Certified Mergeable
Replicated Data Types

“KC” Sivaramakrishnan

joint work with

Vimala Soundarapandian,Adharsh Kamath and Kartik Nagar

[1'1

G 2
MADRAS %=

/l‘ Tarides

Collaborative Apps

»7 Airtable E # Figma @ Notion (Sverleaf

Google Docs

Collaborative Apps

>% Airtable E #Figma [N]Notion Gverleat

Google Docs

Network Partitions

>% Airtable E #Figma [N]Notion Gverleat

Google Docs

Local-first software

>% Airtable E #Figma [N]Notion Gverleat

Google Docs

Local-first software

>% Airtable E #Figma [N]Notion Gverleat

Google Docs

Local-first software

>% Airtable E #Figma [N]Notion Gverleat

Google Docs

Distributed Version Control Systems

main

bugfix

Distributed Version Control Systems

Lowest common
ancestor (LCA)

: "'
1 3-way merge

Distributed Version Control Systems

Lowest common
ancestor (LCA)

Mergeable Replicated Data Types

e MRDTs — DVCS for data types rather than just text files

e Sequential data types + 3-way merge = replicated data type!

Mergeable Replicated Data Types

e MRDTs — DVCS for data types rather than just text files

e Sequential data types + 3-way merge = replicated data type!

Counter : sig
t
read : t int
add : t int
mult : t int
merge : lca:t vli:t v2:t t
end struct
t int
read X = X
add x d X + d
mult x n = X n
merge
lca + (vl - lca) + (v2 - lca
end

Mergeable Replicated Data Types

e MRDTs — DVCS for data types rather than just text files

e Sequential data types + 3-way merge = replicated data type!

Counter : sig

t
read : t int
t

add : t int

mult : t int

merge : lca:t vli:t v2:t t
end struct

t int

read X = X

add x d X + d

mult x n X n

merge

lca + (vl - lca) + (v2 - lca

end

Mergeable Replicated Data Types

e MRDTs — DVCS for data types rather than just text files

e Sequential data types + 3-way merge = replicated data type!

Counter : sig
t
read : t int
add : t int
mult : t int
merge : lca:t vli:t v2:t t
end struct
t int
read X = X
add x d X + d
mult x n X n
merge
lca + (vl - lca) + (v2 - lca
end

Mergeable Replicated Data Types

e MRDTs — DVCS for data types rather than just text files

e Sequential data types + 3-way merge = replicated data type!

Counter : sig
t
read : t int
add : t int
mult : t int
merge : lca:t vli:t v2:t t
end struct
t int
read X = X
add x d X + d
mult x n X n
merge
lca + (vl - lca) + (v2 - lca
end

Mergeable Replicated Data Types

e MRDTs — DVCS for data types rather than just text files

e Sequential data types + 3-way merge = replicated data type!

Counter : sig
t
read : t int
add : t int
mult : t int
merge : lca:t vli:t v2:t t
end struct
t int
read X = X
add x d X + d
mult x n X n
merge
lca + (vl - lca) + (v2 - lca
end

Mergeable Replicated Data Types

e MRDTs — DVCS for data types rather than just text files

e Sequential data types + 3-way merge = replicated data type!

Counter : sig
t
read : t int
add : t int
mult : t int
merge : lca:t vli:t v2:t t
end struct

t int e
read x =x |
add x d = x +d v
mult x n = X * n
merge
lca + (vl - lca) + (v2 - lca 22 =7 + (8-7) + (21 -7)

end +1 +14

Mergeable Replicated Data Types

e MRDTs — DVCS for data types rather than just text files

e Sequential data types + 3-way merge = replicated data type!

Counter : sig
t
read : t int
add : t int
mult : t int
merge : lca:t vli:t v2:t t
end = strg4ct @
t=int e

read x = x e
2 \4
add x d = x + d o, N
mult x n = X * n
merge
lca + (vl - lca) + (v2 - lca 22 =7 + (8-7) + (21 -7)

end +1 +14

Does the 3-way merge idea generalise?

Does the 3-way merge idea generalise?

Sort of...

