
IITM CSE Bytes
4th November 2025

Evolving the OCaml
programming language
KC Sivaramakrishnan
kcsrk.info

http://kcsrk.info

• CS Prof at IIT Madras

• Programming languages, formal verification and systems

• A core maintainer of the OCaml programming language

• CTO at Tarides

• Building functional systems using OCaml

• Maintainers of the OCaml compiler and platform tools

Who am I — KC Sivaramakrishnan

- Turbo C++ IDE

- Learnt to program C here

- Turbo C++ IDE

- Learnt to program C here

- Believed the C language was "perfect & final"

- ...like mountains and oceans

- Turbo C++ IDE

- Learnt to program C here

- Believed the C language was "perfect & final"

- ...like mountains and oceans

- Grew up and realised neither was!

- Turbo C++ IDE

- Learnt to program C here

- Believed the C language was "perfect & final"

- ...like mountains and oceans

- Grew up and realised neither was!

- This talk is about the evolution of programming languages

- Specifically, OCaml

• Functional-first but multi-paradigm (imperative, OO)

• Static-type system with Hindley-Milner type inference

• Advanced features — powerful module system, GADTs,
Polymorphic variants

• Multicore support and effect handlers

📜 Language

• Functional-first but multi-paradigm (imperative, OO)

• Static-type system with Hindley-Milner type inference

• Advanced features — powerful module system, GADTs,
Polymorphic variants

• Multicore support and effect handlers

• Fast, native code— x86, ARM, RISC-V, etc.

• JavaScript and WebAssembly (using WasmGC)
compilation

• Platform tools — editor (LSP), build system (dune),
package manager (opam), docs generator (odoc), etc.

📜 Language

⚙ Platform

• Functional-first but multi-paradigm (imperative, OO)

• Static-type system with Hindley-Milner type inference

• Advanced features — powerful module system, GADTs,
Polymorphic variants

• Multicore support and effect handlers

• Opam repository — small but mature package ecosystem

• Notable Industrial users — Jane Street, Meta, Microsoft,
Ahrefs, Citrix, Tezos, Bloomberg, Docker

• Fast, native code— x86, ARM, RISC-V, etc.

• JavaScript and WebAssembly (using WasmGC)
compilation

• Platform tools — editor (LSP), build system (dune),
package manager (opam), docs generator (odoc), etc.

📜 Language

⚙ Platform

🌐 Ecosystem

High dynamic range
From scripts to scalable systems, research

prototypes to production infrastructure

High dynamic range

Compilers

From scripts to scalable systems, research
prototypes to production infrastructure

High dynamic range

Compilers Web Frontend

From scripts to scalable systems, research
prototypes to production infrastructure

High dynamic range

Virtualisation and Networking

From scripts to scalable systems, research
prototypes to production infrastructure

High dynamic range

Virtualisation and Networking

From scripts to scalable systems, research
prototypes to production infrastructure

OCaml in Space 🚀

High dynamic range

Finance

60+M lines of
OCaml code!

From scripts to scalable systems, research
prototypes to production infrastructure

High dynamic range

Finance

60+M lines of
OCaml code!

From scripts to scalable systems, research
prototypes to production infrastructure

Hardware
design

29 years old!

29 years old!

29 years old!

1996 — OCaml 1.0
Object system, low-latency GC, fast

native backend, module system

1996 — OCaml 1.0
Object system, low-latency GC, fast

native backend, module system

1973 — Robin Milner’s “ML” for LCF
Type system, type inference

1985 — Guy Cousineau & co’s CAML
Categorical abstract machine (CAM) as IR

1996 — OCaml 1.0
Object system, low-latency GC, fast

native backend, module system

1973 — Robin Milner’s “ML” for LCF
Type system, type inference

1985 — Guy Cousineau & co’s CAML
Categorical abstract machine (CAM) as IR

2012 — OCaml 4.0
Generalized Algebraic Data types (GADTs)

1996 — OCaml 1.0
Object system, low-latency GC, fast

native backend, module system

1973 — Robin Milner’s “ML” for LCF
Type system, type inference

1985 — Guy Cousineau & co’s CAML
Categorical abstract machine (CAM) as IR

2012 — OCaml 4.0
Generalized Algebraic Data types (GADTs)

