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• A formal specification language to capture the intent of the 

MRDT

✦ Must be rich enough to capture eventual consistency

• Even simple data types attract enormous complexity when made 
distributed

• Mechanization to bridge the gap between spec and impl
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2014

• Replication-aware simulation to connect specification with implementation

• Space- and time-efficient implementations

★ 1st certified implementation of a O(1) replicated queue with O(n) merge.

• Composition of MRDTs and their proofs!

• Extracted RDTs are compatible with Irmin — a Git-like distributed database
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Unique Lamport Timestamps
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Simulation Relation
• Connects the abstract state with the concrete state

• For the OR-set,

• The main verification effort is to show that the relation above is 
indeed a simulation relation

★ Shown separately for operations and merge function

★ Proof by induction on the execution trace
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Composing IRC-style chat
• Build IRC-style group chat

★ Send and read messages in channels

• Represent application state as a map MRDT

★ String (channel name) keys → mergeable-log MRDT values

• Goal: 

★ map and log proved correct separately

★ Use the proof of underlying RDTs to prove chat application 
correctness

17
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Generic Map MRDT
Implementation

Simulation Relation

Merge uses the merge of the 
underlying value type!

Simulation relation appeals to the 
value type’s simulation relation!

The values in the MRDT map are MRDTs



• IRC app state is constructed by instantiating generic map with 
mergeable log

• The proof of correctness of the chat application directly follows 
from the composition.

★ See paper for details!
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Summary
• Peepul

✦ An F* library implementing and proving MRDTs

★ https://github.com/prismlab/peepul

• Space- and time-efficient implementations

★ Certified implementation of a O(1) replicated queue with O(n) merge.

• Composition of MRDTs and their proofs!

• See paper for

✦ Formal description of the system + soundness proof

✦ Case study on replicated queues

✦ Performance results 