Observed-Removed Set

e OR-set — add-wins when there is a concurrent add and remove
of the same element

Observed-Removed Set

e OR-set — add-wins when there is a concurrent add and remove
of the same element

merge
lca n vl n v2) (% unmodified elements x)

u (vl - lca) (% added in v1)

u (v2 - lca) (* added in v2)

Kaki et al.“Mergeable Replicated Data Types”,
OOPSLA 2019

Observed-Removed Set

e OR-set — add-wins when there is a concurrent add and remove
of the same element

merge

lca n vl n v2) (% unmodified elements x)
u (vl - lca) (% added in v1)
u (v2 - lca) (* added in v2)

Kaki et al.“Mergeable Replicated Data Types”,
OOPSLA 2019

Observed-Removed Set

e OR-set — add-wins when there is a concurrent add and remove
of the same element

merge
lca n vl n v2) (% unmodified elements)
U (vl — lca) (% added in v1 x) Cldd(l)

U (v2 - lca) (% added in v2 x)

Kaki et al.“Mergeable Replicated Data Types”,
OOPSLA 2019

Observed-Removed Set

e OR-set — add-wins when there is a concurrent add and remove
of the same element

merge
lca n vl n v2) (% unmodified elements)
U (vl — lca) (% added in v1) Cldd(l) rem(l)

U (v2 - lca) (% added in v2 x)

Kaki et al.“Mergeable Replicated Data Types”,
OOPSLA 2019

Observed-Removed Set

e OR-set — add-wins when there is a concurrent add and remove
of the same element

merge
lca n vl n v2) (% unmodified elements)
U (vl — lca) (% added in v1) Cldd(l) rem(l)

U (v2 - lca) (% added in v2 x)

Kaki et al.“Mergeable Replicated Data Types”,
OOPSLA 2019

v .
., *
3 .
. .
3 .

. .

- 3
. .

. .

g .

. .

- .

. .

. .

g .

. (3
3 .

. .

. .

LSS
R Y

-

%
. .
. .
* ~
. .
. .
. .
. .
. .
. .
. .
. -
. .
. .
. .
* ‘e
. .

{Pu-{1huvd}-{1} Yo
={}u{}u{}
={} (expected {1)})

Observed-Removed Set

e OR-set — add-wins when there is a concurrent add and remove
of the same element

merge

lca n vl n v2) (% unmodified elements)

U (vl - lca) (% added in v1 x) add(1) rem(1)
U (v2 — lca) (% added in v2 x)

Kaki et al.“Mergeable Replicated Data Types”,

OOPSLA2019 el
{u{{1}-{1huv{}-{1} | Ay .Y
={}u{}tu{}
={} (expected {1)})
e Convergence is not sufficient; is not preserved :\'

Concretising Intent

e A formal specification language to capture the intent of the
MRDT

+ Must be rich enough to capture eventual consistency

Concretising Intent

e A formal specification language to capture the intent of the
MRDT

+ Must be rich enough to capture eventual consistency

e Even simple data types attract enormous complexity when made
distributed

Concretising Intent

e A formal specification language to capture the intent of the
MRDT

+ Must be rich enough to capture eventual consistency

e Even simple data types attract enormous complexity when made
distributed

: Lindsey Kuper
& @lindsey

"Oh, you wanted to *increment a counter*?! Good luck
with that!" -- the distributed systems literature

12:25 AM - Mar 10, 2015 - Twitter Web Client

375 Retweets 18 Quote Tweets 614 Likes

Concretising Intent

e A formal specification language to capture the intent of the
MRDT

+ Must be rich enough to capture eventual consistency

e Even simple data types attract enormous complexity when made
distributed

: Lindsey Kuper
& @lindsey

"Oh, you wanted to *increment a counter*?! Good luck
with that!" -- the distributed systems literature

12:25 AM - Mar 10, 2015 - Twitter Web Client

375 Retweets 18 Quote Tweets 614 Likes

e Mechanization to bridge the gap between spec and impl

Peepul — Certified MRDTs

e An F* library implementing and proving MRDTs R @t

* https://github.com/prismlab/peepul [Tk ; .
3 o

11

Peepul — Certified MRDTs

% 1; : : : & W!Agé @g o
e An F* library implementing and proving MRDTs et
o @ < w‘! ‘D 7 w
* https://github.com/prismlab/peepul S v @ 8. e
\ ; o
L]

e Specification language is event-based

* Burckhardt et al.“Replicated Data Types: Specification, Verification and Optimality”’, POPL
2014

11

Peepul — Certified MRDTs

% 1; : : : & ngé @g o
An F* library implementing and proving MRDTs et
g @ < we) @ w
* https://github.com/prismlab/peepul S % @ 8. e
\ 4 o
a\

Specification language is event-based

* Burckhardt et al.“Replicated Data Types: Specification, Verification and Optimality”’, POPL
2014

Replication-aware simulation to connect specification with implementation

11

Peepul — Certified MRDTs

< éﬁgz

An F* library implementing and proving MRDTs |
ﬁ‘@ < w‘;

*

https://github.com/prismlab/peepul S % @
‘D

Specification language is event-based

v

A

| 4

o:

]

| 4

* Burckhardt et al.“Replicated Data Types: Specification, Verification and Optimality”’, POPL

2014

Replication-aware simulation to connect specification with implementation

Space- and time-efficient implementations

*

| st certified implementation of a O(I) replicated queue with O(n) merge.