2022 — OCaml 5.0
Multicore parallelism, effect handlers

1996 — OCaml 1.0
Object system, low-latency GC, fast

native backend, module system

1973 — Robin Milner’s “ML” for LCF
Type system, type inference

1985 — Guy Cousineau & co’s CAML
Categorical abstract machine (CAM) as IR

2012 — OCaml 4.0
Generalized Algebraic Data types (GADTs)

2022 — OCaml 5.0
Multicore parallelism, effect handlers

2025

Steady evolution
over 50+ years

1996 — OCaml 1.0
Object system, low-latency GC, fast

native backend, module system

1973 — Robin Milner’s “ML” for LCF
Type system, type inference

1985 — Guy Cousineau & co’s CAML
Categorical abstract machine (CAM) as IR

2012 — OCaml 4.0
Generalized Algebraic Data types (GADTs)

2022 — OCaml 5.0
Multicore parallelism, effect handlers

2025

Steady evolution
over 50+ years

How to thrive not just
survive after ~30 years?

Simplicity and stability

Simplicity and stability
Xavier Leroy, 2023 SIGPLAN programming languages software award! 🏆

Simplicity and stability
Xavier Leroy, 2023 SIGPLAN programming languages software award! 🏆

Simplicity and stability
Xavier Leroy, 2023 SIGPLAN programming languages software award! 🏆

• If you take OCaml from 20 years ago, the code will likely continue to work!

Simplicity and stability
Xavier Leroy, 2023 SIGPLAN programming languages software award! 🏆

• If you take OCaml from 20 years ago, the code will likely continue to work!

• No recent releases for some popular packages

• They are good enough, and continue to be so.

• Nothing to be done to keep it working!

Simplicity and stability
Xavier Leroy, 2023 SIGPLAN programming languages software award! 🏆

Simplicity &
Stability

Innovation &
Growth

Simplicity &
Stability

Innovation &
Growth

OCaml

OCaml Maintainers
Abigael

Alain Frisch

Armaël Guéneau

Anil Madhavapeddy

Pierre Chambart

Damien Doligez

David Allsopp

Jacques Garrigue

Gabriel Scherer

Richard Eisenberg

Jacques-Henri Jourdan

KC Sivaramakrishnan

Frédéric Bour

Leo White

Vincent Laviron

Luc Maranget

Mark Shinwell

Nick Barnes

Nicolás Ojeda Bär

Florian Angeletti

Olivier Nicole

Sadiq Jaffer

Sébastien Hinderer

Stephen Dolan

Thomas Refis

Xavier Leroy

Jeremy Yallop

• 27 maintainers from France, UK, Japan, India and USA, across industry and academia.

OCaml Maintainers
Abigael

Alain Frisch

Armaël Guéneau

Anil Madhavapeddy

Pierre Chambart

Damien Doligez

David Allsopp

Jacques Garrigue

Gabriel Scherer

Richard Eisenberg

Jacques-Henri Jourdan

KC Sivaramakrishnan

Frédéric Bour

Leo White

Vincent Laviron

Luc Maranget

Mark Shinwell

Nick Barnes

Nicolás Ojeda Bär

Florian Angeletti

Olivier Nicole

Sadiq Jaffer

Sébastien Hinderer

Stephen Dolan

Thomas Refis

Xavier Leroy

Jeremy Yallop

• 27 maintainers from France, UK, Japan, India and USA, across industry and academia.

• Custodians of the compiler

• Not the ones deciding how the language should evolve!

Who decides how OCaml evolves?

Who decides how OCaml evolves?

You can!

• Evolution

• User-driven: OCaml, Python

• Committee-driven: ISO/IEC evolving C and C++

• Vendor-driven consensus: WebAssembly

Who decides how OCaml evolves?

• Evolution

• User-driven: OCaml, Python

• Committee-driven: ISO/IEC evolving C and C++

• Vendor-driven consensus: WebAssembly

• Language and compiler aren’t distinct

• OCaml compiler implementation IS the language.

Who decides how OCaml evolves?

• Evolution

• User-driven: OCaml, Python

• Committee-driven: ISO/IEC evolving C and C++

• Vendor-driven consensus: WebAssembly

• Language and compiler aren’t distinct

• OCaml compiler implementation IS the language.

