
Efficient Session Type Guided
Distributed Interaction
KC Sivaramakrishnan, Karthik Nagaraj, Lukasz
Ziarek, Patrick Eugster

Purdue University

Monday, June 7, 2010

Motivation

Monday, June 7, 2010

Motivation

Building distributed systems is difficult

Monday, June 7, 2010

Motivation

Building distributed systems is difficult

Simplicity over performance and expressivity

Monday, June 7, 2010

Motivation

Building distributed systems is difficult

Simplicity over performance and expressivity

Java Remote Method Invocation (RMI)

Monday, June 7, 2010

Motivation

Building distributed systems is difficult

Simplicity over performance and expressivity

Java Remote Method Invocation (RMI)

Invoke remote methods on remote objects through proxies

Monday, June 7, 2010

Motivation

Building distributed systems is difficult

Simplicity over performance and expressivity

Java Remote Method Invocation (RMI)

Invoke remote methods on remote objects through proxies

Hides network complexities from the programmer

Monday, June 7, 2010

Motivation

Building distributed systems is difficult

Simplicity over performance and expressivity

Java Remote Method Invocation (RMI)

Invoke remote methods on remote objects through proxies

Hides network complexities from the programmer

Limitations

Monday, June 7, 2010

Motivation

Building distributed systems is difficult

Simplicity over performance and expressivity

Java Remote Method Invocation (RMI)

Invoke remote methods on remote objects through proxies

Hides network complexities from the programmer

Limitations

synchronous and sequential

Monday, June 7, 2010

Motivation

Building distributed systems is difficult

Simplicity over performance and expressivity

Java Remote Method Invocation (RMI)

Invoke remote methods on remote objects through proxies

Hides network complexities from the programmer

Limitations

synchronous and sequential

Overuse can lead to poor performance

Monday, June 7, 2010

Motivation

Building distributed systems is difficult

Simplicity over performance and expressivity

Java Remote Method Invocation (RMI)

Invoke remote methods on remote objects through proxies

Hides network complexities from the programmer

Limitations

synchronous and sequential

Overuse can lead to poor performance

cannot reason about sessions

Monday, June 7, 2010

Invitation Example - The Setting

Monday, June 7, 2010

Invitation Example - The Setting

Bob wants to throw a party to colleagues

Monday, June 7, 2010

Invitation Example - The Setting

Bob wants to throw a party to colleagues

Utilize a social networking API for accessing friends’
data

Monday, June 7, 2010

Invitation Example - The Setting

Bob wants to throw a party to colleagues

Utilize a social networking API for accessing friends’
data

Social networking API is implemented in Java RMI

Monday, June 7, 2010

Invitation Example - The Setting

Bob wants to throw a party to colleagues

Utilize a social networking API for accessing friends’
data

Social networking API is implemented in Java RMI

Email invitation is sent for chosen colleagues

Monday, June 7, 2010

Invitation Example - RMI Style

InfoSvr

MailSvr

Bob

Monday, June 7, 2010

void invite_coworkers() {
 Event evt = me.createEvent(“party”,“June 7th, 2010);
 Employer myEmp = me.getEmployer();
 Location myLoc = me.getLocation();
 for (Member friend : me.getFriends()) {
 if (myEmp.equals(friend.getEmployer()) &&
 myLoc.equals(friend.getLocation()) &&
 User.approve(friend)) {
 mailSvr.sendMail(friend.getEmailId(),evt);
 }
 }

Invitation Example - RMI Style

InfoSvr

MailSvr

Bob

Monday, June 7, 2010

void invite_coworkers() {
 Event evt = me.createEvent(“party”,“June 7th, 2010);
 Employer myEmp = me.getEmployer();
 Location myLoc = me.getLocation();
 for (Member friend : me.getFriends()) {
 if (myEmp.equals(friend.getEmployer()) &&
 myLoc.equals(friend.getLocation()) &&
 User.approve(friend)) {
 mailSvr.sendMail(friend.getEmailId(),evt);
 }
 }

