Efficient session Type Guided
Distributead Interaction

KG Sivaramakrishnan;:Karthik:-Nagaraj, Lukasz
Ziarek; Patrick-Eugster

Purdue University

Motivation

Monday, June 7, 2010

Motivation

x Building distributed systems is difficult

Monday, June 7, 2010

Motivation

x Building distributed systems is difficult

x Simplicity over performance and expressivity.

Monday, June 7, 2010

Motivation

x Building distributed systems is difficult
x Simplicity over performance and expressivity.

= Java (RMI)

Monday, June 7, 2010

Motivation

x Building distributed systems is difficult
x Simplicity over performance and expressivity.

= Java (RMI)

x |nvoke remote methods on remote objects through proxies

Monday, June 7, 2010

Motivation

x Building distributed systems is difficult
x Simplicity over performance and expressivity.
= Java (RMI)
x |nvoke remote methods on remote objects through proxies

x Hides network complexities from:the programmer

Monday, June 7, 2010

Motivation

x Building distributed systems is difficult

x Simplicity over performance and expressivity.

» Java (RMI)
x |nvoke remote methods on remote objects through proxies
x Hides network complexities from:the programmer

® [imitations

Monday, June 7, 2010

Motivation

x Building distributed systems is difficult

x Simplicity over performance and expressivity.

» Java (RMII)
x |nvoke remote methods on remote objects through proxies
x Hides network complexities from:the programmer
x| imitations

x Synchronous and sequential

Monday, June 7, 2010

Motivation

x Building distributed systems is difficult
x Simplicity over performance and expressivity.
» Java (RMII)
x |nvoke remote methods on remote objects through proxies
x Hides network complexities from:the programmer
x| imitations
x Synchronous and sequential

® QOveruse can lead to poor performance

Monday, June 7, 2010

Motivation

x Building distributed systems is difficult
x Simplicity over performance and expressivity.
» Java (RMII)

x |nvoke remote methods on remote objects through proxies

x Hides network complexities from:the programmer

x| imitations

x Synchronous and sequential
® QOveruse can lead to poor performance

% cannot reason about

Monday, June 7, 2010

Invitation Example - The Setting

4%

Invitation Example - The Setting

4%

x Bob wants to throw: a party to colleagues

Monday, June 7, 2010

Invitation Example - The Setting

4%

x Bob wants to throw: a party to colleagues

x Utllize a social-networking APl for:accessing friends’
data

Monday, June 7, 2010

Invitation Example - The Setting

4%

x Bob wants to throw: a party to colleagues

x Utllize a social-networking APl for:accessing friends’
data

x Soclal networking APl is implemented in Java RMI

Monday, June 7, 2010

Invitation Example - The Setting

4%

x Bob wants to throw: a party to colleagues

x Utilize a social- networking APl for:accessing friends
data

x Soclal networking APl is implemented in Java RMI

x Emall nvitation is sent for chosen colleagues

Monday, June 7, 2010

Invitation Example - RMI Style

Bob

InfoSvr

MailSvr

Monday, June 7, 2010

Invitation Example - RMI Style

void invite coworkers() {

Event evt = .CcreateEvent (“party”,“June 7th, 2010);

Employer myEmp = .getEmployer();

Location myLoc = .getLocation();

for (Member : .getFriends()) {

i1f (myEmp.equals(.getEmployer()) &&
myLoc.equals (.getLocation()) &&
User.approve ()) A
.sendMail .getEmai1lId(),evt);

}
Bob

S Y

InfoSvr

MailSvr

Monday, June 7, 2010

Invitation Example - RMI Style

volid invite coworkers() {

Event evt = .CcreateEvent(“party”,“JdJune 7th, 2010);

Employer myEmp = .getEmployer();

Location myLoc = .getLocation();

for (Member : .getFriends()) {

i1f (myEmp.equals(.getEmployer()) &&
myLoc.equals (.getLocation()) &&
User.approve ()) A
.sendMail .getEmai1lId(),evt);

}
Bob

S Y

<"party"”, date>

InfoSvr

MailSvr

Monday, June 7, 2010

Invitation Example - RMI Style

void invite coworkers() {

Event evt = .CcreateEvent (“party”,“June 7th, 2010);

Employer myEmp = .getEmployer();

Location myLoc = .getLocation();

for (Member : .getFriends()) {

i1f (myEmp.equals(.getEmployer()) &&
myLoc.equals (.getLocation()) &&
User.approve ()) A
.sendMail .getEmai1lId(),evt);