• Unlike C, Wasm, JavaScript

Who decides how OCaml evolves?

• Evolution

• User-driven: OCaml, Python

• Committee-driven: ISO/IEC evolving C and C++

• Vendor-driven consensus: WebAssembly

• Language and compiler aren’t distinct

• OCaml compiler implementation IS the language.

• Unlike C, Wasm, JavaScript

• The bar is lower to change the language

Who decides how OCaml evolves?

• Open process

• OCaml compiler is maintained on GitHub

• All discussions are public in the PRs, Issues and RFCs
on GitHub

Mechanics of evolution

• Open process

• OCaml compiler is maintained on GitHub

• All discussions are public in the PRs, Issues and RFCs
on GitHub

• Multi-speed model

Mechanics of evolution

• Open process

• OCaml compiler is maintained on GitHub

• All discussions are public in the PRs, Issues and RFCs
on GitHub

• Multi-speed model

• Small fixes/features → Make an issue (“feature
request”), open a PR, discuss and get that merged

• Every PR needs a maintainer's approval before merging

Mechanics of evolution

• Open process

• OCaml compiler is maintained on GitHub

• All discussions are public in the PRs, Issues and RFCs
on GitHub

• Multi-speed model

• Small fixes/features → Make an issue (“feature
request”), open a PR, discuss and get that merged

• Every PR needs a maintainer's approval before merging

• Large features → Bespoke based on the features

• May need publishing papers, extensive performance
evaluation, formalised/mechanised soundness results, etc.

• Often, presumably small feature requests take a
life of their own!

Mechanics of evolution

A small(?) change — Dynamic Arrays
Opened: Nov 15, 2019, Closed: Nov 15 2019

Implementation rather naive, room for improvements

A small(?) change — Dynamic Arrays
Opened: Nov 15, 2019, Closed: Nov 15 2019

Opened: Sep 25, 2022, Closed: Jan 18, 2023

Clean API, but multicore safety, performance

Implementation rather naive, room for improvements

A small(?) change — Dynamic Arrays
Opened: Nov 15, 2019, Closed: Nov 15 2019

Opened: Sep 25, 2022, Closed: Jan 18, 2023

Clean API, but multicore safety, performance

Implementation rather naive, room for improvements

Opened: Jan 11, 2023, Merged: Oct 21, 2023

Clean API and simple implementation

A small(?) change — Dynamic Arrays
Opened: Nov 15, 2019, Closed: Nov 15 2019

Opened: Sep 25, 2022, Closed: Jan 18, 2023

Clean API, but multicore safety, performance

Implementation rather naive, room for improvements

Opened: Jan 11, 2023, Merged: Oct 21, 2023

Clean API and simple implementation

Opened: Jan 5, 2024, Merged: May 2, 2024

Clean API and optimised implementation

Dynamic Arrays

• Summary

• Proposed — Nov 2019, Merged — (PR#1)
Jan 2024; (PR#2) May 2024

• Initially — 198 loc, finally — ~2500 loc

• 500+ comments in the various PRs

Dynamic Arrays

• Worth it?

• Yes! Should work for the next couple of
decades.

• Harder to undo changes after the
release.

• Summary

• Proposed — Nov 2019, Merged — (PR#1)
Jan 2024; (PR#2) May 2024

• Initially — 198 loc, finally — ~2500 loc

• 500+ comments in the various PRs

• Native support for concurrency and parallelism to OCaml
A large change — Multicore OCaml

Interleaved
execution

A

B

A

C

B

Time

Simultaneous
execution

A
B

C

Time

Concurrency Parallelism

Effect Handlers Domains

Challenges

• A new multicore garbage collector and multicore runtime system

• Replacing a car engine with a new one!

Challenges

• A new multicore garbage collector and multicore runtime system

• Replacing a car engine with a new one!

• Make the language itself thread-safe

• OCaml is a safe language! (Unlike C/C++, Go)

Challenges

• A new multicore garbage collector and multicore runtime system

• Replacing a car engine with a new one!

• Make the language itself thread-safe

• OCaml is a safe language! (Unlike C/C++, Go)

• Maintain feature and performance backwards compatibility!

