Evolving the OCaml
programming language

KC Sivaramakrishnan
kesrk.info

lITM CSE Bytes I I T : ’V) k Ta rid es

4th November 2025 MADRAS N

http://kcsrk.info

Who am | — KC Sivaramakrishnan

 CS Prof at lIT Madras
* Programming languages, formal verification and systems

* A core maintainer of the programming language
e CTO at Tarides
* Building functional systems using

 Maintainers of the OCaml compiler and platform tools

i File Edit Search Run Compile Debug Project Options Window Help
[n] NONAMEGO .CPP 1=[1]1=
A

.

I---

1:1 4n
F1 Help FZ Save F3 Open Alt-F9 Compile F9 Make F10 Menu

i File Edit Search Run Compile Debug Project Options Window Help
[n] NONAMEGO .CPP 1=[1]1=
A

o
— Turbho C++ IDE .

— Learnt to program C here

1:1 4n
F1 Help FZ Save F3 Open Alt-F9 Compile F9 Make F10 Menu

i File Edit Search Run Compile Debug Project Options Window Help
[n] NONAMEGO .CPP 1=[1]1=
A

o
— Turbho C++ IDE .

— Learnt to program C here

— Believed the C language was "perfect & final”

— ... 11ke mountainzs and oceans

1:1 4n
F1 Help FZ Save F3 Open Alt-F9 Compile F9 Make F10 Menu

i File Edit Search Run Compile Debug Project Options Window Help
[n] NONAMEGO .CPP 1=[1]1=
A

o
— Turbho C++ IDE .

— Learnt to program C here

— Believed the C language was "perfect & final”

— ... 11ke mountainzs and oceans

— Grew up and realised neither wast

1:1 4n
F1 Help FZ Save F3 Open Alt-F9 Compile F9 Make F10 Menu

i File Edit Search Run Compile Debug Project Options Window Help
[n] NONAMEGO .CPP 1=[1]1=
A

o
— Turbho C++ IDE .

— Learnt to program C here

— Believed the C language was "perfect & final”

— ...li1ke mountains and oceans
— Grew up and realised neither wast
— This talk 1= about the euvolution of programming languages

— apecifically, OCaml

1:1 4n:

F1 Help FZ Save F3 Open Alt-F9 Compile F9 Make F10 Menu

™ Language

OCaml

e Functional-first but multi-paradigm (imperative, OO)
e Static-type system with Hindley-Milner type inference

': Language e Advanced features — powerful module system, GADTs,
Polymorphic variants

e Multicore support and effect handlers

e Fast, native code— x86, ARM, RISC-V, etc.

e JavaScript and WebAssembly (using WasmGC)
1© Platform compilation
e Platform tools — editor (LSP), build system (dune),
package manager (opam), docs generator (odoc), etc.

OCaml

e Functional-first but multi-paradigm (imperative, OO)
e Static-type system with Hindley-Milner type inference

:_F Language e Advanced features — powerful module system, GADTs,
Polymorphic variants

e Multicore support and effect handlers

e Fast, native code— x86, ARM, RISC-V, etc.

e JavaScript and WebAssembly (using WasmGC)
1© Platform compilation
e Platform tools — editor (LSP), build system (dune),
package manager (opam), docs generator (odoc), etc.

e Opam repository — small but mature package ecosystem

7|
(1]
1l

3 Ecosystem e Notable Industrial users — Jane Street, Meta, Microsoft,
Ahrefs, Citrix, Tezos, Bloomberg, Docker

High dynamic range

From scripts to scalable systems, research
prototypes to production infrastructure

High dynamic range

From scripts to scalable systems, research
prototypes to production infrastructure

Hack

Hack is an object-oriented programming language for building reliable
websites at epic scale

[GET STARTED]

@ ad M
Programming
Language

Compilers

High dynamic range

From scripts to scalable systems, research
prototypes to production infrastructure

hrefs Product v Ourdata Resources~ Pricing Enterprise @ Sign in Sign up

« Hack

= Evolve

Install Docs GitHub Twitter HHVM Blog

Make your business
Hack discoverable—in
Hack is an object-oriented programming language for building reliable Se a PC h) AI) a n d b ey() n d

websites at epic scale

<
+

‘ GET STARTED] _
See what people want, fix what holds you back,

ship what wins, and track your growth—that’s
what a marketing platform should do.

Sign up for Ahrefs Start for Free
The Rust S

Programming

Language _ 22,384 users

joined Ahrefs

in the last 7 days

Compilers Web Frontend

High dynamic range

From scripts to scalable systems, research
prototypes to production infrastructure

Functional Networking for Millions of Docker Desktops
(Experience Report)

ANIL MADHAVAPEDDY, University of Cambridge, United Kingdom
DAVID J. SCOTT, Docker, Inc., United Kingdom

PATRICK FERRIS, University of Cambridge, United Kingdom

RYAN T. GIBB, University of Cambridge, United Kingdom
THOMAS GAZAGNAIRE, Tarides, France

ﬁ' docker

Docker is a developer tool used by millions of developers to build, share and run software stacks. The Docker
Desktop clients for Mac and Windows have long used a novel combination of virtualisation and OCaml
unikernels to seamlessly run Linux containers on these non-Linux hosts. We reflect on a decade of shipping
this functional OCaml code into production across hundreds of millions of developer desktops, and discuss
the lessons learnt from our experiences in integrating OCaml deeply into the container architecture that now
drives much of the global cloud. We conclude by observing just how good a fit for systems programming that
the unikernel approach has been, particularly when combined with the OCaml module and type system.

CCS Concepts: « Software and its engineering — Software system structures; Functional languages; -
Computer systems organization — Cloud computing,.

Virtualisation and Networking

High dynamic range

From scripts to scalable systems, research
prototypes to production infrastructure

Functional Networking for Millions of Docker Desktops
(Experience Report)

ANIL MADHAVAPEDDY, University of Cambridge, United Kingdom
DAVID J. SCOTT, Docker, Inc., United Kingdom

PATRICK FERRIS, University of Cambridge, United Kingdom

RYAN T. GIBB, University of Cambridge, United Kingdom
THOMAS GAZAGNAIRE, Tarides, France

-" docker

Docker is a developer tool used by millions of developers to build, share and run software stacks. The Docker
Desktop clients for Mac and Windows have long used a novel combination of virtualisation and OCaml
unikernels to seamlessly run Linux containers on these non-Linux hosts. We reflect on a decade of shipping
this functional OCaml code into production across hundreds of millions of developer desktops, and discuss
the lessons learnt from our experiences in integrating OCaml deeply into the container architecture that now
drives much of the global cloud. We conclude by observing just how good a fit for systems programming that
the unikernel approach has been, particularly when combined with the OCaml module and type system.

CCS Concepts: « Software and its engineering — Software system structures; Functional languages; -
Computer systems organization — Cloud computing,.

OCamI in Space

Virtualisation and Networking

' L] ([]
- Parsimoni

High dynamic range

From scripts to scalable systems, research
prototypes to production infrastructure

60+M lines of
OCaml code!

@)

Bloomberg

Finance

High dynamic range

From scripts to scalable systems, research
prototypes to production infrastructure

60+M lines of
OCaml code!

HARDCAML

In 2022, we, the team who develops Hardcaml (Andy
Ray, Ben Devlin, Fu Yong Quah, and Rahu
Yesantharao) participated in the ZPrize competition.
We competed in the Multi-Scalar Multiplication (MSM)
and Number Theoretic Transform (NTT) tracks,

winning the MSM FPGA track and coming second in
the NTT track.
Read on to find out more about our submissions and

view the code on github.

Hardware

Finance i
design

“Y2ocCaml

29 years old!

29 years old!

4
Dilwale Dulhania
Le Jayenge

1995 -

29 years old!