}
Bob

(S

myEmp

InfoSvr

MailSvr

Monday, June 7, 2010

Invitation Example - RMI Style

void invite coworkers() {

Event evt = .CcreateEvent (“party”,“June 7th, 2010);

Employer myEmp = .getEmployer();

Location myLoc = .getLocation();

for (Member : .getFriends()) {

i1f (myEmp.equals(.getEmployer()) &&
myLoc.equals (.getLocation()) &&
User.approve ()) A
.sendMail .getEmai1lId(),evt);

}
Bob

Sy

myLoc

InfoSvr

MailSvr

Monday, June 7, 2010

Invitation Example - RMI Style

void invite coworkers() {

Event evt = .CcreateEvent (“party”,“June 7th, 2010);

Employer myEmp = .getEmployer();

Location myLoc = .getLocation();

for (Member : .getFriends()) {

if (myEmp.equals(.getEmployer()) &&
myLoc.equals (.getLocation()) &&
User.approve ()) A
.sendMail .getEmai1lId(),evt);

}
Bob

‘ @1 : friend

InfoSvr

MailSvr

Monday, June 7, 2010

Invitation Example - RMI Style

void invite coworkers() {

Event evt = .CcreateEvent (“party”,“June 7th, 2010);

Employer myEmp = .getEmployer();

Location myLoc = .getLocation();

for (Member : .getFriends()) {

if (myEmp.equals(.getEmployer()) &&
myLoc.equals (.getLocation()) &&
User.approve ()) A
.sendMail .getEmai1lId(),evt);

}
Bob

b S

InfoSvr

MailSvr

Monday, June 7, 2010

Invitation Example - RMI Style

void invite coworkers() {

Event evt = .CcreateEvent (“party”,“June 7th, 2010);

Employer myEmp = .getEmployer();

Location myLoc = .getLocation();

for (Member : .getFriends()) {

i1f (myEmp.equals(.getEmployer()) &&
myLoc.equals (.getLocation()) &&
User.approve ()) {
.sendMail(.getEmai1lId(),evt);

}
Bob

S Y

InfoSvr

MailSvr

Monday, June 7, 2010

Invitation Example - RMI Style

void invite coworkers() {

Event evt = .CcreateEvent (“party”,“June 7th, 2010);

Employer myEmp = .getEmployer();

Location myLoc = .getLocation();

for (Member : .getFriends()) {

i1f (myEmp.equals(.getEmployer()) &&
myLoc.equals (.getLocation()) &&
User.approve ()) {
.sendMail(.getEmai1lId(),evt);

}
Bob

v ¢S

InfoSvr

MailSvr

Monday, June 7, 2010

Invitation Example - RMI Style

void invite coworkers() {

Event evt = .CcreateEvent (“party”,“June 7th, 2010);

Employer myEmp = .getEmployer();

Location myLoc = .getLocation();

for (Member : .getFriends()) {

i1f (myEmp.equals(.getEmployer()) &&
myLoc.equals (.getLocation()) &&
User.approve ()) A
.sendMail(.getEmailId(),evt);

}
Bob

v ¢S

InfoSvr

MailSvr

Monday, June 7, 2010

Invitation Example - RMI Style

void invite coworkers() {

Event evt = .CcreateEvent (“party”,“June 7th, 2010);
Employer myEmp = .getEmployer();
Location myLoc = .getLocation();
for (Member : .getFriends()) {
1f (myEmp.equals(.getEmployer()) &&
myLoc.equals(.getLocation()) &&
User .approve ()) A
.sendMail(.getEmailId(),evt);
}
Bob -}