• Most OCaml programs will continue to remain single-threaded

Challenges

• A new multicore garbage collector and multicore runtime system

• Replacing a car engine with a new one!

• Make the language itself thread-safe

• OCaml is a safe language! (Unlike C/C++, Go)

• Maintain feature and performance backwards compatibility!

• Most OCaml programs will continue to remain single-threaded

Challenges

Build credibility by publishing key results and rigorous evaluation

Starting out

OCaml Workshop 2014

Starting out

OCaml Workshop 2014

Upstream
OCaml

Starting out

OCaml Workshop 2014

fork

Upstream
OCaml

Multicore
OCaml

Starting out

OCaml Workshop 2014

fork

Upstream
OCaml

Multicore
OCaml

downstream

Starting out

OCaml Workshop 2014

fork

Upstream
OCaml

Multicore
OCaml

downstream

upstream

upstream

upstream

Building confidence — Papers

Peer-reviewed ideas build confidence

Multicore GC and
runtime system

Concurrency
story

Relaxed Memory
Model

Interleaved

A

B

A

C

B

Time

Diving deeper — Concurrency

• Computations may be suspended and resumed later

Concurrent Programming

• Computations may be suspended and resumed later

• Many languages provide concurrent programming mechanisms as primitives

✦ async/await — JavaScript, Python, Rust, C# 5.0, F#, Swift, …

✦ generators — Python, Javascript, …

✦ coroutines — C++, Kotlin, Lua, …

✦ futures & promises — JavaScript, Swift, …

✦ Lightweight threads/processes — Haskell, Go, Erlang

Concurrent Programming

• Computations may be suspended and resumed later

• Many languages provide concurrent programming mechanisms as primitives

✦ async/await — JavaScript, Python, Rust, C# 5.0, F#, Swift, …

✦ generators — Python, Javascript, …

✦ coroutines — C++, Kotlin, Lua, …

✦ futures & promises — JavaScript, Swift, …

✦ Lightweight threads/processes — Haskell, Go, Erlang

• Often include many different primitives in the same language!
✦ JavaScript has async/await, generators, promises, and callbacks

Concurrent Programming

Don’t want a zoo of primitives but
want expressivity

Don’t want a zoo of primitives but
want expressivity

What’s the smallest primitive that
expresses many concurrency patterns?

Effect handlers
• A mechanism for programming with user-defined effects

Effect handlers
• A mechanism for programming with user-defined effects

• Modular and composable basis of non-local control-flow mechanisms
✦ Exceptions, generators, lightweight threads, promises, asynchronous IO, coroutines as libraries

Effect handlers
• A mechanism for programming with user-defined effects

• Modular and composable basis of non-local control-flow mechanisms
✦ Exceptions, generators, lightweight threads, promises, asynchronous IO, coroutines as libraries

• Effect handlers ~= first-class, restartable exceptions
✦ Structured programming with delimited continuations

Effect handlers
• A mechanism for programming with user-defined effects

• Modular and composable basis of non-local control-flow mechanisms
✦ Exceptions, generators, lightweight threads, promises, asynchronous IO, coroutines as libraries

• Effect handlers ~= first-class, restartable exceptions
✦ Structured programming with delimited continuations

• Direct-style asynchronous I/O

• Generators

• Resumable parsers

• Probabilistic Programming

• Reactive UIs

• ….

Effect handlers
type _ eff += E : string eff

let comp () =
 print_string "0 ";
 print_string (perform E);
 print_string "3 "

let main () =
 try
 comp ()
 with effect E, k ->
 print_string "1 ";
 continue k "2 ";
 print_string "4 "

Effect handlers
type _ eff += E : string eff

let comp () =
 print_string "0 ";
 print_string (perform E);
 print_string "3 "

let main () =
 try
 comp ()
 with effect E, k ->
 print_string "1 ";
 continue k "2 ";
 print_string "4 "

effect declaration

Effect handlers
type _ eff += E : string eff

let comp () =
 print_string "0 ";
 print_string (perform E);
 print_string "3 "

let main () =
 try
 comp ()
 with effect E, k ->
 print_string "1 ";
 continue k "2 ";
 print_string "4 "

computation

effect declaration

Effect handlers
type _ eff += E : string eff

let comp () =
 print_string "0 ";
 print_string (perform E);
 print_string "3 "

