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• CS Prof at IIT Madras


• Programming languages, formal verification and systems


• A core maintainer of the OCaml programming language


• CTO at Tarides


• Building functional systems using OCaml


• Maintainers of the OCaml compiler and platform tools

Who am I — KC Sivaramakrishnan
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- Learnt to program C here

- Believed the C language was "perfect & final" 

- ...like mountains and oceans

- Grew up and realised neither was!

- This talk is about the evolution of programming languages 

- Specifically, OCaml
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• Functional-first but multi-paradigm (imperative, OO) 

• Static-type system with Hindley-Milner type inference 

• Advanced features — powerful module system, GADTs, 
Polymorphic variants 

• Multicore support and effect handlers

• Opam repository — small but mature package ecosystem 

• Notable Industrial users — Jane Street, Meta, Microsoft, 
Ahrefs, Citrix, Tezos, Bloomberg, Docker

• Fast, native code— x86, ARM, RISC-V, etc.  

• JavaScript and WebAssembly (using WasmGC) 
compilation 

• Platform tools — editor (LSP), build system (dune), 
package manager (opam), docs generator (odoc), etc. 

📜 Language

⚙ Platform

🌐 Ecosystem
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High dynamic range

Finance

60+M lines of 
OCaml code!

From scripts to scalable systems, research 
prototypes to production infrastructure

Hardware 
design
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1996 — OCaml 1.0
Object system, low-latency GC, fast 

native backend, module system

1973 — Robin Milner’s “ML” for LCF
Type system, type inference

1985 — Guy Cousineau & co’s CAML
Categorical abstract machine (CAM) as IR

2012 — OCaml 4.0
Generalized Algebraic Data types (GADTs)

2022 — OCaml 5.0
Multicore parallelism, effect handlers

2025

Steady evolution 
over 50+ years

How to thrive not just 
survive after ~30 years?
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• If you take OCaml from 20 years ago, the code will likely continue to work!

• No recent releases for some popular packages


• They are good enough, and continue to be so.


• Nothing to be done to keep it working!

Simplicity and stability
Xavier Leroy, 2023 SIGPLAN programming languages software award! 🏆
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• 27 maintainers from France, UK, Japan, India and USA, across industry and academia.

• Custodians of the compiler


• Not the ones deciding how the language should evolve!
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• Evolution


• User-driven: OCaml, Python 

• Committee-driven: ISO/IEC evolving C and C++


• Vendor-driven consensus: WebAssembly

• Language and compiler aren’t distinct


• OCaml compiler implementation IS the language. 

• Unlike C, Wasm, JavaScript

• The bar is lower to change the language

Who decides how OCaml evolves?
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• Open process

• OCaml compiler is maintained on GitHub

• All discussions are public in the PRs, Issues and RFCs 
on GitHub

• Multi-speed model

• Small fixes/features → Make an issue (“feature 
request”), open a PR, discuss and get that merged

• Every PR needs a maintainer's approval before merging

• Large features → Bespoke based on the features

• May need publishing papers, extensive performance 
evaluation, formalised/mechanised soundness results, etc. 

• Often, presumably small feature requests take a 
life of their own!

Mechanics of evolution



A small(?) change — Dynamic Arrays
Opened: Nov 15, 2019, Closed: Nov 15 2019

Implementation rather naive, room for improvements



A small(?) change — Dynamic Arrays
Opened: Nov 15, 2019, Closed: Nov 15 2019

Opened: Sep 25, 2022, Closed: Jan 18, 2023

Clean API, but multicore safety, performance 

Implementation rather naive, room for improvements



A small(?) change — Dynamic Arrays
Opened: Nov 15, 2019, Closed: Nov 15 2019

Opened: Sep 25, 2022, Closed: Jan 18, 2023

Clean API, but multicore safety, performance 

Implementation rather naive, room for improvements

Opened: Jan 11, 2023, Merged: Oct 21, 2023

Clean API and simple implementation 



A small(?) change — Dynamic Arrays
Opened: Nov 15, 2019, Closed: Nov 15 2019

Opened: Sep 25, 2022, Closed: Jan 18, 2023

Clean API, but multicore safety, performance 

Implementation rather naive, room for improvements

Opened: Jan 11, 2023, Merged: Oct 21, 2023

Clean API and simple implementation 

Opened: Jan 5, 2024, Merged: May 2, 2024

Clean API and optimised implementation 
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Dynamic Arrays

• Worth it?  