4
Dilwale Dulhania
Le Jayenge

1995 Shah Rukh T(r;jaé:

1996 — OCaml 1.0

Object system, low-latency GC, fast
native backend, module system

1973 — Robin Milner’s “ML” for LCF

Type system, type inference

\ 4
1985 — Guy Cousineau & co’s CAML

Categorical abstract machine (CAM) as IR

\
1996 — OCaml 1.0

Object system, low-latency GC, fast
native backend, module system

1973 — Robin Milner’s “ML” for LCF

Type system, type inference

\ 4
1985 — Guy Cousineau & co’s CAML

Categorical abstract machine (CAM) as IR

\
1996 — OCaml 1.0

Object system, low-latency GC, fast
native backend, module system

v

2012 — OCaml 4.0

Generalized Algebraic Data types (GADTSs)

1973 — Robin Milner’s “ML” for LCF

Type system, type inference

\ 4
1985 — Guy Cousineau & co’s CAML

Categorical abstract machine (CAM) as IR

\
1996 — OCaml 1.0

Object system, low-latency GC, fast
native backend, module system

v

2012 — OCaml 4.0

Generalized Algebraic Data types (GADTSs)

\

2022 — OCaml 5.0

Multicore parallelism, effect handlers

1973 — Robin Milner’s “ML” for LCF

Type system, type inference

\ 4
1985 — Guy Cousineau & co’s CAML

Categorical abstract machine (CAM) as IR

v
1996 — OCaml 1.0
Steady evolution Object system, low-latency GC, fast

native backend, module system

over 50+ years 5
v
2012 — OCaml 4.0

Generalized Algebraic Data types (GADTSs)

v
2022 — OCaml 5.0

Multicore parallelism, effect handlers

\
2025

1973 — Robin Milner’s “ML” for LCF

Type system, type inference

\ 4
1985 — Guy Cousineau & co’s CAML

Categorical abstract machine (CAM) as IR

\4

1996 — OCaml 1.0
Steady evolution Object system, low-latency GC, fast

native backend, module system

over 50+ years :

v

2012 — OCaml 4.0 | _
Generalized Algebraic Data types (GADTS) H OW_ to thrive not Jus t
| survive after ~30 years?
v

2022 — OCaml 5.0

Multicore parallelism, effect handlers

\
2025

Simplicity and stability

Simplicity and stability

Xavier Leroy, 2023 SIGPLAN programming languages software award! ¥’

What made that possible? Not just fancy types and nice modules — even though systems
programmers value type safety and modularity highly — but also basic properties of OCamil:

e a language with a simple cost model, where it's easy to track how much time and how
much space is used;

o a compiler that produces efficient code that looks like the source code, with only
predictable optimizations;

e a low-latency garbage collector, usable for soft real-time applications.

Simplicity and stability

Xavier Leroy, 2023 SIGPLAN programming languages software award! ‘Y

What made that possible? Not just fancy types and nice modules — even though systems
programmers value type safety and modularity highly — but also basic properties of OCami:

e a language with a simple cost model, where it's easy to track how much time and how
much space is used;

o a compiler that produces efficient code that looks like the source code, with only
predictable optimizations;

e a low-latency garbage collector, usable for soft real-time applications.

Simplicity and stability

Xavier Leroy, 2023 SIGPLAN programming languages software award! ‘Y

What made that possible? Not just fancy types and nice modules — even though systems
programmers value type safety and modularity highly — but also basic properties of OCaml:

e a language with a simple cost model, where it's easy to track how much time and how
much space is used;

« a compiler that produces efficient code that looks like the source code, with only
predictable optimizations;

e a low-latency garbage collector, usable for soft real-time applications.

Simplicity and stability

Xavier Leroy, 2023 SIGPLAN programming languages software award! ‘Y

What made that possible? Not just fancy types and nice modules — even though systems
programmers value type safety and modularity highly — but also basic properties of OCaml:

e a language with a simple cost model, where it's easy to track how much time and how
much space is used;

« a compiler that produces efficient code that looks like the source code, with only
predictable optimizations;

e a low-latency garbage collector, usable for soft real-time applications.

* |If you take OCaml from 20 years ago, the code will likely continue to work!

Simplicity and stability

Xavier Leroy, 2023 SIGPLAN programming languages software award! ‘Y

What made that possible? Not just fancy types and nice modules — even though systems
programmers value type safety and modularity highly — but also basic properties of OCaml:

e a language with a simple cost model, where it's easy to track how much time and how
much space is used;

o a compiler that produces efficient code that looks like the source code, with only
predictable optimizations;

e a low-latency garbage collector, usable for soft real-time applications.

* |If you take OCaml from 20 years ago, the code will likely continue to work!

 No recent releases for some popular packages

* They are good enough, and continue to be so.

* Nothing to be done to keep it working!

Simplicity &
Stability

Innovation &

Growth

OCaml

Simplicity &
Stability

Innovation &

Growth

OCaml Maintainers

Abigael Richard Eisenberg Nicolas Ojeda Béar
Alain Frisch Jacques-Henri Jourdan Florian Angeletti
Armaél Guéneau KC Sivaramakrishnan Olivier Nicole

Anil Madhavapeddy Frédéric Bour Sadiq Jaffer

Pierre Chambart Leo White Sébastien Hinderer
Damien Doligez Vincent Laviron Stephen Dolan
David Allsopp Luc Maranget Thomas Refis
Jacques Garrigue Mark Shinwell Xavier Leroy
Gabriel Scherer Nick Barnes Jeremy Yallop

27 maintainers from France, UK, Japan, India and USA, across industry and academia.

OCaml Maintainers

Abigael Richard Eisenberg Nicolas Ojeda Béar
Alain Frisch Jacques-Henri Jourdan Florian Angeletti
Armaél Guéneau KC Sivaramakrishnan Olivier Nicole

Anil Madhavapeddy Frédéric Bour Sadiq Jaffer

Pierre Chambart Leo White Sébastien Hinderer
Damien Doligez Vincent Laviron Stephen Dolan
David Allsopp Luc Maranget Thomas Refis
Jacques Garrigue Mark Shinwell Xavier Leroy
Gabriel Scherer Nick Barnes Jeremy Yallop

27 maintainers from France, UK, Japan, India and USA, across industry and academia.

e Custodians of the compiler

 Not the ones deciding how the language should evolve!

Who decides how OCaml evolves?

Who decides how OCaml evolves?

You can!

Who decides how OCaml evolves?

 Evolution
* User-driven: OCaml, Python
 Committee-driven: ISO/IEC evolving C and C++

 Vendor-driven consensus: \WebAssembly

Who decides how OCaml evolves?

* Evolution
* User-driven: OCaml, Python
 Committee-driven: ISO/IEC evolving C and C++
 Vendor-driven consensus: \WebAssembly
 Language and compiler aren’t distinct

« OCaml compiler implementation IS the language.

Who decides how OCaml evolves?

* Evolution
* User-driven: OCaml, Python
 Committee-driven: ISO/IEC evolving C and C++
 Vendor-driven consensus: \WebAssembly
 Language and compiler aren’t distinct
« OCaml compiler implementation IS the language.

* Unlike C, Wasm, JavaScript

/TN

15-Yeo] Search

h v

Information technology —

Read sample

Language

English

Format
O PDF

Q = Menu

ISO/IEC 9899:2024

Information technology — Programming
languages — C

Published (Edition 5, 2024)

ISO/IEC 9899:2024

- w221

Add to cart

Convert Swiss francs (CHF) to your currency

Who decides how OCaml evolves?

* Evolution
* User-driven: OCaml, Python
 Committee-driven: ISO/IEC evolving C and C++
 Vendor-driven consensus: \WebAssembly
 Language and compiler aren’t distinct
« OCaml compiler implementation IS the language.
* Unlike C, Wasm, JavaScript

 [he bar is lower to change the language

/N

15-Yeo] Search

h v

Read sample

Language

English

Format
O PDF

Q = Menu

ISO/IEC 9899:2024

Information technology — Programming
languages — C

Published (Edition 5, 2024)

ISO/IEC 9899:2024

- w221

Add to cart

Convert Swiss francs (CHF) to your currency

Mechanics of evolution
) ccami / oo a 8- +- 0 n "B

« Open process
<> Code () Issues 336 i9 Pull requests 337 0 Discussions () Actions [Projects () Security

M ¥ trunk ~ ocaml / CONTRIBUTING.md [} Q Go to file t

 OCaml compiler is maintained on GitHub

Octachron OCaml Language Committe: description and link v 4db5ac9 - 6 months ago 1)

* All discussions are public in the PRs, Issues and RFCs w1 o oo

. Preview Code Blame S RrRw (0O 2 ~
on GitHub =
How to contribute changes

& First off, thank you for taking time to contribute! £ ..