let main () =
 try
 comp ()
 with effect E, k ->
 print_string "1 ";
 continue k "2 ";
 print_string "4 "

computation

handler

effect declaration

Effect handlers
type _ eff += E : string eff

let comp () =
 print_string "0 ";
 print_string (perform E);
 print_string "3 "

let main () =
 try
 comp ()
 with effect E, k ->
 print_string "1 ";
 continue k "2 ";
 print_string "4 "

computation

handler

suspends current
computationeffect declaration

Effect handlers
type _ eff += E : string eff

let comp () =
 print_string "0 ";
 print_string (perform E);
 print_string "3 "

let main () =
 try
 comp ()
 with effect E, k ->
 print_string "1 ";
 continue k "2 ";
 print_string "4 "

computation

handler

delimited continuation

suspends current
computationeffect declaration

Effect handlers
type _ eff += E : string eff

let comp () =
 print_string "0 ";
 print_string (perform E);
 print_string "3 "

let main () =
 try
 comp ()
 with effect E, k ->
 print_string "1 ";
 continue k "2 ";
 print_string "4 "

computation

handler

delimited continuation

suspends current
computation

resume suspended
computation

effect declaration

type 'a eff += E : string eff

let comp () =
 print_string "0 ";
 print_string (perform E);
 print_string "3 "

let main () =
 try
 comp ()
 with effect E, k ->
 print_string "1 ";
 continue k "2 ";
 print_string "4 "

pc

main

sp

Stepping through the example

type 'a eff += E : string eff

let comp () =
 print_string "0 ";
 print_string (perform E);
 print_string "3 "

let main () =
 try
 comp ()
 with effect E, k ->
 print_string "1 ";
 continue k "2 ";
 print_string "4 "

pc

main

sp

Stepping through the example

Fiber: A piece of stack
+ effect handler

type 'a eff += E : string eff

let comp () =
 print_string "0 ";
 print_string (perform E);
 print_string "3 "

let main () =
 try
 comp ()
 with effect E, k ->
 print_string "1 ";
 continue k "2 ";
 print_string "4 "

comp

pc

main
sp

parent

Stepping through the example

type 'a eff += E : string eff

let comp () =
 print_string "0 ";
 print_string (perform E);
 print_string "3 "

let main () =
 try
 comp ()
 with effect E, k ->
 print_string "1 ";
 continue k "2 ";
 print_string "4 "

comp

comp

pc

main

sp

parent

0

Stepping through the example

type 'a eff += E : string eff

let comp () =
 print_string "0 ";
 print_string (perform E);
 print_string "3 "

let main () =
 try
 comp ()
 with effect E, k ->
 print_string "1 ";
 continue k "2 ";
 print_string "4 "

comp

comp

pc

main

sp

k

0

Stepping through the example

type 'a eff += E : string eff

let comp () =
 print_string "0 ";
 print_string (perform E);
 print_string "3 "

let main () =
 try
 comp ()
 with effect E, k ->
 print_string "1 ";
 continue k "2 ";
 print_string "4 "

comp

comp

pc

main

sp k

0

Stepping through the example

type 'a eff += E : string eff

let comp () =
 print_string "0 ";
 print_string (perform E);
 print_string "3 "

let main () =
 try
 comp ()
 with effect E, k ->
 print_string "1 ";
 continue k "2 ";
 print_string "4 "

comp

comp

pc

main

sp k

0

Stepping through the example

type 'a eff += E : string eff

let comp () =
 print_string "0 ";
 print_string (perform E);
 print_string "3 "

let main () =
 try
 comp ()
 with effect E, k ->
 print_string "1 ";
 continue k "2 ";
 print_string "4 "

comp

comp

pc

main

sp k

0 1

Stepping through the example

type 'a eff += E : string eff

let comp () =
 print_string "0 ";
 print_string (perform E);
 print_string "3 "

let main () =
 try
 comp ()
 with effect E, k ->
 print_string "1 ";
 continue k "2 ";
 print_string "4 "

comp

comp

pc

main

sp k

0 1

Stepping through the example

type 'a eff += E : string eff

let comp () =
 print_string "0 ";
 print_string (perform E);
 print_string "3 "

