
Certified Mergeable
Replicated Data Types

“KC” Sivaramakrishnan
joint work with

Vimala Soundarapandian, Adharsh Kamath and Kartik Nagar

Collaborative Apps

Collaborative Apps

Network Partitions

Local-first software

ver 1

ver 2

ver 3

Local-first software

ver 1

ver 2

ver 3

Local-first software

ver 1ver 2ver 3

Distributed Version Control Systems

main

bugfix feature

Distributed Version Control Systems

main

bugfix feature

merge

Lowest common
ancestor (LCA)

3-way merge

Distributed Version Control Systems

main

bugfix feature

merge

Lowest common
ancestor (LCA)

3-way merge

Mergeable Replicated Data Types
• MRDTs — DVCS for data types rather than just text files

• Sequential data types + 3-way merge = replicated data type!

Mergeable Replicated Data Types
• MRDTs — DVCS for data types rather than just text files

• Sequential data types + 3-way merge = replicated data type!

module Counter : sig

 type t

 val read : t -> int

 val add : t -> int -> t

 val mult : t -> int -> t

 val merge : lca:t -> v1:t -> v2:t -> t

end = struct

 type t = int

 let read x = x

 let add x d = x + d

 let mult x n = x * n

 let merge ~lca ~v1 ~v2 =

 lca + (v1 - lca) + (v2 - lca)

end

Mergeable Replicated Data Types
• MRDTs — DVCS for data types rather than just text files

• Sequential data types + 3-way merge = replicated data type!

module Counter : sig

 type t

 val read : t -> int

 val add : t -> int -> t

 val mult : t -> int -> t

 val merge : lca:t -> v1:t -> v2:t -> t

end = struct

 type t = int

 let read x = x

 let add x d = x + d

 let mult x n = x * n

 let merge ~lca ~v1 ~v2 =

 lca + (v1 - lca) + (v2 - lca)

end

7

Mergeable Replicated Data Types
• MRDTs — DVCS for data types rather than just text files

• Sequential data types + 3-way merge = replicated data type!

module Counter : sig

 type t

 val read : t -> int

 val add : t -> int -> t

 val mult : t -> int -> t

 val merge : lca:t -> v1:t -> v2:t -> t

end = struct

 type t = int

 let read x = x

 let add x d = x + d

 let mult x n = x * n

 let merge ~lca ~v1 ~v2 =

 lca + (v1 - lca) + (v2 - lca)

end

7

8

+1

Mergeable Replicated Data Types
• MRDTs — DVCS for data types rather than just text files

• Sequential data types + 3-way merge = replicated data type!

module Counter : sig

 type t

 val read : t -> int

 val add : t -> int -> t

 val mult : t -> int -> t

 val merge : lca:t -> v1:t -> v2:t -> t

end = struct

 type t = int

 let read x = x

 let add x d = x + d

 let mult x n = x * n

 let merge ~lca ~v1 ~v2 =

 lca + (v1 - lca) + (v2 - lca)

end

7

8 21

+1 *3

Mergeable Replicated Data Types
• MRDTs — DVCS for data types rather than just text files

• Sequential data types + 3-way merge = replicated data type!

module Counter : sig

 type t

 val read : t -> int

 val add : t -> int -> t

 val mult : t -> int -> t

 val merge : lca:t -> v1:t -> v2:t -> t

end = struct

 type t = int

 let read x = x

 let add x d = x + d

 let mult x n = x * n

 let merge ~lca ~v1 ~v2 =

 lca + (v1 - lca) + (v2 - lca)

end

7

8 21

+1 *3 +14+1

Mergeable Replicated Data Types
• MRDTs — DVCS for data types rather than just text files

• Sequential data types + 3-way merge = replicated data type!

module Counter : sig

 type t

 val read : t -> int

 val add : t -> int -> t

 val mult : t -> int -> t

 val merge : lca:t -> v1:t -> v2:t -> t

end = struct

 type t = int

 let read x = x

 let add x d = x + d

 let mult x n = x * n

 let merge ~lca ~v1 ~v2 =

 lca + (v1 - lca) + (v2 - lca)

end

7

8 21

+1 *3

22

22 = 7 + (8-7) + (21 -7)