• Yes! Should work for the next couple of 
decades.


• Harder to undo changes after the 
release.

• Summary 

• Proposed — Nov 2019, Merged — (PR#1) 
Jan 2024; (PR#2) May 2024


• Initially — 198 loc, finally — ~2500 loc


• 500+ comments in the various PRs



• Native support for concurrency and parallelism to OCaml
A large change — Multicore OCaml

Interleaved 
execution

A

B

A

C

B

Time

Simultaneous 
execution

A
B

C

Time

Concurrency Parallelism

Effect Handlers Domains
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• A new multicore garbage collector and multicore runtime system

• Replacing a car engine with a new one!

• Make the language itself thread-safe

• OCaml is a safe language! (Unlike C/C++, Go)

• Maintain feature and performance backwards compatibility!

• Most OCaml programs will continue to remain single-threaded

Challenges

Build credibility by publishing key results and rigorous evaluation
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Building confidence — Papers

Peer-reviewed ideas build confidence 

Multicore GC and 
runtime system

Concurrency 
story

Relaxed Memory 
Model



Interleaved 

A

B

A

C

B

Time

Diving deeper — Concurrency



• Computations may be suspended and resumed later

Concurrent Programming



• Computations may be suspended and resumed later

• Many languages provide concurrent programming mechanisms as primitives

✦ async/await — JavaScript, Python, Rust, C# 5.0, F#, Swift, …


✦ generators — Python, Javascript, …


✦ coroutines — C++, Kotlin, Lua, …


✦ futures & promises — JavaScript, Swift, …


✦ Lightweight threads/processes — Haskell, Go, Erlang

Concurrent Programming



• Computations may be suspended and resumed later

• Many languages provide concurrent programming mechanisms as primitives

✦ async/await — JavaScript, Python, Rust, C# 5.0, F#, Swift, …


✦ generators — Python, Javascript, …


✦ coroutines — C++, Kotlin, Lua, …


✦ futures & promises — JavaScript, Swift, …


✦ Lightweight threads/processes — Haskell, Go, Erlang

• Often include many different primitives in the same language! 
✦ JavaScript has async/await, generators, promises, and callbacks

Concurrent Programming
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Don’t want a zoo of primitives but  
want expressivity

What’s the smallest primitive that  
expresses many concurrency patterns?
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Effect handlers
• A mechanism for programming with user-defined effects

• Modular and composable basis of non-local control-flow mechanisms
✦ Exceptions, generators, lightweight threads, promises, asynchronous IO, coroutines as libraries

• Effect handlers ~= first-class, restartable exceptions
✦ Structured programming with delimited continuations

• Direct-style asynchronous I/O 

• Generators 

• Resumable parsers 

• Probabilistic Programming 

• Reactive UIs 

• ….
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Effect handlers
type _ eff += E : string eff 

let comp () = 
  print_string "0 "; 
  print_string (perform E); 
  print_string "3 " 

let main () = 
  try 
    comp () 
  with effect E, k -> 
    print_string "1 "; 
    continue k "2 "; 
    print_string "4 "

computation

handler

delimited continuation 

suspends current 
computation

resume suspended 
computation

effect declaration
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Fiber: A piece of stack 
+ effect handler
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type 'a eff += E : string eff 

let comp () = 
  print_string "0 "; 
  print_string (perform E); 
  print_string "3 " 

let main () = 
  try 
    comp () 
  with effect E, k -> 
    print_string "1 "; 
    continue k "2 "; 
    print_string "4 "

pc

main

sp k

0 1 2 3 4

Stepping through the example
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type _ eff += Fork  : (unit -> unit) -> unit eff 
            | Yield : unit eff

let fork f = perform (Fork f) 
let yield () = perform Yield

Lightweight threading

let run main = 
  ... (* assume queue of continuations *) 
  let run_next () = 
    match dequeue () with 
    | Some k -> continue k () 
    | None -> () 
  in 
  let rec spawn f = 
    match f () with 
    | () -> run_next () (* value case *) 
    | effect Yield, k -> enqueue k; run_next () 
    | effect (Fork f), k -> enqueue k; spawn f 
  in 
  spawn main