The following is a set of guidelines for proposing changes to the OCaml distribution. These are just guidelines, not
rules, use your best judgment and feel free to propose changes to this document itself in a pull request.

This document assumes that you have a patch against the sources of the compiler distribution, that you wish to submit
to the OCaml maintainers upstream. See INSTALL.adoc for details on how to build the compiler distribution from
sources. See HACKING.adoc for details on how to modify the sources.

Mechanics of evolution
=) € ocaml / ccar al(8]-][+-][o)(n][]@®

« Open process
<> Code () Issues 336 19 Pull requests 337 C)) Discussions (») Actions [Projects () Security

M ¥ trunk ~ ocaml / CONTRIBUTING.md [} Q Go to file t

 OCaml compiler is maintained on GitHub

Octachron OCaml Language Committe: description and link v 4db5ac9 - 6 months ago (%)

* All discussions are public in the PRs, Issues and RFCs w1 o oo
On GItHUb Preview Code Blame B (rew [0 (7]

How to contribute changes

+ Multi-speed model
u I S ee m O e & First off, thank you for taking time to contribute! & ..

The following is a set of guidelines for proposing changes to the OCaml distribution. These are just guidelines, not
rules, use your best judgment and feel free to propose changes to this document itself in a pull request.

This document assumes that you have a patch against the sources of the compiler distribution, that you wish to submit
to the OCaml maintainers upstream. See INSTALL.adoc for details on how to build the compiler distribution from
sources. See HACKING.adoc for details on how to modify the sources.

Mechanics of evolution

e O
pen proceSS <> Code () Issues 336 i1 Pull requests 337 (1) Discussions

M ¥ trunk ~ ocaml / CONTRIBUTING.md [/

 OCaml compiler is maintained on GitHub

Octachron OCaml Language Committe: description and link v

* All discussions are public in the PRs, Issues and RFCs = oo e
on GitHub ——

How to contribute changes

+ Multi-speed model
u I S ee mo e & First off, thank you for taking time to contribute! & ..

The following is a set of guidelines for proposing changes to the OCaml distribution. These are just guidelines, not
rules, use your best judgment and feel free to propose changes to this document itself in a pull request.

 Small fixes/features — Make an issue (“feature

allal-]|[+-][o[t)a]

() Actions [Projects () Security

Q Go tofile

=
o
eoe

10 see

4db5ac9 - 6 months ago @

S8 raw (0 L

req u eSt ”) y O pe n a P R y d i SC u SS an d g et th at m e rg ed sources. See HACKING.adoc for details on how to modify the sources.

 Every PR needs a maintainer's approval before merging

This document assumes that you have a patch against the sources of the compiler distribution, that you wish to submit
to the OCaml maintainers upstream. See INSTALL.adoc for details on how to build the compiler distribution from

Mechanics of evolution

oca oca v v
« Open process
<> Code () Issues 336 i9 Pull requests 337 0 Discussions () Actions [Projects () Security

M ¥ trunk ~ ocaml / CONTRIBUTING.md [} Q Go to file

 OCaml compiler is maintained on GitHub

Octachron OCaml Language Committe: description and link v 4db5ac9 - 6 months ago 1)

* All discussions are public in the PRs, Issues and RFCs w1 o oo
On GItHUb Preview Code Blame B (rew [0 (7]

How to contribute changes

+ Multi-speed model
u I S ee mo e =& First off, thank you for taking time to contribute! & ..

The following is a set of guidelines for proposing changes to the OCaml distribution. These are just guidelines, not
rules, use your best judgment and feel free to propose changes to this document itself in a pull request.

This document assumes that you have a patch against the sources of the compiler distribution, that you wish to submit

 Small fixes/features = Make an issue (“feature
request”), open a PR, discuss and get that merged e oS it bt oty T ST

 Every PR needs a maintainer's approval before merging
 Large features — Bespoke based on the features

 May need publishing papers, extensive performance
evaluation, formalised/mechanised soundness results, etc.

e Often, presumably small feature requests take a
life of their own!

Added dynamic arrays #9122

G eI LB Mathilde411 wants to merge 1 commit into ocaml:trunk from Mathilde411:trunk [CJ

3 Conversation 12 -0- Commits 1 [Fl Checks o0 Files changed 7

RN
4} L Mathilde411 commented on Nov 15, 2019

Reviewers

o .))) Octachron
Created DynArray Module which implements amortized time complexity dynamic

arrays. +2 more reviewers

0 Drup

thomasblanc

©® # 3

o Added dynamic arrays - 32b86a8 pgsignees

Edit

{>Code ~

+198 -5 HHEN

U d> W

&

A small(?) change — Dynamic Arrays

Opened: Nov 15, 2019, Closed: Nov 15 2019

Implementation rather naive, room for improvements

{>Code ~

Added dynamic arrays #9122 Fait

SNe -l Mathilde411 wants to merge 1 commit into ocaml:trunk from Mathilde41l:trunk [CJ

+198 -5 HHEN

[Fl Checks 0 [+) Files chanaed 7

L) e add Dynarray to the stdlib. #11563

§Ne - c-cube wants to merge 29 commits into ocaml:trunk from c-cube:dyn-array [CJ

(J) Conversation 12 -0- Commits 1

{> Code ~

Created
arrays.
o L) Conversation 92 -0- Commits 29 [l Checks 0 Files changed 10 +792 -1 HEEN
,ﬂ
% c-cube commented on Sep 25, 2022 Member Reviewers X
O / \
i . 0 gasche]
Overview .
+5 more reviewers A
This is a (work in progress) PR to add dynamic arrays ‘ bluddy >
("vectors") to the stdlib. The module name is Dyn_array , . dbuenzli |
which, as some people pointed out, is more correct than
. . ‘ hhugo]
vector . For now the implementation is pure OCaml. |
discussed with @Octachron about ways to implement some silene]
filling functions in C, but | now think it might not be worth it
. . : . o 9admm]
after he pointed out some design constraints newly imposed
by multicore.
Assignees 3

A lot of the APl mimics Array , when it does not change the

) No one—assign yourself
length of the dynamic array.

A small(?) change — Dynamic Arrays

Opened: Nov 15, 2019, Closed: Nov 15 2019

Implementation rather naive, room for improvements

Opened: Sep 25, 2022, Closed: Jan 18, 2023

Clean API, but multicore safety, performance

A small(?) change — Dynamic Arrays

Added dynamic arrays #9122 o - Opened: Nov 15, 2019, Closed: Nov 15 2019

SNe -l Mathilde411 wants to merge 1 commit into ocaml:trunk from Mathilde41l:trunk [CJ

Implementation rather naive, room for improvements

(3 Conversation 12 -0- Commits 1 [Fl Checks 0 [+) Files chanaed 7 +198 -5 HEEN

£y e add Dynarray to the stdlib. #11563 Edit | <> Code ~ Opened: Sep 25, 2022, Closed: Jan 18, 2023

g §Ne - c-cube wants to merge 29 commits into ocaml:trunk from c-cube:dyn-array [CJ
Create

arrays. Clean API, but multicore safety, performance

o L) Conversation 92 -0- Commits 29 [l Checks 0 Files changed 10 +792 -1 HEEN
‘ﬂ

ﬁ Dynarrays, boxed #11882 Edit | <> Code ~ Opened: Jan 11, 2023, Merged: Oct 21, 2023

ol VY-l gasche merged 51 commits into ocaml:trunk from gasche:dyn-array-boxed L';] on Oct 21, 2023

Clean APl and simple implementation

L) Conversation 342 -0- Commits 51 [F) Checks o0 Files changed 1¢ +2,108 -173 NEEE

gasche commented on Jan 11, 2023 -

edited ~ Member = *°* Reviewers 3

@ alainfrisch]

Current status of this PR ™ damiendoligez y

(last updated: September 27th 2023) .» Octachron v

+6 more reviewers A

- .. A ' . ' ' . dbuenzli [

T ———————— T

A small(?) change — Dynamic Arrays

Added dynamic arrays #9122 o - Opened: Nov 15, 2019, Closed: Nov 15 2019

SNe -l Mathilde411 wants to merge 1 commit into ocaml:trunk from Mathilde41l:trunk [CJ