Invitation Example - RMI Style

InfoSvr

MailSvr

Bob
<“party”, date>

Monday, June 7, 2010

myEmp

void invite_coworkers() {
 Event evt = me.createEvent(“party”,“June 7th, 2010);
 Employer myEmp = me.getEmployer();
 Location myLoc = me.getLocation();
 for (Member friend : me.getFriends()) {
 if (myEmp.equals(friend.getEmployer()) &&
 myLoc.equals(friend.getLocation()) &&
 User.approve(friend)) {
 mailSvr.sendMail(friend.getEmailId(),evt);
 }
 }

Invitation Example - RMI Style

InfoSvr

MailSvr

Bob

Monday, June 7, 2010

myLoc

void invite_coworkers() {
 Event evt = me.createEvent(“party”,“June 7th, 2010);
 Employer myEmp = me.getEmployer();
 Location myLoc = me.getLocation();
 for (Member friend : me.getFriends()) {
 if (myEmp.equals(friend.getEmployer()) &&
 myLoc.equals(friend.getLocation()) &&
 User.approve(friend)) {
 mailSvr.sendMail(friend.getEmailId(),evt);
 }
 }

Invitation Example - RMI Style

InfoSvr

MailSvr

Bob

Monday, June 7, 2010

void invite_coworkers() {
 Event evt = me.createEvent(“party”,“June 7th, 2010);
 Employer myEmp = me.getEmployer();
 Location myLoc = me.getLocation();
 for (Member friend : me.getFriends()) {
 if (myEmp.equals(friend.getEmployer()) &&
 myLoc.equals(friend.getLocation()) &&
 User.approve(friend)) {
 mailSvr.sendMail(friend.getEmailId(),evt);
 }
 }

Invitation Example - RMI Style

friend

InfoSvr

MailSvr

Bob

Monday, June 7, 2010

void invite_coworkers() {
 Event evt = me.createEvent(“party”,“June 7th, 2010);
 Employer myEmp = me.getEmployer();
 Location myLoc = me.getLocation();
 for (Member friend : me.getFriends()) {
 if (myEmp.equals(friend.getEmployer()) &&
 myLoc.equals(friend.getLocation()) &&
 User.approve(friend)) {
 mailSvr.sendMail(friend.getEmailId(),evt);
 }
 }

Invitation Example - RMI Style

InfoSvr

MailSvr

Bob

Monday, June 7, 2010

void invite_coworkers() {
 Event evt = me.createEvent(“party”,“June 7th, 2010);
 Employer myEmp = me.getEmployer();
 Location myLoc = me.getLocation();
 for (Member friend : me.getFriends()) {
 if (myEmp.equals(friend.getEmployer()) &&
 myLoc.equals(friend.getLocation()) &&
 User.approve(friend)) {
 mailSvr.sendMail(friend.getEmailId(),evt);
 }
 }

Invitation Example - RMI Style

InfoSvr

MailSvr

Bob

Monday, June 7, 2010

void invite_coworkers() {
 Event evt = me.createEvent(“party”,“June 7th, 2010);
 Employer myEmp = me.getEmployer();
 Location myLoc = me.getLocation();
 for (Member friend : me.getFriends()) {
 if (myEmp.equals(friend.getEmployer()) &&
 myLoc.equals(friend.getLocation()) &&
 User.approve(friend)) {
 mailSvr.sendMail(friend.getEmailId(),evt);
 }
 }

Invitation Example - RMI Style

InfoSvr

MailSvr

Bob

Monday, June 7, 2010

void invite_coworkers() {
 Event evt = me.createEvent(“party”,“June 7th, 2010);
 Employer myEmp = me.getEmployer();
 Location myLoc = me.getLocation();
 for (Member friend : me.getFriends()) {
 if (myEmp.equals(friend.getEmployer()) &&
 myLoc.equals(friend.getLocation()) &&
 User.approve(friend)) {
 mailSvr.sendMail(friend.getEmailId(),evt);
 }
 }

