
Effectively Composing
Concurrency Libraries

“KC” Sivaramakrishnan
Joint work with Deepali Ande & Sudha Parimala

OCaml 5.0 is out
• First industrial-strength language to support

effect handlers!

• Effects in OCaml 5 are unchecked

✦ Structured programming with one-shot
delimited continuations

• Implemented with runtime-managed,
dynamically-growing stack segments

• Deep and Sheep handlers are supported as
library functions

5.0

Concurrent Programming
• Primary motivation is direct-style concurrency as a library

• Direct-style concurrency

✦ As opposed to monadic concurrency — Lwt and Async

✦ Pros — fewer closures, backtraces, exceptions, no function colours

• As a library

✦ As opposed to primitive concurrency — GHC Haskell and Go

✦ Pros — Specialising schedulers for problems, smaller compiler

Many libraries!
• IO — round-robin scheduling, work-sharing

✦ Eio — asynchronous & parallel IO, structured concurrency, multiple
backends (io_uring, epoll, iocp, GCD)

✤ Heading towards 1.0 around ICFP

✦ Oslo — parallel IO

✦ Miou — parallel IO

✦ Affect — “composable” concurrent IO

• Parallelism

✦ Domainslib — Nested parallel programming, work-stealing

✦ Moonpool — Parallelism over thread pools

Great, but…

https://github.com/ocaml-multicore/eio
https://web.archive.org/web/20230529055541/http://haesbaert.org/oslo/oslo/Oslo/index.html
https://github.com/roburio/miou
https://erratique.ch/software/affect
https://github.com/ocaml-multicore/domainslib
https://github.com/c-cube/moonpool/

Monolithic libraries

• Each library implements its own incompatible notion tasks

✦ Tasks = User-level lightweight threads

✦ Domains = A unit of parallel execution (~= system/OS thread)

• Crux of the problem

✦ Each library has its own notion of blocking and unblocking tasks

Each library ends up being
a non-composable monolith

Why compose?
• High-performance job processor app

✦ Requests from remote clients, parallelised over multiple domains,
results sent back

• Recursive fibonacci compute server

✦ Compute fib(n) where n is from the client

• Libraries

✦ Eio — high-performance, safe networking

✦ Domainslib — nested parallel programming

• Compose these two to build the app?

module T = Domainslib.Task

(* set up a pool of [num_domains] domains for

 parallel computation *)

let pool = T.setup_pool ~num_domains ()

let main () = 
 let sock = Eio.Net.listen ... in

 (* Runs once per request in an Eio task *)

 let request_handler n =

 T.run pool (fun _ -> fib_par n)

 in

 while true do 
 (* spawn an Eio task to run [request_handler] per request *)

 Eio.Net.accept_fork sock ... request_handler ...

 done 

let () = Eio_main.run main

Recursive Fib server
Eio

Scheduler

Domainslib
Scheduler

Recursive Fib server
module T = Domainslib.Task

(* set up a pool of [num_domains] domains for

 parallel computation *)

let pool = T.setup_pool ~num_domains ()

(* Parallel Fibonacci computation *)

let rec fib_par n =

 let rec fib n =

 if n < 2 then 1

 else fib (n - 1) + fib (n - 2)

 in

 if n > 20 then begin

 let a = T.async pool (fun _ -> fib_par (n-1)) in

 let b = T.async pool (fun _ -> fib_par (n-2)) in

 T.await pool a + T.await pool b

 end else

 fib n

Intended Behaviour

Concurrent client requests are pipelined to the domainslib pool

Eio
Scheduler

module T = Domainslib.Task

(* set up a pool of [num_domains] domains for

 parallel computation *)

let pool = T.setup_pool ~num_domains ()

let main () = 
 let sock = Eio.Net.listen ... in

 (* Runs once per request in an Eio task *)

 let request_handler n =

 T.run pool (fun _ -> fib_par n)

 in

 while true do 
 (* spawn an Eio task to run [request_handler] per request *)

 Eio.Net.accept_fork sock ... request_handler ...

 done 

let () = Eio_main.run main

The trouble

Eio tasks

Blocks the entire domain
(Eio Scheduler)

Observed Behaviour

While the client network requests are handled concurrently,
domainslib processing is serial

What’s going wrong?
• What we needed

✦ Eio task must wait for domainslib task completion

✦ We used Domainslib.Task.run is a domainslib-specific blocking
operation

✤ Had to use it since there is no scheduler-independent way of blocking

• Deeper trouble

✦ Every concurrency library implements its own set of blocking data
structures — promises, channels / streams, MVars, mutex, condition,
work-stealing queues, …

✦ Often tricky (buggy) lock-free implementations

✦ All implementations are the same modulo the blocking behaviour!