Implementation rather naive, room for improvements

(3 Conversation 12 -0- Commits 1 [Fl Checks 0 [+) Files chanaed 7 +198 -5 HEEN

£y e add Dynarray to the stdlib. #11563 Edit | <> Code ~ Opened: Sep 25, 2022, Closed: Jan 18, 2023

§Ne - c-cube wants to merge 29 commits into ocaml:trunk from c-cube:dyn-array [CJ

s i] . Clean API, but multicore safety, performance
O ¥ Y Conversation 92 -O- Commits 29 *» Checks 0 Files changed 10 +792 -1 HNEN
ﬁ Dynarrays, boxed #11882 Edit | <> Code ~ Opened: Jan 11, 2023, Merged: Oct 21, 2023

ol VY-l gasche merged 51 commits into ocaml:trunk from gasche:dyn-array-boxed L';] on Oct 21, 2023

Clean APl and simple implementation

Opened: Jan 5, 2024, Merged: May 2, 2024

Edit {>Code ~

C
G Dynarrays, unboxed (with local dummies)

#12885
Clean API and optimised implementation

gasche merged 9 commits into ocaml:trunk from gasche:dynarray-unboxed-dummy (53 on May 2, 2024

L) Conversation 53 -0- Commits 9 [l Checks o0 Fileschanged 6 +455-235 NNEN
| T—
gasche commented on Jan 5, 2024 -
: Member = *°* Reviewers £33
edited ~

£5h

Dynamic Arrays

Added dynamic arrays #9122

SRS - Mathilde411 wants to merge 1 commit into ocaml:trunk from Mathilde41l:trunk [CJ

L) Conversation 12 -0- Commits 1 [l Checks o0 Files changed 7

Mathilde411 commented on Nov 15, 2019

Reviewers

Octachron
Created DynArray Module which implements amortized time complexity dynamic -

+2 more reviewers

0 Drup

thomasblanc

arrays.

©® # 3

-O- Added dynamic arrays 32b86a8

Assignees

Edit

{>Code ~

+198 -5 HHEN

e Summary

* Proposed — Nov 2019, Merged — (PR
Jan 2024; (PR#2) May 2024

* Initially — 198 loc, finally — ~2500 loc

e 500+ comments in the various PRs

[+ &

>

U

Dynarrays, unboxed (with local dummies)
#12885

f~ Merged

gasche merged 9 commits into ocaml:trunk from gasche:dynarray-unboxed-dummy (5Jon May 2, 2024

L3 Conversation 53

-0- Commits 9) Checks o

gasche commented on Jan 5, 2024 -
edited ~

Member

We recently merged Dynarray in the stdlib (yay! #11882),
with the caveat that its implementation is 'boxed’, it uses a
representation similar to 'a option array to safely
represent 'empty' values without leaking user data.

#11882 started its life as an attempt to un-block @c-cube's
#11563, the previous proposal for Dynarray in the stdlib,
which used an 'unboxed' representation. The PR discussion
had ground to a halt because we disagreed on how which
unsafe tricks to use to implement this unboxed approach.

Files changed 6

Reviewers

ﬁ OlivierNicole

+2 more reviewers

@ c-cube

yannl35133

Assignees

No one—assign yourself

Edit < > Code v

+455 -235 IHENE

3
v

d U

Dynamic Arrays

Added dynamic arrays #9122

SRS - Mathilde411 wants to merge 1 commit into ocaml:trunk from Mathilde41l:trunk [CJ

L Conversation 12 -o- Commits 1 [l Checks o0 Files changed 7

& Mathilde411 commented on Nov 15, 2019

Reviewers

o)))) _y Octachron
Created DynArray Module which implements amortized time complexity dynamic

arrays.

©® # 3

+2 more reviewers

0 Drup

thomasblanc

o Added dynamic arrays 32b86a8 Agsignees

e Summary

* Proposed — Nov 2019, Merged — (PR
Jan 2024; (PR#2) May 2024

* Initially — 198 loc, finally — ~2500 loc

e 500+ comments in the various PRs

Edit

{>Code ~

+198 -5 HIHEE

1)

[+ &

>

U U

Dynarrays, unboxed (with local dummies)
#12885

gasche merged 9 commits into ocaml:trunk from gasche:dynarray-unboxed-dummy (5Jon May 2, 2024

Edit <> Code ~

€3 Conversation 53 -0- Commits 9) Checks o Files changed 6 +455-235 EEEE
‘ gasche commented on Jan 5, 2024 - —
emper e i
edited Reviewers R
e OlivierNicole v

We recently merged Dynarray in the stdlib (yay! #11882),)

. . . . ~ +2 more reviewers A
with the caveat that its implementation is 'boxed’, it uses a
representation similar to 'a option array to safely % c-cube]
represent 'empty' values without leaking user data. yanni35133 .
#11882 started its life as an attempt to un-block @c-cube's
#11563, the previous proposal for Dynarray in the stdlib, Assignees £33
which used an 'unboxed' representation. The PR discussion No one—assign yourself
had ground to a halt because we disagreed on how which
unsafe tricks to use to implement this unboxed approach. .

Worth it?

* Yes! Should work for the next couple of
decades.

 Harder to undo changes after the
release.

A large change — Multicore OCaml

* Native support for concurrency and parallelism to OCaml

Concurrency Parallelism

Time Time

C
JA I
C

Interleaved Simultaneous
execution execution

Effect Handlers Domains

Challenges

Challenges

* A new multicore garbage collector and multicore runtime system

® Replacing a car engine with a new one!

Challenges

* A new multicore garbage collector and multicore runtime system

® Replacing a car engine with a new one!

 Make the language itself thread-safe

« OCamlis a safe language! (Unlike C/C++, Go)

Challenges

* A new multicore garbage collector and multicore runtime system

® Replacing a car engine with a new one!

 Make the language itself thread-safe

« OCamlis a safe language! (Unlike C/C++, Go)

 Maintain feature and performance backwards compatibility!

 Most OCaml programs will continue to remain single-threaded

Challenges

* A new multicore garbage collector and multicore runtime system

® Replacing a car engine with a new one!

 Make the language itself thread-safe

« OCamlis a safe language! (Unlike C/C++, Go)

 Maintain feature and performance backwards compatibility!

 Most OCaml programs will continue to remain single-threaded

Build credibility by publishing key results and rigorous evaluation

Starting out

Multicore OCaml

Stephen Dolan

Currently, threading is supported in OCaml only
by means of a global lock, allowing at most thread
to run OCaml code at any time. We present ongo-
ing work to design and implement an OCaml runtime
capable of shared-memory parallelism.

1 Introduction

Adding shared-memory parallelism to an existing lan-

Leo White

Anil Madhavapeddy

all objects reachable from it to be promoted to the
shared heap en masse. Unfortunately this eagerly
promotes many objects that were never really shared:
just because an object is pointed to by a shared object
does not mean another thread is actually going to
attempt to access it.

Our design is similar but lazier, along the lines of

the multicore Haskell work [2], where objects are pro-
moted to the shared hean whenever annther thread

OCaml Workshop 2014

Starting out

Multicore OCaml

Stephen Dolan

Currently, threading is supported in OCaml only
by means of a global lock, allowing at most thread
to run OCaml code at any time. We present ongo-
ing work to design and implement an OCaml runtime
capable of shared-memory parallelism.

1 Introduction

Adding shared-memory parallelism to an existing lan-

Leo White

Anil Madhavapeddy

all objects reachable from it to be promoted to the
shared heap en masse. Unfortunately this eagerly
promotes many objects that were never really shared:
just because an object is pointed to by a shared object
does not mean another thread is actually going to
attempt to access it.

Our design is similar but lazier, along the lines of

the multicore Haskell work [2], where objects are pro-
moted to the shared hean whenever annther thread

OCaml Workshop 2014

Upstream
OCaml

Starting out

Multicore OCaml

Stephen Dolan

Currently, threading is supported in OCaml only
by means of a global lock, allowing at most thread
to run OCaml code at any time. We present ongo-
ing work to design and implement an OCaml runtime
capable of shared-memory parallelism.