Invitation Example - RMI Style

InfoSvr

MailSvr

Bob

Monday, June 7, 2010

void invite_coworkers() {
 Event evt = me.createEvent(“party”,“June 7th, 2010);
 Employer myEmp = me.getEmployer();
 Location myLoc = me.getLocation();
 for (Member friend : me.getFriends()) {
 if (myEmp.equals(friend.getEmployer()) &&
 myLoc.equals(friend.getLocation()) &&
 User.approve(friend)) {
 mailSvr.sendMail(friend.getEmailId(),evt);
 }
 }

Invitation Example - RMI Style

InfoSvr

MailSvr

Bob

Monday, June 7, 2010

Reducing Remote Calls

Monday, June 7, 2010

Reducing Remote Calls
Export entire function call to InfoSvr

Monday, June 7, 2010

Reducing Remote Calls
Export entire function call to InfoSvr

Not possible due to user approval process

Monday, June 7, 2010

Reducing Remote Calls
Export entire function call to InfoSvr

Not possible due to user approval process

Remote facade pattern

Monday, June 7, 2010

Reducing Remote Calls
Export entire function call to InfoSvr

Not possible due to user approval process

Remote facade pattern

Specialized remote method for each client access
pattern

Monday, June 7, 2010

Reducing Remote Calls
Export entire function call to InfoSvr

Not possible due to user approval process

Remote facade pattern

Specialized remote method for each client access
pattern

Server code needs to be changed

Monday, June 7, 2010

Reducing Remote Calls
Export entire function call to InfoSvr

Not possible due to user approval process

Remote facade pattern

Specialized remote method for each client access
pattern

Server code needs to be changed

Data transfer object

Monday, June 7, 2010

Reducing Remote Calls
Export entire function call to InfoSvr

Not possible due to user approval process

Remote facade pattern

Specialized remote method for each client access
pattern

Server code needs to be changed

Data transfer object

Single coarse grained data transfer instead of
multiple fine grained transfers

Monday, June 7, 2010

Reducing Remote Calls
Export entire function call to InfoSvr

Not possible due to user approval process

Remote facade pattern

Specialized remote method for each client access
pattern

Server code needs to be changed

Data transfer object

Single coarse grained data transfer instead of
multiple fine grained transfers

Over-approximation

Monday, June 7, 2010

Goals

Monday, June 7, 2010

Goals

How do we...

Monday, June 7, 2010

Goals

How do we...

Automatically reduce remote communication actions

Monday, June 7, 2010

Goals

How do we...

Automatically reduce remote communication actions

Optimize multi-party communication

Monday, June 7, 2010

Goals

How do we...

Automatically reduce remote communication actions

Optimize multi-party communication

while

Monday, June 7, 2010

Goals

How do we...

Automatically reduce remote communication actions

Optimize multi-party communication

while

preserving semantics of remote execution

Monday, June 7, 2010

Goals

How do we...

Automatically reduce remote communication actions

Optimize multi-party communication

while

preserving semantics of remote execution

not imposing substantial runtime overheads

Monday, June 7, 2010

Session Type

Monday, June 7, 2010

Session Type

Abstraction to precisely describe communication
protocols

Monday, June 7, 2010

Session Type

Abstraction to precisely describe communication
protocols

Typed messages

Monday, June 7, 2010

Session Type

Abstraction to precisely describe communication
protocols

Typed messages

Ordered

Monday, June 7, 2010

Session Type

Abstraction to precisely describe communication
protocols

Typed messages

Ordered

Explicit control flow information through label
selection and recursive types

Monday, June 7, 2010

Session Type

Abstraction to precisely describe communication
protocols

Typed messages

Ordered

Explicit control flow information through label
selection and recursive types

Multiparty Asynchronous Session Types [Honda et al.
POPL ’08]

Monday, June 7, 2010

Session Type

Abstraction to precisely describe communication
protocols

Typed messages

Ordered

Explicit control flow information through label
selection and recursive types

Multiparty Asynchronous Session Types [Honda et al.
POPL ’08]

bi-party session types for Java [Hu et al. ECOOP ’08]