Effect Handler
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let main () =  
  fork (fun _ ->  
    print_endline "1.a";  
    yield ();  
    print_endline "1.b"); 
  fork (fun _ ->  
    print_endline "2.a";  
    yield ();  
    print_endline “2.b") 
;; 
run main 

1.a 
2.a 
1.b 
2.b

User-code need not be 
aware of effects

Ability to specialise scheduler 
unlike GHC Haskell / Go 

Lightweight threading



https://github.com/ocaml-multicore/eio

• eio: effects-based direct-style I/O

✦ Multiple backends — epoll, select, io_uring (new async io in Linux kernel)

Industrial-strength concurrency
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• eio: effects-based direct-style I/O

✦ Multiple backends — epoll, select, io_uring (new async io in Linux kernel)

100 open connections, 60 seconds w/ io_uring

OCaml eio

Rust Hyper

OCaml (Http/af + Lwt)

Go NetHttp
OCaml (cohttp + Lwt)

https://github.com/ocaml-multicore/eio

Industrial-strength concurrency

https://github.com/ocaml-multicore/eio


• Hardware simulations for HardCaml

Unexpected uses

https://blog.janestreet.com/fun-with-algebraic-effects-hardcaml/ 

https://blog.janestreet.com/fun-with-algebraic-effects-hardcaml/


Further reading

https://xavierleroy.org/control-structures/



• Rigorous, continuous benchmarking on real-world programs


• sandmark.tarides.com — Benchmark suite, Infra and runners

Building confidence — Benchmarking 

http://sandmark.tarides.com
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• Can the new compiler build the existing universe? 

• Build the OPAM universe of packages against upstream and multicore compilers

Building confidence — CI for package universe 

You can contribute to the compiler 
development without hacking on the compiler
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• Opened — Dec 2021, Merged — Jan 2022


• ….A few months of iteration to fix design 
issues and bugs….

• Released — Dec 16 2022, as OCaml 5.0

• Long tail of adding missing features, bug fixes 
and performance improvements


• 5.1 — Sep 2023


• 5.2 — May 2024


• 5.3 — Jan 2025


• 5.4 — Sep 2025

Release and Long Tail
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• OxCaml — Bridging the performance and safety gap 
between OCaml and Rust


• Data-race-free parallelism through modes 

• Better control over object layout, allocations and GC

• Draws lessons from Multicore OCaml execution


• Several award-winning papers at POPL, ICFP, OOPSLA


• CI for the external universe — https://oxcaml.check.ci.dev/

• But different in other ways…


• In production at Jane Street


• Valuable user-feedback-oriented design

What’s next for OCaml?

https://oxcaml.org

https://oxcaml.check.ci.dev/
https://oxcaml.org


CS6868 Concurrent Programming

https://kcsrk.info/cs6868_s26/



FP Launchpad
Build research and educational capacity for crafting efficient, reliable 

and trustworthy software with mathematical guardrails.



Research

Education & 
Training

Systems & 
Community

• Industrial-strength & open-source


• Examples: verifiable voting, DPI for 
environmental planning, robust 
foundational SW stack

• Areas: Programming Languages, 
Functional Programming, Program 
Verification, Hardware Design, FM x AI

• Post-bacc Fellowships

• Summer and winter schools, 

Dagstuhl-style research 
seminars


• Compiler Hacking events

FP Launchpad
Build research and educational capacity for crafting efficient, reliable 

and trustworthy software with mathematical guardrails.
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