11

Peepul — Certified MRDTs

* S vagé | >
An F* library implementing and proving MRDTs st R &
o\ AT SRS -4
* https://github.com/prismlab/peepul B s v @ LR
3 T

Specification language is event-based “

* Burckhardt et al.“Replicated Data Types: Specification, Verification and Optimality”’, POPL
2014

Replication-aware simulation to connect specification with implementation

Space- and time-efficient implementations

* |st certified implementation of a O(1) replicated queue with O(n) merge.

Composition of MRDTs and their proofs!

11

Peepul — Certified MRDTs

% 1; : : : & ngé @g o
An F* library implementing and proving MRDTs et
e @ < w‘;) @ w
* https://github.com/prismlab/peepul S % @ 8. e
\ 4 o
a\

Specification language is event-based

* Burckhardt et al.“Replicated Data Types: Specification, Verification and Optimality”’, POPL
2014

Replication-aware simulation to connect specification with implementation

Space- and time-efficient implementations

* |st certified implementation of a O(1) replicated queue with O(n) merge.

Composition of MRDTs and their proofs!

Extracted RDTs are compatible with Irmin — a Git-like distributed database

11

Fixing OR-Set

e Discriminate duplicate additions by associating a unique id

12

Fixing OR-Set

e Discriminate duplicate additions by associating a unique id

{@@1)}

12

Fixing OR-Set

e Discriminate duplicate additions by associating a unique id

add(a)

12

Fixing OR-Set

e Discriminate duplicate additions by associating a unique id

add(a) rem(a)

12

Fixing OR-Set

e Discriminate duplicate additions by associating a unique id

{}

u({(@1);@2)}-{(@1)}

u({}-{@1)})
={}u{@2)}u{} add(a) rem(a)
={(2)}

- *
. .
. .
. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

“ *

. o

*
RN

3

L)

Y
* -
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. ‘e
. .

12

Fixing OR-Set

e Discriminate duplicate additions by associating a unique id

{}

u({@1);@2}-{@1)}

u({}-{@1})
={}u{@2)}u{} add(a) rem(a)
={(a2) }

¢ MRDT implementation

- *
. .
. .
. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

“ *

. o

*
RN

D, = (X,09,do,merge) .

L)

Y
* -
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. ‘e
. .

12

Fixing OR-Set

e Discriminate duplicate additions by associating a unique id

{}

u({@1);@2}-{@1)}

u({}-{@1})
={}u{@2)}u{} add(a) rem(a)
={(a2) }

¢ MRDT implementation

- *
. .
. .
. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

“ *

. o

*
RN

D, = (X,09,do,merge)

3

L)

Y
* -
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. ‘e
. .

1: ¥ =P(NxN) —— e
2: 09 = {}

3: do(rd,o,t) = (0,{a| (a,t) € 0})

4: do(add(a),o,t) = (cU{(a,t)}, 1)

5: do(remove(a),o,t) = ({e € o | fst(e) # a}, L)

6: merge(Oica, Og, Op) =

(Ulca Nog, N Ub) U (Ga - Glca) U (Ub - Ulca)

12

Fixing OR-Set

e Discriminate duplicate additions by associating a unique id

{}

u({@1);@2}-{@1)}

u({}-{@1})
={}u{@2)}u{} add(a) rem(a)
={(a2) }

¢ MRDT implementation

- *
. .
. .
. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

“ *

. o

*
RN

D, = (X,09,do,merge)

3

L)

Y
* -
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. ‘e
. .

1: 2=P(NxXN) Unique Lamport Timestamps Y A A M
2: 09 = {}

3: do(rd,o,t) = (¢, {a| (a,t) € c})

4: do(add(a),o,t) = (cU{(a,t)}, 1)

5: do(remove(a),o,t) = ({e € o | fst(e) # a}, L)

6: merge(Oica, Og, Op) =

(alca Nog, N Ub) U (Ga - Glca) U (Ub - Ulca)

12

Specifying OR-Set

Abstract state I = (E, oper, rval, time, vis)

Specifying OR-Set

Abstract state I = (E, oper, rval, time, vis)

13

Specifying OR-Set

Abstract state I = (E, oper, rval, time, vis)

Forset (rd, (E, oper, rval, time, vis)) = {a | e € E. oper(e)

vis

= add(a) A = (3f € E. oper(f) = remove(a) Ae — f)}

13

Specifying OR-Set

Abstract state I = (E, oper, rval, time, vis)