Why is it important?
• OCaml 4 IO ecosystem already split between Async & Lwt

✦ Users must often pick one and stick to it

• OCaml 5 ecosystem may split between incompatible effect-
based concurrency libraries

✦ though purposes may be different — eio + domainslib

• Similar challenge in Rust

✦ Tokio (Eio) for IO & Rayon (Domainslib) for data-parallelism

✦ Bespoke tokio_rayon crate for safely-mixing the two

✤ Bespoke composition not scalable!

• Need to solve this for all general purpose languages using effect
handlers for concurrency — Wasm

https://docs.rs/tokio-rayon/latest/tokio_rayon/

Solution: Scheduler Effect
• A single Suspend effect to describe how to suspend and

resume tasks

✦ Schedulers handle Suspend effect

✦ Scheduler-independent blocking concurrency libraries perform Suspend
effect in order to block and unblock tasks

Domainslib
Scheduler

Eio

Scheduler

Scheduler-
independent

Promise

OS thread 1 OS thread 2

Eio
Scheduler

Domainslib
Scheduler

Horizontal
composition

Vertical
composition

Suspend Effect

• To block the current task, perform Suspend {block}
✦ block is defined by the blocking data structure

✦ block is applied to the resumer function

• To unblock the blocked task, apply resumer to a value

✦ resumer defined by the scheduler

✦ resumer closes over the delimited continuation

• Due to parallelism, the condition to block may no longer be true

✦ block must return None to the scheduler to indicate successful blocking

✦ block must return Some v to the scheduler to indicate immediate
resumption with v

type 'a resumer = 'a -> unit

type _ Effect.t += Suspend : {block: (‘a resumer -> 'a option)} -> 'a t

Handling Suspend
| Suspend {block} -> Some (fun (k: (a,_) continuation) ->

 let resumer v = (* closes over continuation [k] *)

 let wakeup = Queue.is_empty run_q in

 enqueue k v;

 if wakeup then begin

 (* Wake up this sleeping domain *)

 Mutex.lock m; Condition.signal c; Mutex.unlock m

 end

 in

 match block resumer with

 | None -> resume_next () (* Resume another task *)

 | Some v -> continue k v) (* Resume immediately *)

Scheduler-independent Promise
module type Promise = sig

 type 'a t

 val create : unit -> 'a t

 exception Already_filled

 val fill : 'a t -> 'a -> unit

 val await : 'a t -> 'a

end

type 'a state = Full of 'a

 | Empty of 'a resumer list

type 'a t = 'a state Atomic.t

let create () = Atomic.make (Empty [])

exception Already_filled

let rec fill pv =

 let old = Atomic.get p in

 match old with

 | Full _ -> raise Already_filled

 | Empty l ->

 if Atomic.compare_and_set p old (Full v)

 then List.iter (fun r -> r v) l (* resume waiters *)

 else fill p v (* CAS failure; retry *)

Scheduler-independent Promise
 let await p =

 let rec block r =

 let old = Atomic.get p in

 match old with

 | Full v -> Some v (* Resume immediately *)

 | Empty l ->

 if Atomic.compare_and_set p old (Empty (r::l))

 then None (* Blocked successfully *)

 else block r (* CAS failure; retry *)

 in

 let old = Atomic.get p in

 match old with

 | Full v -> v

 | _ -> perform (Suspend {block})

Synchronisation structures
• Able to implement all blocking data structures in scheduler-

independent manner

✦ Promises, Channels, Mutex, Condition, …

• Different concurrency libraries are able to dynamically use the
same structure to communicate & synchronise

✦ Better than functorising the data structure for a specific scheduler

Cancellation
• When tasks are cheap, cancellation becomes prominent

✦ Parallel DFS — cancel parallel search tasks on finding the first match

✦ Async IO — issue concurrent requests; cancel all when one fails

• Cancellation is varied

✦ Structured concurrency — tree-structured hierarchy of tasks that are
cancelled together

✦ p2p cancellation — kill an individual task à la pthread_kill

• Suspend should be cancellation aware
module Mutex = struct

 type state = Unlocked

 | Locked of unit resumer list

 type t = state Atomic.t

 ...