1 Introduction

Adding shared-memory parallelism to an existing lan-

Leo White

Anil Madhavapeddy

all objects reachable from it to be promoted to the
shared heap en masse. Unfortunately this eagerly
promotes many objects that were never really shared:
just because an object is pointed to by a shared object
does not mean another thread is actually going to
attempt to access it.

Our design is similar but lazier, along the lines of

the multicore Haskell work [2], where objects are pro-
moted to the shared hean whenever annther thread

OCaml Workshop 2014

Upstream
OCaml

Multicore
OCaml

Starting out

Multicore OCaml

Stephen Dolan

Currently, threading is supported in OCaml only
by means of a global lock, allowing at most thread
to run OCaml code at any time. We present ongo-
ing work to design and implement an OCaml runtime
capable of shared-memory parallelism.

1 Introduction

Adding shared-memory parallelism to an existing lan-

Leo White

Anil Madhavapeddy

all objects reachable from it to be promoted to the
shared heap en masse. Unfortunately this eagerly
promotes many objects that were never really shared:
just because an object is pointed to by a shared object
does not mean another thread is actually going to
attempt to access it.

Our design is similar but lazier, along the lines of

the multicore Haskell work [2], where objects are pro-
moted to the shared hean whenever annther thread

OCaml Workshop 2014

Upstream
OCaml

Multicore
OCaml

Starting out

Multicore OCaml

Stephen Dolan

Currently, threading is supported in OCaml only
by means of a global lock, allowing at most thread
to run OCaml code at any time. We present ongo-
ing work to design and implement an OCaml runtime
capable of shared-memory parallelism.

1 Introduction

Adding shared-memory parallelism to an existing lan-

Leo White

Anil Madhavapeddy

all objects reachable from it to be promoted to the
shared heap en masse. Unfortunately this eagerly
promotes many objects that were never really shared:
just because an object is pointed to by a shared object
does not mean another thread is actually going to
attempt to access it.

Our design is similar but lazier, along the lines of

the multicore Haskell work [2], where objects are pro-
moted to the shared hean whenever annther thread

OCaml Workshop 2014

Upstream
OCaml

Multicore
OCaml

Building confidence — Papers

Relaxed Memory OCa

Model

Multicore GC and
runtime system
Retrofitting Parallelism onto OCaml _
KC -
STt Bounding Data Races in Space and Time
LE
SAI (Extended version, with appendices)
TOI
AN o) Retrofitting Effect Handlers onto OCaml
SU!
/. Abstrac KC Sivaramakrishnan Stephen Dolan Leo White
AN| We propos IIT Madras OCaml Labs Jane Street
programs t Chennai, India Cambridge, UK London, UK
OCa of data rac kcsrk@cse.iitm.ac.in stephen.dolan@cl.cam.ac.uk leo@lpw25.net
antees tha Tom Kelly Sadiq Jaffer Anil Madhavapeddy
rr;emory lparauel pH OCaml Labs Opsian and OCaml Labs University of Cambridge and OCaml Labs
- - - -1 Cambridge, UK Cambridge, UK Cambridge, UK
tom.kelly@cantab.net sadig@toao.com avsm2@cl.cam.ac.uk
Abstract 1 Introduction
Effect handlers have been gathering momentum as a mech- Effect handlers [45] provide a modular foundation for user-
anism for modular programming with user-defined effects. defined effects. The key idea is to separate the definition of
Concurrency " — | | | ' —_—
story

Peer-reviewed ideas build confidence

Diving deeper — Concurrency

Retrofitting Effect Handlers onto OCaml

KC Sivaramakrishnan Stephen Dolan Leo White
IIT Madras OCaml Labs Jane Street
Chennai, India Cambridge, UK London, UK

kcsrk@cse.iitm.ac.in stephen.dolan@cl.cam.ac.uk leo@lpw25.net

Tom Kelly Sadiq Jaffer Anil Madhavapeddy
OCaml Labs Opsian and OCaml Labs University of Cambridge and OCaml Labs
Cambridge, UK Cambridge, UK Cambridge, UK

tom.kelly@cantab.net sadig@toao.com avsm2@cl.cam.ac.uk

Abstract 1 Introduction

Effect handlers have been gathering momentum as a mech- Effect handlers [45] provide a modular foundation for user-
anism for modular programming with user-defined effects. defined effects. The key idea is to separate the definition of

—m « 1 1 11 ad 1 1 . 1N 1 . «1 fa «r~1 . . 1 1

Interleaved

Time

Concurrent Programming

e Computations may be suspended and resumed later

Concurrent Programming

e Computations may be suspended and resumed later

* Many languages provide concurrent programming mechanisms as primitives

+ async/await — JavaScript, Python, Rust, C# 5.0, F#, Swift, ...

+ generators — Python, Javascript, ...
+ coroutines — C++, Kotlin, Lua, ...
+ futures & promises — JavaScript, Swift, ...

+ Lightweight threads/processes — Haskell, Go, Erlang

Concurrent Programming

e Computations may be suspended and resumed later

* Many languages provide concurrent programming mechanisms as primitives

+ async/await — JavaScript, Python, Rust, C# 5.0, F#, Swift, ...

+ generators — Python, Javascript, ...
+ coroutines — C++, Kotlin, Lua, ...
+ futures & promises — JavaScript, Swift, ...

+ Lightweight threads/processes — Haskell, Go, Erlang

® Often include many different primitives in the same language!

+ JavaScript has async/await, generators, promises, and callbacks

Don’t want a zoo of primitives but
want expressivity

Don’t want a zoo of primitives but
want expressivity

What'’s the smallest primitive that
expresses many concurrency patterns?

Effect handlers

e A mechanism for programming with user-defined effects

Effect handlers

e A mechanism for programming with user-defined effects

e Modular and composable basis of hon-local control-flow mechanisms

+ Exceptions, generators, lightweight threads, promises, asynchronous |O, coroutines as /ibraries

Effect handlers

e A mechanism for programming with user-defined effects

e Modular and composable basis of hon-local control-flow mechanisms

+ Exceptions, generators, lightweight threads, promises, asynchronous |O, coroutines as /ibraries

e Effect handlers ~= first-class, restartable exceptions

+ Structured programming with delimited continuations

Effect handlers

e A mechanism for programming with user-defined effects

e Modular and composable basis of hon-local control-flow mechanisms

+ EXxceptions, generators, lightweight threads, promises, asynchronous |O, coroutines as /ibraries

e Effect handlers ~= first-class, restartable exceptions

+ Structured programming with delimited continuations

E .E:l'- E ® Direct-style asynchronous I/0

°s github.com/ocaml-multicorefeff... % Y

°
— O ocaml-multicore / effects-examples Q A Q
® Generators
<> Code () Issues 4 {9 Pullrequests () Actions [Projects [Wiki
® Resumable parsers
®© ¥
Examples to illustrate the use of algebraic effects in Multicore OCaml . PrObabIIIStIC PrOgrammlng
53 ISC license .
v 444 stars % 35forks <®© 14 watching ¥ 2Branches © 1Tag A Activity . ReaCtlve UIS

(=) Custom properties
@ Public repository

Effect handlers

type _ eff += E : string eff

let comp () =
print_string "0 ";
print_string (perform E);
print_string "3 "

let main () =
try
comp ()
with effect E, k —
print_string "1 ";
continue k "2 ";
print_string "4 "

Effect handlers

effect declaration

type _ eff += E : string eff

/

let comp () =
print_string "0 ";
print_string (perform E);
print_string "3 "

let main () =
try
comp ()
with effect E, k —>
print_string "1 ";
continue k "2 ";
print_string "4 "

Effect handlers

effect declaration

type _ eff += E : string eff

/

let comp () =
print_string "0 ";
print_string (perform E);
print_string "3 "

let main () = .
try computation
comp ()”””’—*
with effect E, k —>
print_string "1 ";
continue k "2 ";
print_string "4 "

Effect handlers

type _ eff += E : string eff

/

effect declaration let comp () =
print_string "0 ";
print_string (perform E);
print_string "3 "

let main () = |
try computation
o 07
with effect E, k —>
print_string "1 “;
continue k "2 ';
print_string "4 "