Monday, June 7, 2010

Session Type Guided Optimization

Monday, June 7, 2010

Session Type Guided Optimization

Session types for protocol optimization

Monday, June 7, 2010

Session Type Guided Optimization

Session types for protocol optimization

Utilize type and control flow information for direct
optimization

Monday, June 7, 2010

Session Type Guided Optimization

Session types for protocol optimization

Utilize type and control flow information for direct
optimization

Program transformation through session type guided
data flow analysis

Monday, June 7, 2010

Session Type Guided Optimization

Session types for protocol optimization

Utilize type and control flow information for direct
optimization

Program transformation through session type guided
data flow analysis

Java extension for multi-party session types

Monday, June 7, 2010

Session Type Guided Optimization

Session types for protocol optimization

Utilize type and control flow information for direct
optimization

Program transformation through session type guided
data flow analysis

Java extension for multi-party session types

Language extension

Monday, June 7, 2010

Session Type Guided Optimization

Session types for protocol optimization

Utilize type and control flow information for direct
optimization

Program transformation through session type guided
data flow analysis

Java extension for multi-party session types

Language extension

Compiler and runtime framework

Monday, June 7, 2010

Simple Example

Monday, June 7, 2010

Simple Example

Bob DeepThought

Monday, June 7, 2010

Simple Example
“What is the ultimate answer to life, universe and

everything?”

Bob DeepThought

Monday, June 7, 2010

Simple Example
“What is the ultimate answer to life, universe and

everything?”

“42”

Bob DeepThought

Monday, June 7, 2010

Simple Example
“What is the ultimate answer to life, universe and

everything?”

“42”

Bob DeepThought

Global session type

protocol simple {
 participants Bob, DeepThought;
 Bob: begin;
 Bob->DeepThought:<string>;
 DeepThought->Bob:<string>;
}

Monday, June 7, 2010

protocol simple@DeepThought {
 Bob:?begin;
 Bob:?<string>;
 Bob:!<string>;
}

Simple Example
“What is the ultimate answer to life, universe and

everything?”

“42”

Bob DeepThought

protocol simple@Bob {
 !begin;
 DeepThought:!<string>;
 DeepThought:?<string>;
}

Global session type

Local session types

protocol simple {
 participants Bob, DeepThought;
 Bob: begin;
 Bob->DeepThought:<string>;
 DeepThought->Bob:<string>;
}

Monday, June 7, 2010

Session Implementation

Monday, June 7, 2010

Session Implementation

Programmer implements the participant with Java
extension for session type

Monday, June 7, 2010

Session Implementation

Programmer implements the participant with Java
extension for session type

Session implementation is statically verified for
conformance with local session type

Monday, June 7, 2010

Session Implementation

Programmer implements the participant with Java
extension for session type

Session implementation is statically verified for
conformance with local session type

Runtime converts sends, receives and control flow
actions to network transfers

Monday, June 7, 2010

Session Implementation

Programmer implements the participant with Java
extension for session type

Session implementation is statically verified for
conformance with local session type

Runtime converts sends, receives and control flow
actions to network transfers

Exceptions are raised upon node and network failures

Monday, June 7, 2010

Invitation Example - Session Type
protocol invitation {
 participants Bob, InfoSvr, MailSvr;
 Bob: begin;
 InfoSvr->Bob: <Employer>;
 InfoSvr->Bob: <Location>;
 InfoSvr:
 [InfoSvr->Bob: <Member>;
 InfoSvr->Bob: <Employer>;
 InfoSvr->Bob: <Location>;
 InfoSvr->Bob: <EmailAddr>;
 Bob:
 {INVITE: Bob->MailSvr: <EmailAddr,Event>,
 NOOP:}
]*
}

Monday, June 7, 2010

Invitation Example - Session Type

Recursive type

protocol invitation {
 participants Bob, InfoSvr, MailSvr;
 Bob: begin;
 InfoSvr->Bob: <Employer>;
 InfoSvr->Bob: <Location>;
 InfoSvr:
 [InfoSvr->Bob: <Member>;
 InfoSvr->Bob: <Employer>;
 InfoSvr->Bob: <Location>;
 InfoSvr->Bob: <EmailAddr>;
 Bob:
 {INVITE: Bob->MailSvr: <EmailAddr,Event>,
 NOOP:}
]*
}

