s grey box fuzzing capability to direct the search towards new

schedules, and thus lead to property failure and detect concurrency bugs. MUZZ is a

grey-box fuzzing technique [Chen et al. (2020)], that uses thread-aware instrumentation

to generate more effective seeds that can exercise buggy schedules. PBCF is compatible

with any instrumentation-capable fuzzer. So as a extension of our work, PBCF can

be implemented with MUZZ instead of AFL as a backend fuzzing technique to find

concurrency bugs.

6.2 CONFUZZ AND PARAFUZZ

We instantiate PBCF technique in two directed concurrency bug-finding tool ConFuzz

and ParaFuzz for event-driven OCaml and Multicore OCaml programs respectively.

Using these tools, programmers specify high-level program properties as assertions in

the source code. These tools then identify the input and the schedule that will cause

the assertion to fail. Both ConFuzz and ParaFuzz support record and replay feature

to deterministically reproduce the concurrency bug. ConFuzz and ParaFuzz employ

novel approach to let programmers test their concurrent code without any modifications.

This combination of features makes ConFuzz and ParaFuzz, a practical concurrency

tool for programmers wanting to test their concurrent code in reasonable amount of

time.

ConFuzz aims to test event-driven OCaml programs written using popular

asynchronous I/O library: Lwt [Lwt (2021)]. Our performance evaluation shows that

coverage-guided fuzzing of ConFuzz is more effective and efficient than the random
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fuzzing tool Node.Fz [Davis et al. (2017)] in finding concurrency bugs. ConFuzz

can be extended to work with other event-driven languages and frameworks such as

JavaScript.

ParaFuzz aims to find concurrency bugs in multi-threaded Multicore OCaml programs.

Multicore OCaml is an extension of OCaml language to provide shared-memory

parallelism. We present a novel approach to implement a thread scheduler by effect

handlers [Plotkin and Pretnar (2009)] to control threads without changing the thread

API. Experimental evaluation shows that ParaFuzz is more effective and efficient than

random and stress testing in finding multi-threaded concurrency bugs. ParaFuzz was

able to find 1 previously unknown concurrency bug in widely used Multicore OCaml

library: domainslib [domainslib (2021)]. Currently, in ParaFuzz, we manually insert

context switch points in each thread API. Even though the test program calls the thread

API multiple times, AFL recognizing only a single context switch point as it relies

on the program location of the context switch point to distinguish branching points

in program execution paths. Due to this implementation, AFL may fail to generate

some thread schedule. To improve upon this, ParaFuzz can be extended to parse the

test program to automatically insert context switch points before each thread API call

location in the program, instead of within the thread API as done currently. Another

extension, is to enable ParaFuzz to work with other effect-handlers supported multi-

threaded languages.
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