+14+1

+1 +14

Mergeable Replicated Data Types
• MRDTs — DVCS for data types rather than just text files

• Sequential data types + 3-way merge = replicated data type!

module Counter : sig

 type t

 val read : t -> int

 val add : t -> int -> t

 val mult : t -> int -> t

 val merge : lca:t -> v1:t -> v2:t -> t

end = struct

 type t = int

 let read x = x

 let add x d = x + d

 let mult x n = x * n

 let merge ~lca ~v1 ~v2 =

 lca + (v1 - lca) + (v2 - lca)

end

7

8 21

+1 *3

22 22

22 = 7 + (8-7) + (21 -7)

+14+1

+1 +14

Does the 3-way merge idea generalise?

Does the 3-way merge idea generalise?

Sort of…

9

• OR-set — add-wins when there is a concurrent add and remove
of the same element

Observed-Removed Set

9

• OR-set — add-wins when there is a concurrent add and remove
of the same element

Observed-Removed Set

let merge ~lca ~v1 ~v2 =

 (lca ∩ v1 ∩ v2) (* unmodified elements *)

 ∪ (v1 - lca) (* added in v1 *)

 ∪ (v2 - lca) (* added in v2 *)

Kaki et al. “Mergeable Replicated Data Types”,
OOPSLA 2019

9

{1}

• OR-set — add-wins when there is a concurrent add and remove
of the same element

Observed-Removed Set

let merge ~lca ~v1 ~v2 =

 (lca ∩ v1 ∩ v2) (* unmodified elements *)

 ∪ (v1 - lca) (* added in v1 *)

 ∪ (v2 - lca) (* added in v2 *)

Kaki et al. “Mergeable Replicated Data Types”,
OOPSLA 2019

9

{1}

{1}

add(1)

• OR-set — add-wins when there is a concurrent add and remove
of the same element

Observed-Removed Set

let merge ~lca ~v1 ~v2 =

 (lca ∩ v1 ∩ v2) (* unmodified elements *)

 ∪ (v1 - lca) (* added in v1 *)

 ∪ (v2 - lca) (* added in v2 *)

Kaki et al. “Mergeable Replicated Data Types”,
OOPSLA 2019

9

{1}

{1} { }

add(1) rem(1)

• OR-set — add-wins when there is a concurrent add and remove
of the same element

Observed-Removed Set

let merge ~lca ~v1 ~v2 =

 (lca ∩ v1 ∩ v2) (* unmodified elements *)

 ∪ (v1 - lca) (* added in v1 *)

 ∪ (v2 - lca) (* added in v2 *)

Kaki et al. “Mergeable Replicated Data Types”,
OOPSLA 2019

9

{1}

{1} { }

{ } { }

add(1) rem(1)

• OR-set — add-wins when there is a concurrent add and remove
of the same element

Observed-Removed Set

let merge ~lca ~v1 ~v2 =

 (lca ∩ v1 ∩ v2) (* unmodified elements *)

 ∪ (v1 - lca) (* added in v1 *)

 ∪ (v2 - lca) (* added in v2 *)

 { } ∪ ({1} - {1}) ∪ ({ } - {1})

= { } ∪ { } ∪ { }

= { } (expected {1})

Kaki et al. “Mergeable Replicated Data Types”,
OOPSLA 2019

9

{1}

{1} { }

{ } { }

add(1) rem(1)

• Convergence is not sufficient; Intent is not preserved

• OR-set — add-wins when there is a concurrent add and remove
of the same element

Observed-Removed Set

let merge ~lca ~v1 ~v2 =

 (lca ∩ v1 ∩ v2) (* unmodified elements *)

 ∪ (v1 - lca) (* added in v1 *)

 ∪ (v2 - lca) (* added in v2 *)

 { } ∪ ({1} - {1}) ∪ ({ } - {1})

= { } ∪ { } ∪ { }

= { } (expected {1})

Kaki et al. “Mergeable Replicated Data Types”,
OOPSLA 2019

Concretising Intent
• A formal specification language to capture the intent of the

MRDT

✦ Must be rich enough to capture eventual consistency

Concretising Intent
• A formal specification language to capture the intent of the

MRDT

✦ Must be rich enough to capture eventual consistency

• Even simple data types attract enormous complexity when made
distributed

Concretising Intent
• A formal specification language to capture the intent of the