Monday, June 7, 2010

Invitation Example - Session Type

Recursive type

protocol invitation {
 participants Bob, InfoSvr, MailSvr;
 Bob: begin;
 InfoSvr->Bob: <Employer>;
 InfoSvr->Bob: <Location>;
 InfoSvr:
 [InfoSvr->Bob: <Member>;
 InfoSvr->Bob: <Employer>;
 InfoSvr->Bob: <Location>;
 InfoSvr->Bob: <EmailAddr>;
 Bob:
 {INVITE: Bob->MailSvr: <EmailAddr,Event>,
 NOOP:}
]*
}

Loop guard

Monday, June 7, 2010

Invitation Example - Session Type
protocol invitation {
 participants Bob, InfoSvr, MailSvr;
 Bob: begin;
 InfoSvr->Bob: <Employer>;
 InfoSvr->Bob: <Location>;
 InfoSvr:
 [InfoSvr->Bob: <Member>;
 InfoSvr->Bob: <Employer>;
 InfoSvr->Bob: <Location>;
 InfoSvr->Bob: <EmailAddr>;
 Bob:
 {INVITE: Bob->MailSvr: <EmailAddr,Event>,
 NOOP:}
]*
}

Monday, June 7, 2010

Invitation Example - Session Type

Label selection

protocol invitation {
 participants Bob, InfoSvr, MailSvr;
 Bob: begin;
 InfoSvr->Bob: <Employer>;
 InfoSvr->Bob: <Location>;
 InfoSvr:
 [InfoSvr->Bob: <Member>;
 InfoSvr->Bob: <Employer>;
 InfoSvr->Bob: <Location>;
 InfoSvr->Bob: <EmailAddr>;
 Bob:
 {INVITE: Bob->MailSvr: <EmailAddr,Event>,
 NOOP:}
]*
}

Monday, June 7, 2010

Invitation Example - Session Type

Label selection

protocol invitation {
 participants Bob, InfoSvr, MailSvr;
 Bob: begin;
 InfoSvr->Bob: <Employer>;
 InfoSvr->Bob: <Location>;
 InfoSvr:
 [InfoSvr->Bob: <Member>;
 InfoSvr->Bob: <Employer>;
 InfoSvr->Bob: <Location>;
 InfoSvr->Bob: <EmailAddr>;
 Bob:
 {INVITE: Bob->MailSvr: <EmailAddr,Event>,
 NOOP:}
]*
}

Choice guard

Monday, June 7, 2010

Invitation Example - Type Driven
Optimizations
protocol invitation {
 participants Bob, InfoSvr, MailSvr;
 Bob: begin;
 InfoSvr->Bob: <Employer>;
 InfoSvr->Bob: <Location>;
 InfoSvr:
 [InfoSvr->Bob: <Member>;
 InfoSvr->Bob: <Employer>;
 InfoSvr->Bob: <Location>;
 InfoSvr->Bob: <EmailAddr>;
 Bob:
 {INVITE: Bob->MailSvr: <EmailAddr, Event>,
 NOOP:}
]*
}

Monday, June 7, 2010

Invitation Example - Type Driven
Optimizations
protocol invitation {
 participants Bob, InfoSvr, MailSvr;
 Bob: begin;
 InfoSvr->Bob: <Employer>;
 InfoSvr->Bob: <Location>;
 InfoSvr:
 [InfoSvr->Bob: <Member>;
 InfoSvr->Bob: <Employer>;
 InfoSvr->Bob: <Location>;
 InfoSvr->Bob: <EmailAddr>;
 Bob:
 {INVITE: Bob->MailSvr: <EmailAddr, Event>,
 NOOP:}
]*
}