Forset (rd, (E, oper, rval, time, vis)) = {a | e € E. oper(e)

vis

= add(a) A = (3f € E. oper(f) = remove(a) Ae — f)}

13

Simulation Relation

Simulation Relation

e Connects the abstract state with the concrete state

14

Simulation Relation

e Connects the abstract state with the concrete state

e For the OR-set,

14

Simulation Relation

e Connects the abstract state with the concrete state

e For the OR-set,

RsimIl,0) < (V(a,t) €0
(de € IL.LE A L. oper(e) = add(a) A Ltime(e) =t A

vis

—(3f € .LEAI. oper(f) = remove(a) Ae — f)))

14

Simulation Relation

e Connects the abstract state with the concrete state

e For the OR-set,

RsimIl,0) < (V(a,t) €0
(de € IL.LE A L. oper(e) = add(a) A Ltime(e) =t A

vis

—(3f € .LEAI. oper(f) = remove(a) Ae — f)))

e The main verification effort is to show that the relation above is
indeed a simulation relation

* Shown separately for operations and merge function

* Proof by induction on the execution trace

14

Verification effort

MRDTs verified #Lines code #Lines proof #Lemmas Verif. time (s)
Increment-only counter 6 43 2 3.494
PN counter 8 43 2 23.211
Enable-wins flag 20 58 3 1074
81 6 171
89 7 104
LWW register 5 i 1 4.21
G-set 10 23 0 4.71
28 1 2.462
33 2 1.993
G-map 438 26 0 26.089
Mergeable log 39 95 2 36.562
OR-set (§2.1.1) 0
1
2
OR-set-space (§2.1.2) 59 108 7 1716
OR-set-spacetime 97 266 7 1854
Queue 32 1123 75 4753

15

Verification effort

MRDTs verified #Lines code #Lines proof #Lemmas Verif. time (s)
Increment-only counter 6 43 2 3.494
PN counter 8 43 2 23.211
Enable-wins flag 20 58 3 1074
81 6 171
89 7 104
LWW register 5 4 1 4.21
G-set 10 23 0 4.71
28 1 2.462
33 2 1.993
G-map 438 26 0 26.089
Mergeable log 39 95 2 36.562
OR-set (§2.1.1) 30 36 0 43.85
41 1 21.656
46 2 8.829
OR-set-space (§2.1.2) 59 108 7 1716
OR-set-spacetime 97 266 7 1854
Queue 32 1123 75 4753

15

Composing RDTs is HARD!

Martin Kleppmann
@martinkl

Today in “distributed systems are hard”: | wrote down
a simple CRDT algorithm that | thought was “obviously
correct” for a course I’m teaching. Only 10 lines or so
long. Found a fatal bug only after spending hours trying
to prove the algorithm correct. %

4:18 AM - Nov 13, 2020 - Tweetbot for iOS

41 Retweets 4 Quote Tweets 541 Likes

Martin Kleppmann @martinkl - Nov 13, 2020
The interesting thing about this bug is that it comes about only from the
interaction of two features. A LWW map by itself is fine. A set in which you

can insert and delete elements (but not update them) is fine. The problem
arises only when delete and update interact.

O 1 QO 16 T

16

Composing IRC-style chat

e Build IRC-style group chat

* Send and read messages in channels

Composing IRC-style chat

e Build IRC-style group chat

* Send and read messages in channels

e Represent application state as a map MRDT

* String (channel name) keys — mergeable-log MRDT values

17

Composing IRC-style chat

e Build IRC-style group chat

* Send and read messages in channels
e Represent application state as a map MRDT

* String (channel name) keys — mergeable-log MRDT values
¢ Goal:

* map and log proved correct separately

*x Use the proof of underlying RDTs to prove chat application
correctness

17

Generic Map MRDT

Implementation
Da-map = (2, 00, do, mergeq_map) Where
. Zg-map = P(string X 2,)
2: op = {}

5 8(o.k) = o(k), ifk e dom(o)

0o, otherwise
4: do(set(k,o0p),0,t) =
let (v,r) = dog(04,0(0,k),t) in (o[k — v],r)
5: do(get(k,o0y),0,t) =
let (_,r) =dog(04,6(0,k),t) in (o,1)
6: mergeq—map(Cicas Oa, Ob) =
{(k,v) | (k € dom(0jcq) U dom(o,) U dom(op)) A

v = mergey(8(0y.q, k), 6(04 k), d(0p, k
Simulation Relation gea ({01)0), 0005, K))