MRDT

✦ Must be rich enough to capture eventual consistency

• Even simple data types attract enormous complexity when made
distributed

Concretising Intent
• A formal specification language to capture the intent of the

MRDT

✦ Must be rich enough to capture eventual consistency

• Even simple data types attract enormous complexity when made
distributed

• Mechanization to bridge the gap between spec and impl

Peepul — Certified MRDTs
• An F* library implementing and proving MRDTs

★ https://github.com/prismlab/peepul

11

Peepul — Certified MRDTs
• An F* library implementing and proving MRDTs

★ https://github.com/prismlab/peepul

• Specification language is event-based

★ Burckhardt et al. “Replicated Data Types: Specification, Verification and Optimality”, POPL
2014

11

Peepul — Certified MRDTs
• An F* library implementing and proving MRDTs

★ https://github.com/prismlab/peepul

• Specification language is event-based

★ Burckhardt et al. “Replicated Data Types: Specification, Verification and Optimality”, POPL
2014

• Replication-aware simulation to connect specification with implementation

11

Peepul — Certified MRDTs
• An F* library implementing and proving MRDTs

★ https://github.com/prismlab/peepul

• Specification language is event-based

★ Burckhardt et al. “Replicated Data Types: Specification, Verification and Optimality”, POPL
2014

• Replication-aware simulation to connect specification with implementation

• Space- and time-efficient implementations

★ 1st certified implementation of a O(1) replicated queue with O(n) merge.

11

Peepul — Certified MRDTs
• An F* library implementing and proving MRDTs

★ https://github.com/prismlab/peepul

• Specification language is event-based

★ Burckhardt et al. “Replicated Data Types: Specification, Verification and Optimality”, POPL
2014

• Replication-aware simulation to connect specification with implementation

• Space- and time-efficient implementations

★ 1st certified implementation of a O(1) replicated queue with O(n) merge.

• Composition of MRDTs and their proofs!

11

Peepul — Certified MRDTs
• An F* library implementing and proving MRDTs

★ https://github.com/prismlab/peepul

• Specification language is event-based

★ Burckhardt et al. “Replicated Data Types: Specification, Verification and Optimality”, POPL
2014

• Replication-aware simulation to connect specification with implementation

• Space- and time-efficient implementations

★ 1st certified implementation of a O(1) replicated queue with O(n) merge.

• Composition of MRDTs and their proofs!

• Extracted RDTs are compatible with Irmin — a Git-like distributed database

11

Fixing OR-Set
• Discriminate duplicate additions by associating a unique id

12

Fixing OR-Set
• Discriminate duplicate additions by associating a unique id

12

{ (a,1) }

Fixing OR-Set
• Discriminate duplicate additions by associating a unique id

12

{ (a,1) }

{ (a,1);

 (a,2) }

add(a)

Fixing OR-Set
• Discriminate duplicate additions by associating a unique id

12

{ (a,1) }

{ (a,1);

 (a,2) } { }

add(a) rem(a)

Fixing OR-Set
• Discriminate duplicate additions by associating a unique id

12

{ (a,1) }

{ (a,1);

 (a,2) } { }

{ (a,2) } { (a,2) }

add(a) rem(a)

 { }

 ∪ ({ (a,1); (a,2) } - { (a,1) })

 ∪ ({ } - { (a,1) })

= { } ∪ { (a,2) } ∪ { }

= { (a,2) }

Fixing OR-Set
• Discriminate duplicate additions by associating a unique id

• MRDT implementation

12

{ (a,1) }

{ (a,1);

 (a,2) } { }

{ (a,2) } { (a,2) }

add(a) rem(a)

 { }

 ∪ ({ (a,1); (a,2) } - { (a,1) })

 ∪ ({ } - { (a,1) })

= { } ∪ { (a,2) } ∪ { }

= { (a,2) }

Fixing OR-Set
• Discriminate duplicate additions by associating a unique id

• MRDT implementation

12

{ (a,1) }

{ (a,1);

 (a,2) } { }

{ (a,2) } { (a,2) }

add(a) rem(a)

 { }

 ∪ ({ (a,1); (a,2) } - { (a,1) })