Monday, June 7, 2010

Invitation Example - Type Driven
Optimizations
protocol invitation {
 participants Bob, InfoSvr, MailSvr;
 Bob: begin;
 InfoSvr->Bob: <Employer>;
 InfoSvr->Bob: <Location>;
 InfoSvr:
 [InfoSvr->Bob: <Member>;
 InfoSvr->Bob: <Employer>;
 InfoSvr->Bob: <Location>;
 InfoSvr->Bob: <EmailAddr>;
 Bob:
 {INVITE: Bob->MailSvr: <EmailAddr, Event>,
 NOOP:}
]*
}

Multiple contiguous sends can be batched

Monday, June 7, 2010

Invitation Example - Type Driven
Optimizations
protocol invitation {
 participants Bob, InfoSvr, MailSvr;
 Bob: begin;
 InfoSvr->Bob: <Employer,Location>;
 InfoSvr:
 [InfoSvr->Bob: <Member,Employer, Location, EmailAddr>;
 Bob:
 {INVITE: Bob->MailSvr: <EmailId, Event>,
 NOOP:}
]*
}

Monday, June 7, 2010

Invitation Example - Type Driven
Optimizations
protocol invitation {
 participants Bob, InfoSvr, MailSvr;
 Bob: begin;
 InfoSvr->Bob: <Employer,Location>;
 InfoSvr:
 [InfoSvr->Bob: <Member,Employer, Location, EmailAddr>;
 Bob:
 {INVITE: Bob->MailSvr: <EmailId, Event>,
 NOOP:}
]*
}

Monday, June 7, 2010

Invitation Example - Type Driven
Optimizations
protocol invitation {
 participants Bob, InfoSvr, MailSvr;
 Bob: begin;
 InfoSvr->Bob: <Employer,Location>;
 InfoSvr:
 [InfoSvr->Bob: <Member,Employer, Location, EmailAddr>;
 Bob:
 {INVITE: Bob->MailSvr: <EmailId, Event>,
 NOOP:}
]*
}

Can we batch together this recursive type?

Monday, June 7, 2010

Invitation Example - Type Driven
Optimizations
protocol invitation {
 participants Bob, InfoSvr, MailSvr;
 Bob: begin;
 InfoSvr->Bob: <Employer,Location>;
 InfoSvr:
 [InfoSvr->Bob: <Member,Employer, Location, EmailAddr>;
 Bob:
 {INVITE: Bob->MailSvr: <EmailId, Event>,
 NOOP:}
]*
}

Can we batch together this recursive type?

No intervening receives by InfoSvr in recursive type

Monday, June 7, 2010

Invitation Example - Type Driven
Optimizations

protocol invitation {
 participants Bob, InfoSvr, MailSvr;
 Bob: begin;
 InfoSvr->Bob: <Employer,Location>;

 InfoSvr->Bob: <Member,Employer, Location, EmailAddr>*;
 Bob:{INVITE: Bob->MailSvr: <EmailId, Event>, NOOP:}*
}

Monday, June 7, 2010

Invitation Example - Type Driven
Optimizations

protocol invitation {
 participants Bob, InfoSvr, MailSvr;
 Bob: begin;
 InfoSvr->Bob: <Employer,Location>;

 InfoSvr->Bob: <Member,Employer, Location, EmailAddr>*;
 Bob:{INVITE: Bob->MailSvr: <EmailId, Event>, NOOP:}*
}

Recursive type unrolling factor is a tunable parameter

Monday, June 7, 2010

Invitation Example - Type Driven
Optimizations

protocol invitation {
 participants Bob, InfoSvr, MailSvr;
 Bob: begin;
 InfoSvr->Bob: <Employer,Location>;

 InfoSvr->Bob: <Member,Employer, Location, EmailAddr>*;
 Bob:{INVITE: Bob->MailSvr: <EmailId, Event>, NOOP:}*
}

Recursive type unrolling factor is a tunable parameter

Runtime handles marshaling and unmarshaling the
batches

Monday, June 7, 2010

Invitation Example - Exporting Continuations

protocol invitation {
 participants Bob, InfoSvr, MailSvr;
 Bob: begin;
 InfoSvr->Bob: <Employer,Location>;

 InfoSvr->Bob: <Member,Employer,Location,EmailAddr>*;
 Bob:{INVITE: Bob->MailSvr: <EmailAddr,Event>, NOOP:}*
}

Can we bypass Bob?