Rsim-a-map(l, 0) & Vk.
1: (k € dom(c) <= e € L.E. oper(e) = set(k,_)) A
2: Rsim-a (project(k,I), 6(o,k))

18

Generic Map MRDT

Implementation

1:
2:

3:

Da-map = (2, 00, do, mergeq_map) Where
Zg-map = P (string X Z,) » The values in the MRDT map are MRDTs
oo = {}

o(k), ifk e dom(o)
0o, otherwise
do(set(k,o0y),0,t) =

let (v,r) = dog(04,0(0,k),t) in (o[k — v],r)
do(get(k,o0,),0,t) =

let (_,r) =dog(04,6(0,k),t) in (o,1)
mergea—map(o'lcas Oa; O'b) -

{(k,v) | (k € dom(0jcq) U dom(o,) U dom(op)) A
U= mergeéq (5(Glcas k), 5(Uaa k), 5(0'1), k))

d5(o, k) =

Simulation Relation

1:
2:

Rsim-a-map(l, 0) & Vk.
(k € dom(oc) &= e € L.E. oper(e) =set(k,_)) A
Rsim-a (project(k,I), 6(o,k))

18

1:
2:

3:

Generic Map MRDT

Implementation

Da-map = (2, 00, do, mergeq_map) Where
Zg-map = P (string X Zy) » The values in the MRDT map are MRDTs
oo = {}

o(k), ifk e dom(o)
0o,, Ootherwise
do(set(k,o0y),0,t) =
let (v,r) = dog(04,0(0,k),t) in (o[k — v],r)
do(get(k,o0,),0,t) =
let (_,r) =dog(04,6(0,k),t) in (o,r)

mergea—map(o-lcaa Oa, Ub) =

{(k,v) | (k € dom(0o1cq) U dom(o,) U dom(op)) A

d5(o, k) =

v = mergeq (8(01ca, k), 8(0a, k), 8(03, k) —

Simulation Relation

1:
2:

Rsim-a-map(l, 0) & Vk.
(k € dom(c) <= e € I.E. oper(e) =set(k,_)) A
Rsim-a (ProjeCt(k, I): 5(U> k))

18

Merge uses the merge of the
underlying value type!

Generic Map MRDT

Implementation
Da-map = (2, 00, do, mergeq_map) Where
I Zg-map = P(string X Z,) » The values in the MRDT map are MRDTs
2: 0o ={}

o(k), ifk e dom(o)
0o, otherwise
4: do(set(k,0p),0,t) =
let (v,r) = dog(04,0(0,k),t) in (o[k — v],r)
5: do(get(k,o0y),0,t) =
let (_,r) =dog(04,6(0,k),t) in (o,r)
6: mergeq—map(Cicas Oa, Ob) =
{(k,v) | (k € dom(o1cq) U dom(c,) U dom(aop)) A Merge uses the merge of the
0 = mergeq(8(0ica, k), 8(0a, k), 8(0p,k)) — underlying value type!

3: 5(0’, k) =

Simulation Relation

Rsim-a-map(l,0) & Vk.
1: (k € dom(o) <= e € L.E. oper(e) = set(k,_)) A
2. Rsim-a (project(k,I), 6(o,k))

\ Simulation relation appeals to the
value type’s simulation relation!

18

Composing IRC-style chat

e |[RC app state is constructed by instantiating generic map with
mergeable log

e The proof of correctness of the chat application directly follows
from the composition.

* See paper for details!

qQ) g
-
a-
g __S -
LT
- anvt® taa,
e—— (3 Yo
* ‘e
. .
.
* ‘e
o *,
S R N
B .
) o *
N -
* .
B .
o *
) .
) .
) .
-
-
-
.
.
.
.

Summary

e Peepul
+ An F* library implementing and proving MRDTs

*x https://github.com/prismlab/peepul

Summary

e Peepul

+ An F* library implementing and proving MRDTs & el
*x https://github.com/prismlab/peepul

® Space- and time-efficient implementations

* Certified implementation of a O(1) replicated queue with O(n) merge.

Summary

e Peepul

+ An F* library implementing and proving MRDTs & el
*x https://github.com/prismlab/peepul

® Space- and time-efficient implementations

* Certified implementation of a O(1) replicated queue with O(n) merge.

o Composition of MRDTs and their proofs!

Summary

Peepul | o R
+ An F* library implementing and proving MRDTs s heb %li% % 9@
*x https://github.com/prismlab/peepul °
Space- and time-efficient implementations

* Certified implementation of a O(1) replicated queue with O(n) merge.
Composition of MRDTs and their proofs!

See paper for

+ Formal description of the system + soundness proof

+ Case study on replicated queues

4+ Performance results