 ∪ ({ } - { (a,1) })

= { } ∪ { (a,2) } ∪ { }

= { (a,2) }

Fixing OR-Set
• Discriminate duplicate additions by associating a unique id

• MRDT implementation

12

{ (a,1) }

{ (a,1);

 (a,2) } { }

{ (a,2) } { (a,2) }

add(a) rem(a)

 { }

 ∪ ({ (a,1); (a,2) } - { (a,1) })

 ∪ ({ } - { (a,1) })

= { } ∪ { (a,2) } ∪ { }

= { (a,2) }

Unique Lamport Timestamps

13

Specifying OR-Set
Abstract state

13

Specifying OR-Set
Abstract state

add(a)

add(a) rem(a)

rd

visvis

vis vis

{ (a,1) }

{ (a,1);

 (a,2) } { }

{ (a,2) } { (a,2) }

add(a) rem(a)

13

Specifying OR-Set
Abstract state

add(a)

add(a) rem(a)

rd

visvis

vis vis

{ (a,1) }

{ (a,1);

 (a,2) } { }

{ (a,2) } { (a,2) }

add(a) rem(a)

13

Specifying OR-Set
Abstract state

= { a }

add(a)

add(a) rem(a)

rd

visvis

vis vis

{ (a,1) }

{ (a,1);

 (a,2) } { }

{ (a,2) } { (a,2) }

add(a) rem(a)

Simulation Relation

14

Simulation Relation
• Connects the abstract state with the concrete state

14

Simulation Relation
• Connects the abstract state with the concrete state

• For the OR-set,

14

Simulation Relation
• Connects the abstract state with the concrete state

• For the OR-set,

14

Simulation Relation
• Connects the abstract state with the concrete state

• For the OR-set,

• The main verification effort is to show that the relation above is
indeed a simulation relation

★ Shown separately for operations and merge function

★ Proof by induction on the execution trace

14

Verification effort

15

Verification effort

15

16

Composing RDTs is HARD!

Composing IRC-style chat
• Build IRC-style group chat

★ Send and read messages in channels

17

Composing IRC-style chat
• Build IRC-style group chat

★ Send and read messages in channels

• Represent application state as a map MRDT

★ String (channel name) keys → mergeable-log MRDT values

17

Composing IRC-style chat
• Build IRC-style group chat

★ Send and read messages in channels

• Represent application state as a map MRDT

★ String (channel name) keys → mergeable-log MRDT values

• Goal:

★ map and log proved correct separately

★ Use the proof of underlying RDTs to prove chat application
correctness

17

18

Generic Map MRDT
Implementation

Simulation Relation

18

Generic Map MRDT
Implementation

Simulation Relation

The values in the MRDT map are MRDTs

18

Generic Map MRDT
Implementation

Simulation Relation

Merge uses the merge of the
underlying value type!

The values in the MRDT map are MRDTs

18

Generic Map MRDT
Implementation

Simulation Relation

Merge uses the merge of the
underlying value type!

Simulation relation appeals to the
value type’s simulation relation!

The values in the MRDT map are MRDTs

• IRC app state is constructed by instantiating generic map with
mergeable log

• The proof of correctness of the chat application directly follows
from the composition.

★ See paper for details!

19

Composing IRC-style chat

Summary
• Peepul

✦ An F* library implementing and proving MRDTs

★ https://github.com/prismlab/peepul

Summary
• Peepul

✦ An F* library implementing and proving MRDTs

★ https://github.com/prismlab/peepul

• Space- and time-efficient implementations

★ Certified implementation of a O(1) replicated queue with O(n) merge.

Summary
• Peepul

✦ An F* library implementing and proving MRDTs

★ https://github.com/prismlab/peepul

• Space- and time-efficient implementations

★ Certified implementation of a O(1) replicated queue with O(n) merge.

• Composition of MRDTs and their proofs!

Summary
• Peepul

✦ An F* library implementing and proving MRDTs

★ https://github.com/prismlab/peepul

• Space- and time-efficient implementations

★ Certified implementation of a O(1) replicated queue with O(n) merge.

• Composition of MRDTs and their proofs!

• See paper for

✦ Formal description of the system + soundness proof

✦ Case study on replicated queues

✦ Performance results