Monday, June 7, 2010

Invitation Example - Exporting Continuations

Rewriting communication requests

protocol invitation {
 participants Bob, InfoSvr, MailSvr;
 Bob: begin;
 InfoSvr->Bob: <Employer,Location>;

 InfoSvr->Bob: <Member,Employer,Location,EmailAddr>*;
 Bob:{INVITE: Bob->MailSvr: <EmailAddr,Event>, NOOP:}*
}

Can we bypass Bob?

Monday, June 7, 2010

Invitation Example - Exporting Continuations

Rewriting communication requests

Cannot be exported if

protocol invitation {
 participants Bob, InfoSvr, MailSvr;
 Bob: begin;
 InfoSvr->Bob: <Employer,Location>;

 InfoSvr->Bob: <Member,Employer,Location,EmailAddr>*;
 Bob:{INVITE: Bob->MailSvr: <EmailAddr,Event>, NOOP:}*
}

Can we bypass Bob?

Monday, June 7, 2010

Invitation Example - Exporting Continuations

Rewriting communication requests

Cannot be exported if

local state is accessed - file, database, system status,
etc.,

protocol invitation {
 participants Bob, InfoSvr, MailSvr;
 Bob: begin;
 InfoSvr->Bob: <Employer,Location>;

 InfoSvr->Bob: <Member,Employer,Location,EmailAddr>*;
 Bob:{INVITE: Bob->MailSvr: <EmailAddr,Event>, NOOP:}*
}

Can we bypass Bob?

Monday, June 7, 2010

Invitation Example - Exporting Continuations

Rewriting communication requests

Cannot be exported if

local state is accessed - file, database, system status,
etc.,

system calls are invoked

protocol invitation {
 participants Bob, InfoSvr, MailSvr;
 Bob: begin;
 InfoSvr->Bob: <Employer,Location>;

 InfoSvr->Bob: <Member,Employer,Location,EmailAddr>*;
 Bob:{INVITE: Bob->MailSvr: <EmailAddr,Event>, NOOP:}*
}

Can we bypass Bob?

Monday, June 7, 2010

void invite_coworkers() {
 Event evt = me.createEvent(“party”, date);
 Employer myEmp = me.getEmployer();
 Location myLoc = me.getLocation();
 for (Member friend : me.getFriends()) {
 if (myEmp.equals(friend.getEmployer()) &&
 myLoc.equals(friend.getLocation()) &&
 User.approve(friend)) {
 mailSvr.sendMail(friend.getEmailId(),evt);
 }
 }

Invitation Example - Exporting Bob’s Code

Local state/system call

Monday, June 7, 2010

Invitation Example - No Local State Access
void invite_coworkers’() {
 Event evt = me.createEvent(“party”, date);
 Employer myEmp = me.getEmployer();
 Location myLoc = me.getLocation();
 for (Member friend : me.getFriends()) {
 if (myEmp.equals(friend.getEmployer()) &&
 myLoc.equals(friend.getLocation())) {
 mailSvr.sendMail(friend.getEmailId(),evt);
 }
 }

Monday, June 7, 2010

Invitation Example - No Local State Access
void invite_coworkers’() {
 Event evt = me.createEvent(“party”, date);
 Employer myEmp = me.getEmployer();
 Location myLoc = me.getLocation();
 for (Member friend : me.getFriends()) {
 if (myEmp.equals(friend.getEmployer()) &&
 myLoc.equals(friend.getLocation())) {
 mailSvr.sendMail(friend.getEmailId(),evt);
 }
 }