Do not transfer lock to a
cancelled task!

Cancellation — Scheduler
• Say our aim is to support a pthread_kill style API

type handle

val fork : (unit -> unit) -> handle

val cancel : handle -> unit

type handle = {mutable cancelled : bool}

let cancel task = task.cancelled <- true

(* Scheduler maintains a queue of [task]s *)

type task = Task: handle * ('a,unit) continuation * 'a -> task

let rec resume_next () =

 match Queue.pop run_q with

 | Some (Task (handle, k, v)) -> (* resume the next task *)

 if handle.cancelled then discontinue k Exit else continue k v

 ...

Cancellation — Scheduler

| Suspend {block} -> Some (fun (k: (a,_) continuation) ->

 let resumer v =

 let wakeup = Queue.is_empty run_q in

 enqueue k v;

 if wakeup then begin

 Mutex.lock m; Condition.signal c; Mutex.unlock m

 end;

 not handle.cancelled

 in

 match block resumer with

 | None -> dequeue () (* Resume next task *)

 | Some v -> (* Resume immediately *)

 if handle.cancelled then discontinue k Exit

 else continue k v)

type 'a resumer = 'a -> bool (* instead of [unit]; is task alive? *)

type _ Effect.t += Suspend: {block: (‘a resumer -> 'a option)} -> 'a t

Cancellation — Mutex
let rec unlock m =

 let old = Atomic.get m in

 match old with

 | Unlocked -> failwith “impossible"

 | Locked [] ->

 if Atomic.compare_and_set m old Unlocked

 then () (* Unlocked successfully *)

 else unlock m (* failed CAS; retry *)

 | Locked (r::rs) ->

 if Atomic.compare_and_set m old (Locked rs)

 then begin

 if r () then () (* Unlocked successfully & transferred control *)

 else unlock m (* cancelled; wake up next task *)

 end else unlock m (* failed CAS; retry *)

Concurrency-aware Lazy
• OCaml deeply supports lazy computations

✦ Syntax, lazy pattern matches, short-circuiting by the GC

• Not concurrency aware

✦ Raises Undefined exception on recursive or concurrent forcing

• Lazy computations may have side effects

✦ Concurrent tasks forcing a lazy need to be blocked and unblocked

✦ Suspend effect to the rescue!

• Needs a change in lazy value representation (1 word larger) and
Suspend type

type 'a resumer = ('a,exn) Result.t (* instead of ['a] *) -> bool

type _ Effect.t += Suspend: {block: (‘a resumer -> 'a option)} -> 'a t

Status
• Current solution does not use effect handlers but uses domain-

local state — Domain-local await

✦ Pragmatic decision — works with OCaml 4, which doesn’t support
effects; Use of domains & systhreads directly

• Data structure libraries build on domain-local await

✦ Saturn — parallel data structures (lockfree & lock-based, composable
& non-composable)

✦ kcas — lock-free STM based on multi-word compare-and-swap

• Concurrency libraries build on domain-local await

✦ Eio, Domainslib and Moonpool now use domain-local await

Q: Are effect handlers necessary for this?

https://github.com/ocaml-multicore/domain-local-await

Specification

type 'a resumer = ('a,exn) Result.t -> bool

type _ Effect.t += Suspend: {block: (‘a resumer -> 'a option)} -> 'a t

Q: How to better specify expectations
on the scheduler and the data structures?

The effect signature is hard to comprehend

Equations?
Refinements?

…

Conclusion
• The ability to define own concurrency libraries using effect

handlers may lead to monolithic and incompatible libraries

• Suspend effect to define blocking and unblocking semantics

✦ Permits concurrency library composition

✦ Permits scheduler-independent blocking data structures

• Working draft

✦ Deepali et al, “Effectively Composing Concurrency Libraries”, https://
kcsrk.info/papers/composable_concurrency.pdf

✦ Includes

✤ composing monadic libraries

✤ Details of changes to lazy blocks

https://kcsrk.info/papers/composable_concurrency.pdf
https://kcsrk.info/papers/composable_concurrency.pdf