____y handler

Effect handlers

type _ eff += E : string eff

/

. 4 suspends current
effect declaration let comp () = P

computation
print_string "0 "; _— P
print_string (perform E);
print_string "3 "

let main () = |
try computation
o 07
with effect E, k —>
print_string "1 “;
continue k "2 ";
print_string "4 "

____y handler

Effect handlers

type _ eff += E : string eff

/

. 4 suspends current
effect declaration let comp () = P

computation
print_string "0 "; _— P
print_string (perform E);
print_string "3 "

let main () =

try ’/””,,.conunnaﬂon

comp () - — delimited continuation
with effect E, k —>

print_string "1 ";

continue k "2 ";

print_string "4 "

____y handler

Effect handlers

type _ eff += E : string eff

/

. 4 suspends current
effect declaration let comp () = P

computation
print_string "0 "; _— >
print_string (perform E);
print_string "3 "

let main () =

try /””’,,,conunnaﬂon

comp () - — delimited continuation
with effect E, k —>
print_string "1 ";
continue K :
«— print_string "4 "
resume suspended
computation

____y handler

Stepping through the example

type 'a eff += E : string eff

let comp () =
print_string "0 ";
print_string (perform E);
print_string "3 "

let main () =
pPC —— try
comp ()
with effect E, k —>
print_string "1 ",
continue k "2 '";
print_string "4 "

Stepping through the example

type 'a eff += E : string eff

let comp () =
print_string "0 ";
print_string (perform E);
print_string "3 "

let main () =
try
DC —» comp ()
with effect E, k —>
print_string "1 ",
continue k "2 '";
print_string "4 "

Stepping through the example

parent
type 'a eff += E : string eff

let comp () =
print_string "0 ";
print_string (perform E);
print_string "3 "

let main () =
try
PC —» comp ()
with effect E, k —>
print_string "1 ",
continue k "2 '";
print_string "4 "

Stepping through the example

parent
type 'a eff += E : string eff

let comp () =
print_string "0 ";
pC—> print_string (perform E);

print_string "3 "

let main () =
try
comp ()
with effect E, k —>
print_string "1 ",
continue k "2 '";
print_string "4 "

Sp—

Stepping through the example

type 'a eff += E : string eff

let comp () =
print_string "0 ";
pC—> print_string (perform E);
print_string "3 "
let main () = :
try .f

with effect E, k —>
print_string "1 ",
continue k "2 '";
print_string "4 "

Stepping through the example

type 'a eff += E : string eff

let comp () =
print_string "0 ";
pC—> print_string (perform E);

print_string "3 "

let main () =
try
comp ()
with effect E, k —>
print_string "1 ",
continue k "2 '";
print_string "4 "

Stepping through the example

type 'a eff += E : string eff

let comp () =
print_string "0 ";
print_string (perform E);
print_string "3 "

let main () =
try
comp ()
with effect E, k —>
PC—» print_string "1 ",
continue k "2 '";
print_string "4 "

Stepping through the example

type 'a eff += E : string eff

let comp () =
print_string "0 ";
print_string (perform E);
print_string "3 "

let main () =
try
comp ()
with effect E, k —>
print_string "1 ",
nC—» continue k "2 '";
print_string "4 "

Stepping through the example

type 'a eff += E : string eff

let comp () =
print_string "0 ";
print_string (perform E);
print_string "3 "

let main () =
try
comp ()
with effect E, k —>
print_string "1 ",
nC—» continue k "2 ';
print_string "4 "

Stepping through the example

parent

type 'a eff += E : string eff

let comp () =
print_string "0 ";
print_string (perform E);
print_string "3 "

let main () =
try
comp ()
with effect E, k —>
print_string "1 ",
nC—» continue k "2 '";
print_string "4 "

Stepping through the example

parent

type 'a eff += E : string eff

let comp () =
print_string "0 ";
print_string (perform E);
PC—— print_string "3 "

let main () =
try
comp ()
with effect E, k —>
print_string "1 ",
continue k "2 '";
print_string "4 "

ol 12

Stepping through the example

type 'a eff += E : string eff

let comp () =
print_string "0 ";
print_string (perform E);
print_string "3 "

let main () =
try
comp ()
with effect E, k —>
print_string "1 ",
continue k "2 '";
print_string "4 "

O HEE

pPC —

Stepping through the example

type 'a eff += E : string eff

let comp () =
print_string "0 ";
print_string (perform E);
print_string "3 "

let main () =
try
comp ()
with effect E, k —>
print_string "1 ",
continue k "2 '";
print_string "4 "

of1j> sl 4

pPC —

Lightweight threading

type _ eff += Fork : (unit —> unit) —> unit eff
| Yield : unit eff

Lightweight threading

Effect Handler

type _ eff += Fork : (unit —> unit) —> unit eff

| Yield : unit eff

let run mailn =

|
|

(x assume queue of continuations x)

let run_next () =

match dequeue () with

| Some k —> continue k ()

| None —> ()
in
let rec spawn f =

match f () with
() —> run_next () (x value case x)
effect Yield, k —> enqueue k; run_next ()
effect (Fork f), k —> enqueue k; spawn f

1n
Sspawn main

Lightweight threading

type _ eff += Fork : (unit —> unit) —> unit eff
| Yield : unit eff

let run main =
(x assume queue of continuations x)
let run_next () =
match dequeue () with
| Some k —> continue k ()
| None —> ()
1n
let rec spawn f =
match f () with
[() —> run_next () (x value case x)
Effect Handler l

effect Yield, k —> enqueue k; run_next ()
effect (Fork f), k —> enqueue k; spawn f

1n
Sspawn main

let fork f = perform (Fork f)
let yield () = perform Yield

Lightweight threading

let main () =
fork (fun _ —>

print_endline "

yield ();
print_endline
fork (fun _ —>

print_endline "

yield ();
print_endline

BN
r’

run main

llzl

aII

II1. bll

aII

bll

Lightweight threading

let main () =
fork (fun _ —>

print_endline "

yield ();
print_endline
fork (fun _ —>

print_endline "

yield ();
print_endline

BN
r’

run main

N R N =
o T O Q

llzl

aII

II1. bll

aII

bll

Lightweight threading

let main () =

fork (fun -
print_endline "1.a",
yield ();
print_endline "1.b");

fork (fun _ —
print_endline "2.a",
yield ();

print_endline “2.b")

run main

User-code need not be

aware of effects

N PN -
o T O Q

Lightweight threading

let main () =

fork (fun _ —>
print_endline "1l.a",;
yield ();
print_endline "1.b");

fork (fun _ —>
print_endline "2.a",;
yield ();

print_endline “2.b")

BN
r’

run main

User-code need not be

aware of effects

N PN -
o T O Q

Industrial-strength concurrency

* eio: effects-based direct-style |/O

+ Multiple backends — epoll, select, io_uring (new async io in Linux kernel)

C

arks

2% github.com/ocaml-multicore/eio

Q Convertor @ Department of Co... O https://github.com... [Model Checking m ICSR Projects Page @ Log book [Reason

[0J README & Code of conduct 2[5 License V4

API reference | #eio Matrix chat | Dev meetings

Eio — Effects-Based Parallel IO for OCamil

Eio provides an effects-based direct-style 10 stack for OCaml 5. For example, you can use Eio to read and write
files, make network connections, or perform CPU-intensive calculations, running multiple operations at the same
time. It aims to be easy to use, secure, well documented, and fast. A generic cross-platform API is implemented by
optimised backends for different platforms. Eio replaces existing concurrency libraries such as Lwt (Eio and Lwt
libraries can also be used together).

https://github.com/ocaml-multicore/eio

mirage

https://github.com/ocaml-multicore/eio

* eio: effects-based direct-style |/O

Industrial-strength concurrency

+ Multiple backends — epoll, select, io_uring (new async io in Linux kernel)

200000 4 — httpaf_eic
httpaf Iwt

175000 1 httpaf effects

rust_hyper

100000 +

75000 -

150000 4 — COhttD_th_Uan P -

serviced requests/second

50000 -

25000 -

0 5

|

OCaml eio

———— Rust Hyper

OCaml (Http/af + Lwt)

Go NetHttp
OCaml (cohttp + Lwt)