Executed at InfoSvr

Monday, June 7, 2010

Invitation Example - No Local State Access
void invite_coworkers’() {
 Event evt = me.createEvent(“party”, date);
 Employer myEmp = me.getEmployer();
 Location myLoc = me.getLocation();
 for (Member friend : me.getFriends()) {
 if (myEmp.equals(friend.getEmployer()) &&
 myLoc.equals(friend.getLocation())) {
 mailSvr.sendMail(friend.getEmailId(),evt);
 }
 }

Executed at InfoSvr

me and friend are local objects

Monday, June 7, 2010

Invitation Example - No Local State Access
void invite_coworkers’() {
 Event evt = me.createEvent(“party”, date);
 Employer myEmp = me.getEmployer();
 Location myLoc = me.getLocation();
 for (Member friend : me.getFriends()) {
 if (myEmp.equals(friend.getEmployer()) &&
 myLoc.equals(friend.getLocation())) {
 mailSvr.sendMail(friend.getEmailId(),evt);
 }
 }

Executed at InfoSvr

me and friend are local objects

Only remote operation is sendMail(), which is also
batched

Monday, June 7, 2010

Experimental Setup

Benchmarks

Batching

Exporting continuations

Batching experiments were conducted on Emulab

Emulab machines were 850 MHz Intel Pentium 3 with
512 MB of RAM

Monday, June 7, 2010

Batching

2 Emulab nodes with 1MBPS link.

Tested for various RTT and signature sizes

Batching performs well and the overhead is very little

client:
[client->server: <Signature>;
 server->client: <bool>]*

Monday, June 7, 2010

Exporting Continuation

Algorithmic trading

Remote methods - fetchQuotes() and doTrading()

Local/exported method - findTradingOptions()

Server configuration - dual core machine - 3 GHz and 4GB RAM

Client configuration - Intel Pentium II 500 MHz

client throughput server throughput

Monday, June 7, 2010

Conclusion

Limitations

Aggressive continuation exporting can overload
participants

Security issues with client code executing on the server

Future Work

User annotations for continuation exporting

Group communication abstraction

Formally prove that the transformations are correct

Monday, June 7, 2010

Questions?

Monday, June 7, 2010

Extra slides - Session Implementation

protocol simple@Bob{
 !begin;
 DeepThought:!<string>;
 DeepThought:?<int>;
}

Monday, June 7, 2010

Extra slides - Session Implementation

protocol simple@Bob{
 !begin;
 DeepThought:!<string>;
 DeepThought:?<int>;
}

SessionRegistry.instantiate(simple,“session1”);

Monday, June 7, 2010

Extra slides - Session Implementation

protocol simple@Bob{
 !begin;
 DeepThought:!<string>;
 DeepThought:?<int>;
}

SessionRegistry.instantiate(simple,“session1”);
SessionSocket ss =
 SessionRegistry.lookup(simple,“session1”,Bob);

Monday, June 7, 2010

Extra slides - Session Implementation

protocol simple@Bob{
 !begin;
 DeepThought:!<string>;
 DeepThought:?<int>;
}

SessionRegistry.instantiate(simple,“session1”);
SessionSocket ss =
 SessionRegistry.lookup(simple,“session1”,Bob);
ss.begin ();

Monday, June 7, 2010

Extra slides - Session Implementation

protocol simple@Bob{
 !begin;
 DeepThought:!<string>;
 DeepThought:?<int>;
}

SessionRegistry.instantiate(simple,“session1”);
SessionSocket ss =
 SessionRegistry.lookup(simple,“session1”,Bob);
ss.begin ();
ss.send (DeepThought, “what is the ultimate
 answer to life, universe, and everything?”);

Monday, June 7, 2010

Extra slides - Session Implementation

protocol simple@Bob{
 !begin;
 DeepThought:!<string>;
 DeepThought:?<int>;
}

SessionRegistry.instantiate(simple,“session1”);
SessionSocket ss =
 SessionRegistry.lookup(simple,“session1”,Bob);
ss.begin ();
ss.send (DeepThought, “what is the ultimate
 answer to life, universe, and everything?”);
int answer = ss.receive (DeepThought);

Monday, June 7, 2010