let main () =
 try
 comp ()
 with effect E, k ->
 print_string "1 ";
 continue k "2 ";
 print_string "4 "

comp

comp

pc

main

sp

k

parent

0 1

Stepping through the example

type 'a eff += E : string eff

let comp () =
 print_string "0 ";
 print_string (perform E);
 print_string "3 "

let main () =
 try
 comp ()
 with effect E, k ->
 print_string "1 ";
 continue k "2 ";
 print_string "4 "

comp

comppc

main

sp

k

parent

0 1 2

Stepping through the example

type 'a eff += E : string eff

let comp () =
 print_string "0 ";
 print_string (perform E);
 print_string "3 "

let main () =
 try
 comp ()
 with effect E, k ->
 print_string "1 ";
 continue k "2 ";
 print_string "4 "pc

main

sp k

0 1 2 3

Stepping through the example

type 'a eff += E : string eff

let comp () =
 print_string "0 ";
 print_string (perform E);
 print_string "3 "

let main () =
 try
 comp ()
 with effect E, k ->
 print_string "1 ";
 continue k "2 ";
 print_string "4 "

pc

main

sp k

0 1 2 3 4

Stepping through the example

type _ eff += Fork : (unit -> unit) -> unit eff
 | Yield : unit eff

Lightweight threading

type _ eff += Fork : (unit -> unit) -> unit eff
 | Yield : unit eff

Lightweight threading

let run main =
 ... (* assume queue of continuations *)
 let run_next () =
 match dequeue () with
 | Some k -> continue k ()
 | None -> ()
 in
 let rec spawn f =
 match f () with
 | () -> run_next () (* value case *)
 | effect Yield, k -> enqueue k; run_next ()
 | effect (Fork f), k -> enqueue k; spawn f
 in
 spawn main

Effect Handler

type _ eff += Fork : (unit -> unit) -> unit eff
 | Yield : unit eff

let fork f = perform (Fork f)
let yield () = perform Yield

Lightweight threading

let run main =
 ... (* assume queue of continuations *)
 let run_next () =
 match dequeue () with
 | Some k -> continue k ()
 | None -> ()
 in
 let rec spawn f =
 match f () with
 | () -> run_next () (* value case *)
 | effect Yield, k -> enqueue k; run_next ()
 | effect (Fork f), k -> enqueue k; spawn f
 in
 spawn main

Effect Handler

let main () =
 fork (fun _ ->
 print_endline "1.a";
 yield ();
 print_endline "1.b");
 fork (fun _ ->
 print_endline "2.a";
 yield ();
 print_endline “2.b")
;;
run main

Lightweight threading

let main () =
 fork (fun _ ->
 print_endline "1.a";
 yield ();
 print_endline "1.b");
 fork (fun _ ->
 print_endline "2.a";
 yield ();
 print_endline “2.b")
;;
run main

1.a
2.a
1.b
2.b

Lightweight threading

let main () =
 fork (fun _ ->
 print_endline "1.a";
 yield ();
 print_endline "1.b");
 fork (fun _ ->
 print_endline "2.a";
 yield ();
 print_endline “2.b")
;;
run main

1.a
2.a
1.b
2.b

User-code need not be
aware of effects

Lightweight threading

let main () =
 fork (fun _ ->
 print_endline "1.a";
 yield ();
 print_endline "1.b");
 fork (fun _ ->
 print_endline "2.a";
 yield ();
 print_endline “2.b")
;;
run main

1.a
2.a
1.b
2.b

User-code need not be
aware of effects

Ability to specialise scheduler
unlike GHC Haskell / Go

Lightweight threading

https://github.com/ocaml-multicore/eio

• eio: effects-based direct-style I/O

✦ Multiple backends — epoll, select, io_uring (new async io in Linux kernel)

Industrial-strength concurrency

https://github.com/ocaml-multicore/eio

• eio: effects-based direct-style I/O

✦ Multiple backends — epoll, select, io_uring (new async io in Linux kernel)

100 open connections, 60 seconds w/ io_uring

OCaml eio

Rust Hyper

OCaml (Http/af + Lwt)

Go NetHttp
OCaml (cohttp + Lwt)

https://github.com/ocaml-multicore/eio

Industrial-strength concurrency

https://github.com/ocaml-multicore/eio

• Hardware simulations for HardCaml

Unexpected uses

https://blog.janestreet.com/fun-with-algebraic-effects-hardcaml/

https://blog.janestreet.com/fun-with-algebraic-effects-hardcaml/

Further reading

https://xavierleroy.org/control-structures/

• Rigorous, continuous benchmarking on real-world programs

• sandmark.tarides.com — Benchmark suite, Infra and runners

Building confidence — Benchmarking

http://sandmark.tarides.com

• Can the new compiler build the existing universe?