0 50000 100000 150000 200000250000 300000 350000400000
load requests/second

100 open connections, 60 seconds w/ io_uring

https://github.com/ocaml-multicore/eio

https://github.com/ocaml-multicore/eio

Unexpected uses

e Hardware simulations for HardCaml

— @ Jane Street Blog Q

Algebraic effects were originally added to
OCaml for general-purpose concurrent
execution of programs for OCaml 5, which
supports thread-level parallelism. The fact
that they can be repurposed for Hardcaml
simulations speaks to how well-thought-out
and general a language feature this is.

| am writing this post as someone who is nota
type-theory expert. The fact that | can use
algebraic effects without fully understanding
the underlying mechanics is one nice feature
of their design.

https://blog.janestreet.com/fun-with-algebraic-effects-hardcaml/

https://blog.janestreet.com/fun-with-algebraic-effects-hardcaml/

Further reading

Control structures in programming languages:
from goto to algebraic effects

Xavier Leroy

This book is a journey through the design space and history of programming languages from the perspective of control structures: the language
mechanisms that enable programs to control their execution flows. Starting with the “goto” jumps of early programming languages and the
emergence of structured programming in the 1960s, the book explores advanced control structures for imperative languages such as generators and
coroutines, then develops alternate views of control in functional languages, first as continuations and their control operators, then as algebraic
effects and effect handlers. Blending history, code examples, and theory, the book offers an original, comparative perspective on programming
languages, as well as an extensive introduction to algebraic effects and other contemporary research topics in P.L.

Publication history

To be published by Cambridge University Press.

Book preview

This is an HTML preview of the book, generated with Hevea. License: CC-BY-NC-ND 4.0.

e Table of contents
e |ntroduction

https://xavierleroy.org/control-structures/

Building confidence — Benchmarking

 Rigorous, continuous benchmarking on

« sandmark.tarides.com — Benchmark suite, Infra and runners

Sequential Benchmarks

Select variants

Number of variants

2

Find Benchmark By

date

5.4.0+trunk+sequential v 20250129

date

5.4.0+trunk+vanilla+sequential - 20250117

Benchmarks Selected

250129_001002 aa09cae9843f33ce491067b2c0618aa22499fdde 5.4.0+trunk+sequential_l.orun.summary.bench

1 turing 20250117_052119 b5420186c75d3720e6fc9e884622a31a8e1598¢e2 5.4.0+trunk+vanilla+sequential_l.orun.summary.bench

Select baseline (for normalized graphs)

‘LT‘,‘,“‘ f.‘.,“_,_flk-_l‘,_f'f—,‘fTlfflf‘;!‘ffvf‘_f?_* : _*‘-‘-L*Tll-~ L—\J——,— T—

T e & ¢ F OB

http://sandmark.tarides.com

Building confidence — CI for package universe

e Can the new compiler build the existing universe?

* Build the OPAM universe of packages against upstream and multicore compilers

Building confidence — CI for package universe

e Can the new compiler build the existing universe?

* Build the OPAM universe of packages against upstream and multicore compilers

number
4.14 5.0+alpha-repo of
revdeps
[Oinstall .2.18 | 1
BetterErrors.0.0.1 | 7
TCSLib.0.3 | 1
absolute 0.1 | 0
advi.2.0.0 0
aez.0.3 0
ahrocksdb.0.2.2 0
hioc003 @ 0|
alt-ergo-free220 | @ 7
amgp-client-async.2.2.2 | x 0
amgp-client-lwt.2.2.2 | 0
ancient.0.9.1 | 0
apron.v(0.9.13 @ X 17

Building confidence — CI for package universe

e Can the new compiler build the existing universe?

* Build the OPAM universe of packages against upstream and multicore compilers

numbe
4.14 5.0+alpha-repo of
evdep
[Oinstall .2.18 | 1
BetterErrors.0.0.1 |
TCSLib.0.3 4
absolute 0.1
acgtk.1.5.3
advi.2.0.0
aez.0.3 |
ahrocksdb.0.2.2
hioc003
alt-ergo-free220] @ 7
amgp-client-async.2.2.2 | 0
amgp-client-lwt.2.2.2 4 0
ancient.0.9.1 | 0
apron.v0.9.13 @4 X 17

You can contribute to the compiler
development without hacking on the compiler

Opened — Dec 2021, Merged — Jan 2022

oAfew months of iteration to fix design
Issues and bugs....

Release and Long Tail

Multicore OCaml #1083

)oY - xavierleroy merged 4,103 commits into ocaml:trunk from ocaml-multicore:multicore-pr (0 on Jan 10, 2022

L) Conversation 393 -0- Commits 250 [l Checks o0 Files changed 300+

%,

kayceesrk commented on Dec 21, 2021 - edited ~ Member

This PR adds support for shared-memory parallelism through domains and direct-
style concurrency through effect handlers (without syntactic support). It intends to
have backwards compatibility in terms of language features, C API, and also the
performance of single-threaded code.

For users

If you want to learn more about Multicore OCaml, please have a look at the multicore

Reviewers

@y abbysmal

@ xavierleroy

" damiendoligez

33 dra?27

Edit

{> Code ~

+22,955 -14,062 EEENE

Jd JUJdddde

Release and Long Tail

e Opened — Dec 2021, Merged — Jan 2022

oAfew months of iteration to fix design
Issues and bugs....

e Released — Dec 16 2022, as OCaml 5.0

Two roads diverged in a wood,'and*Ij;“ ‘

— I took the one less traveled by
+ T took both in parallel because

OCaml supports multicore,

And that has made all the difference; F

Release and Long Tail

e Opened — Dec 2021, Merged — Jan 2022

oAfew months of iteration to fix design
Issues and bugs....

e Released — Dec 16 2022, as OCaml 5.0

 Long tail of adding missing features, bug fixes
and performance improvements

. 5.1 — Sep 2023
. 5.2 — May 2024
. 5.3 — Jan 2025
. 5.4 — Sep 2025

Two roads diverged in a wood, and I —

- I took the one less traveled by,

,,,,,,,,,

i

+ I took both in paralle

B

"‘h '] i
f 4 ‘v «‘.kvﬁjo. {,]
because

OCaml supports multicore,

And that has made all the differenceg"

What’s next for OCaml?

« OxCaml — Bridging the performance and safety gap 0xCaml ©) sanestreet
between OCaml and Rust

About Documentation Get OxCaml

» Data-race-free parallelism through modes

» Better control over object layout, allocations and GC

OxCaml

OxCaml is a fast-moving set of extensions to the OCaml
programming language.

It is both Jane Street’s production compiler, as well as a laboratory for experiments focused towards
making OCaml better for performance-oriented programming. Our hope is that these extensions can
over time be contributed to upstream OCaml.

https://oxcaml.org

https://oxcaml.check.ci.dev/
https://oxcaml.org

What’s next for OCaml?

OxCaml — Bridging the performance and safety gap 0xCaml (©) sane steet
between Ocaml and RUSt About Documentation Get OxCaml

» Data-race-free parallelism through modes

» Better control over object layout, allocations and GC

Draws lessons from Multicore OCaml execution

OxCaml

o Several award_WInnlng papers a-t POPL, ICFF), OOPSLA OxCaml is a fast-moving set of extensions to the OCaml

programming language.

It is both Jane Street’s production compiler, as well as a laboratory for experiments focused towards
making OCaml better for performance-oriented programming. Our hope is that these extensions can

 Cl for the external universe — https://oxcaml.check.ci.dev/

https://oxcaml.org

https://oxcaml.check.ci.dev/
https://oxcaml.org

What’s next for OCaml?

« OxCaml — Bridging the performance and safety gap 0xCaml ©) sanestreet
between Ocaml and RUSt About Documentation Get OxCaml

» Data-race-free parallelism through modes

» Better control over object layout, allocations and GC

e Draws lessons from Multicore OCaml execution

OxCaml

o Several award_WInnlng papers a-t POPL, ICFF), OOPSLA OxCaml is a fast-moving set of extensions to the OCaml

programming language.

It is both Jane Street’s production compiler, as well as a laboratory for experiments focused towards
making OCaml better for performance-oriented programming. Our hope is that these extensions can

 Cl for the external universe — https://oxcaml.check.ci.dev/

« But different in other ways...
https://oxcaml.org

* |n production at Jane Street

* Valuable user-feedback-oriented design

https://oxcaml.check.ci.dev/
https://oxcaml.org

CS6868 Concurrent Programming

CS6868 Spring 2026 Schedule Assignments Resources GitHub

TR

Photo © Madras Inherited

CS6868: Concurrent Programming

| Course Overview

This course explores the fundamentals of concurrent and parallel programming with a focus on shared-memory
multiprocessor systems. You'll learn to design and implement correct, efficient concurrent programs while understanding the
theoretical foundations and practical challenges of concurrency and parallelism.

Key Topics:

e Principles of concurrent programming

e Mutual exclusion and synchronization

» Concurrent data structures

* Lock-free and wait-free algorithms

e Memory models and consistency

e Parallel programming patterns

e Effect handlers

e Nested parallelism, Asynchronous I/0

e Practical implementations using OCaml 5's multicore features
e Safe parallel programming with OxCaml

The course uses OCaml 5 with native support for parallelism via domains and concurrency via effect handlers, providing hands-
on experience with modern concurrent programming techniques.

https://kcsrk.info/cs6868_s26/

FP Launchpad

Build research and educational capacity for crafting efficient, reliable
and trustworthy software with mathematical guardrails.

FP Launchpad

Build research and educational capacity for crafting efficient, reliable
and trustworthy software with mathematical guardrails.

* Areas: Programming Languages,
Functional Programming, Program
Verification, Hardware Design, FM x Al

* Post-bacc Fellowships |
* |Industrial-strength & open-source

e Summer and winter schools,
Dagstuhl-style research
seminars

Education & > Systems & . Examples: verifiable voting, DPI for
Training Community environmental planning, robust

foundational SW stack
 Compiler Hacking events

Get Involved!

et Involved!

nocaml Learn Tools Packages Community News Play Search OCaml pe Q

square X = X * X
a m val square @ int -> int = < fun >
square 3

- > int = 9
Ocal I II Org . . . # factorial x =
- An industrial-strength functional x <=1 1 x * factorial (x - 1)

val factorial : int -> int = < fun >

programming language with an emphasis # factorial §
on expressiveness and safety - : int = 120

square 120
Install About OCaml

- I int = 74460

/ Try the Playground

http://ocaml.org

Get Involved!

Focaml Learn Tools Packages Community News Play Search OCaml pz Q

ocaml.org

OCaml

An industrial-strength functional
programming language with an emphasis
on expressiveness and safety

Install About OCaml

#

square X = X * X

val square ! int -> int = < fun >
square 3

#

> int = 9

factorial x =
X <=1 1 x * factorial (x - 1)

val factorial : int -> int = < fun >
factorial 5

> int = 128

square 120

: int = 14460

/ Try the Playground

o & ocaml

L /\ Boost Goal 1/20 Boosts >

general
beginners

advanced-help

share

offtopic®®

general General discussions about OCaml. Bridges to #ocaml on libera; please don't post

50+ new messages since 9:55 PM on August 15, 2025

CCBot (APP
<humasect> hmm, i've done this with ocaml - works fine for [soft] realtime with

lukstafi
| did a little googling. | think the live show from ICFP 2024 was based on Haskell

Codeberg.org n
tidal

Uzu language for live coding algorithmic patterns

In OCaml | found: https://github.com/SamueleGiraudo/Bud-Music-Box

78CraintQueDieu

btw, any music live coding platform that uses ocaml? (looking for more motiv;

darklambda: afaik not really but there are some kind of programmable syntheti
and there is the liquid soap infrastructure where you could potentially take som

github.com/savonet/liquidsoap

tvned scrin

OCaml
Discord

http://ocaml.org

Get Involved!

ocaml.org

ocaml.org/outreachy

Focaml Learn Tools Packages Community News Play Search OCaml pz

square X = X * X
a m val square ! int -> int = < fun >
square 3

D int = 9
factorial x =

An industrial-strength functional x <=1 1

Q ® 04
a & ocCaml

L /\ Boost Goal 1/20 Boosts >

©
0]

x * factorial (x - 1)

val factorial : int -> int = < fun >

programming language with an emphasis # factorial §

on expressiveness and safety - :int = 120

Install About OCaml

square 120
- © int = 14466

/ Try the Playground

B ocaml

Community > Outreachy Internships

OCaml Outreachy Internships

#H general
beginners
advanced-help

share
H offtopic®

Outreachy offers internship projects for people subject to systemic
bias and impacted by underrepresentation in the technical industry.
Outreachy internship projects include programming, research,

documentation, data science, and more!

In the past years, different entities from the OCaml community have

been funding Outreachy internships on OCaml projects.

Learn more at Outreachy

general General discussions about OCaml. Bridges to #ocaml on libera; please don't post

50+ new messages since 9:55 PM on August 15, 2025

o CCBot (APP
<humasect> hmm, i've done this with ocaml - works fine for [soft] realtime with

lukstafi
| did a little googling. | think the live show from ICFP 2024 was based on Haskell

Codeberg.org n
tidal
Uzu language for live coding algorithmic patterns
In OCaml | found: https://github.com/SamueleGiraudo/Bud-Music-Box / https:

78CraintQueDieu

btw, any music live coding platform that uses ocaml? (looking for more motiv;

darklambda: afaik not really but there are some kind of programmable syntheti
and there is the liquid soap infrastructure where you could potentially take som

https://github.com/savonet/liquidsoap

avonet/liquidsoap: Liquidsoap is a statically

OCaml
Discord

http://ocaml.org
http://ocaml.org/outreachy

et Involved!

!OCaml Learn Tools Packages Community News Play Search OCaml pz Q eoo

m . OCaml I general General discussions about OCaml. Bridges to #ocaml on libera; please don't post

a 50+ new messages since 9:55 PM on August 15, 2025
L7\ Boost Goal 1/20 Boosts

CCBot (APP
TEO <humasect> hmm, i've done this with ocaml - works fine for [soft] realtime with

square X = X * X lukstafi
‘ a mI val square : int -> int = < fun > | did a little googling. | think the live show from ICFP 2024 was based on Haskell
square 3 rr]
- > int = 9 Codeberg.org n Oca I
ocaml org § let rec factorial x = i
= An industrial-strength functional x <=1 L x * factorial (x - 1)

val factorial : int -> int = < fun >

programming language with an emphasis # factorial §
on expressiveness and safety - : int = 120

Install About OCaml

| |
Uzu language for live coding algorithmic patterns D I S C O rd

In OCaml | found: https://github.com/SamueleGiraudo/Bud-Music-Box
square 120
- : int = 14460

#H general
78CraintQueDieu
beginners . _ _ .
btw, any music live coding platform that uses ocaml? (looking for more motiv;
advanced-help darklambda: afaik not really but there are some kind of programmable syntheti
and there is the liquid soap infrastructure where you could potentially take som

https://github.com/savonet/liquidsoap

/ Try the Playground
GitHub

share . . . |
GitHub - savonet/liquidsoap: Liquidsoap is a statically
+H offtopic®® tvoed scrin

nocaml = O ocaml / ocaml Q @. g

<> Code (©) Issues 336 i1 Pullrequests 337 () Discussions

is:issue state:open label:"good firsti €@ Q O Labels > Milestones w

OCaml Outreachy Internships 1 open @ Closed @ rathor -

Community > Outreachy Internships

Labels ~ Projects ~

Outreachy offers internship projects for people subject to systemic (] ¢ Store source locations in structures and signatures

OCam I Org/OUtreaChy bias and impacted by underrepresentation in the technical industry. :2;1:::71 error-messages good first issue Os g |thu bCO m/ocaml

Outreachy internship projects include programming, research, 412629 - gasche opened on Oct 5, 2023

documentation, data science, and more!
() © Improve error message for unsafe values in nested

In the past years, different entities from the OCaml community have recursive modules - error-messages ~ (feature-wish Ds

- . - d good first issue
been funding Outreachy internships on OCaml projects. 412698 - 2baylin opened on Oct 4. 2023

(] ® Should Printexc.record_backtrace true be

Learnm u h
ea ore at Outreachy inherited by new domains? (feature-wish

(J3

good first issue
#12363 - gasche opened on Jul 8, 2023

http://github.com/ocaml
http://ocaml.org
http://ocaml.org/outreachy