• Build the OPAM universe of packages against upstream and multicore compilers

Building confidence — CI for package universe

• Can the new compiler build the existing universe?

• Build the OPAM universe of packages against upstream and multicore compilers

Building confidence — CI for package universe

• Can the new compiler build the existing universe?

• Build the OPAM universe of packages against upstream and multicore compilers

Building confidence — CI for package universe

You can contribute to the compiler
development without hacking on the compiler

• Opened — Dec 2021, Merged — Jan 2022

• ….A few months of iteration to fix design
issues and bugs….

Release and Long Tail

• Opened — Dec 2021, Merged — Jan 2022

• ….A few months of iteration to fix design
issues and bugs….

• Released — Dec 16 2022, as OCaml 5.0

Release and Long Tail

• Opened — Dec 2021, Merged — Jan 2022

• ….A few months of iteration to fix design
issues and bugs….

• Released — Dec 16 2022, as OCaml 5.0

• Long tail of adding missing features, bug fixes
and performance improvements

• 5.1 — Sep 2023

• 5.2 — May 2024

• 5.3 — Jan 2025

• 5.4 — Sep 2025

Release and Long Tail

• OxCaml — Bridging the performance and safety gap
between OCaml and Rust

• Data-race-free parallelism through modes

• Better control over object layout, allocations and GC

What’s next for OCaml?

https://oxcaml.org

https://oxcaml.check.ci.dev/
https://oxcaml.org

• OxCaml — Bridging the performance and safety gap
between OCaml and Rust

• Data-race-free parallelism through modes

• Better control over object layout, allocations and GC

• Draws lessons from Multicore OCaml execution

• Several award-winning papers at POPL, ICFP, OOPSLA

• CI for the external universe — https://oxcaml.check.ci.dev/

What’s next for OCaml?

https://oxcaml.org

https://oxcaml.check.ci.dev/
https://oxcaml.org

• OxCaml — Bridging the performance and safety gap
between OCaml and Rust

• Data-race-free parallelism through modes

• Better control over object layout, allocations and GC

• Draws lessons from Multicore OCaml execution

• Several award-winning papers at POPL, ICFP, OOPSLA

• CI for the external universe — https://oxcaml.check.ci.dev/

• But different in other ways…

• In production at Jane Street

• Valuable user-feedback-oriented design

What’s next for OCaml?

https://oxcaml.org

https://oxcaml.check.ci.dev/
https://oxcaml.org

CS6868 Concurrent Programming

https://kcsrk.info/cs6868_s26/

FP Launchpad
Build research and educational capacity for crafting efficient, reliable

and trustworthy software with mathematical guardrails.

Research

Education &
Training

Systems &
Community

• Industrial-strength & open-source

• Examples: verifiable voting, DPI for
environmental planning, robust
foundational SW stack

• Areas: Programming Languages,
Functional Programming, Program
Verification, Hardware Design, FM x AI

• Post-bacc Fellowships

• Summer and winter schools,

Dagstuhl-style research
seminars

• Compiler Hacking events

FP Launchpad
Build research and educational capacity for crafting efficient, reliable

and trustworthy software with mathematical guardrails.

Get Involved!

Get Involved!

ocaml.org

http://ocaml.org

Get Involved!

ocaml.org OCaml
Discord

http://ocaml.org

Get Involved!

ocaml.org OCaml
Discord

ocaml.org/outreachy

http://ocaml.org
http://ocaml.org/outreachy

Get Involved!

github.com/ocaml

ocaml.org OCaml
Discord

ocaml.org/outreachy

http://github.com/ocaml
http://ocaml.org
http://ocaml.org/outreachy