InfoSvr

MailSvr

Monday, June 7, 2010

Reducing Remote Calls

Monday, June 7, 2010

Reducing Remote Calls

x Export entire function call to InfoSvr

Monday, June 7, 2010

Reducing Remote Calls

x Export entire function call to InfoSvr

x Not possible due to user approval process

Monday, June 7, 2010

Reducing Remote Calls

x Export entire function call to InfoSvr

x Not possible due to user approval process

x Remote facade pattern

Monday, June 7, 2010

Reducing Remote Calls
x Export entire function call to InfoSvr

x Not possible due to user approval process
x Remote facade pattern

x Specialized remote method for-each client access
pattern

Monday, June 7, 2010

Reducing Remote Calls
x Export entire function call to InfoSvr

x Not possible due to user approval process
x Remote facade pattern

x Specialized remote method for-each client access
pattern

x Server code needs to be changed

Monday, June 7, 2010

Reducing Remote Calls
x Export entire function call to InfoSvr

x Not possible due to user approval process
x Remote facade pattern

x Specialized remote method for-each client access
pattern

x Server code needs to be changed

x Data transfer object

Monday, June 7, 2010

Reducing Remote Calls
x Export entire function call to InfoSvr

x Not possible due to user approval process
x Remote facade pattern

x Specialized remote method for-each client access
pattern

x Server code needs to be changed
x Data transfer object

x Single coarse grained data transfer instead of
multiple fine grained transfers

Monday, June 7, 2010

Reducing Remote Calls
x Export entire function call to InfoSvr

x Not possible due to user approval process
x Remote facade pattern

x Specialized remote method for-each client access
pattern

x Server code needs to be changed
x Data transfer object

x Single coarse grained data transfer instead of
multiple fine grained transfers

x Over-approximation

Monday, June 7, 2010

Goals

Monday, June 7, 2010

Goals

How do we...

Monday, June 7, 2010

Goals

How do we...

x Automatically reduce remote communication actions

Monday, June 7, 2010

Goals

How do we...
x Automatically reduce remote communication actions

x Optimize multi-party. communication

Monday, June 7, 2010

Goals

How do we...
x Automatically reduce remote communication actions
x Optimize multi-party. communication

Wigllls

Monday, June 7, 2010

Goals

How do we...

x Automatically reduce remote communication actions
x Optimize multi-party. communication

while

x preserving semantics of remote execution

Monday, June 7, 2010

Goals

How do we...

x Automatically reduce remote communication actions
x Optimize multi-party:communication

while

x preserving semantics of remote execution

x Not Imposing substantial runtime overheads

Monday, June 7, 2010

Session Type

Monday, June 7, 2010

Session Type

x Abstraction to precisely describe communication
protocols

Monday, June 7, 2010

Session Type

x Abstraction to precisely describe communication
protocols

® [yped messages

Monday, June 7, 2010

Session Type

x Abstraction to precisely describe communication
protocols

® [yped messages

x Ordered

Monday, June 7, 2010

Session Type

x Abstraction to precisely describe communication
protocols

® [yped messages

x Ordered

x EXPIiCit through lalbel
selection and recursive types

Monday, June 7, 2010

Session Type

x Abstraction to precisely describe communication
protocols

® [yped messages

x Ordered

x EXPIiCit through lalbel
selection and recursive types

x Multiparty Asynchronous Session Types [Honda et al.
POPL "08]

Monday, June 7, 2010

Session Type

x Abstraction to precisely describe communication
protocols

® [yped messages

x Ordered

x EXPIiCit through lalbel
selection and recursive types

x Multiparty Asynchronous Session Types [Honda et al.
POPL "08]

x Di-party session types for Java [Hu et al. ECOOP ’08]

Monday, June 7, 2010

Session Type Guided Optimization

Session Type Guided Optimization

® Session types for protocol optimization

Monday, June 7, 2010

Session Type Guided Optimization

® Session types for protocol optimization

x Utilize for direct
optimization

Monday, June 7, 2010

Session Type Guided Optimization

® Session types for protocol optimization

x Utilize for direct
optimization

x Program transformation through
data flow analysis

Monday, June 7, 2010

Session Type Guided Optimization

® Session types for protocol optimization

x Utilize for direct
optimization

x Program transformation through
data flow analysis

® Java extension for multi=party session types

Monday, June 7, 2010

Session Type Guided Optimization

® Session types for protocol optimization

x Utilize for direct
optimization

x Program transformation through
data flow analysis

® Java extension for multi=party session types

® [anguage extension

Monday, June 7, 2010

Session Type Guided Optimization

® Session types for protocol optimization

x Utilize for direct
optimization

x Program transformation through
data flow analysis

® Java extension for multi=party session types
® [anguage extension

x Compiler and runtime framework

Monday, June 7, 2010

Simple Example

Monday, June 7, 2010

Simple Example

(¢S

_

Deep Thought

Simple Example

*What Is the ultimate answer to life, universe and

‘ @ ‘ everything?” g E

Bob DeepThought

Monday, June 7, 2010

Simple Example

*What Is the ultimate answer to life, universe and

everything?” E
>
1°°A
<

“42”
A=\

Bob DeepThought

Monday, June 7, 2010

Simple Example

*What Is the ultimate answer to life, universe and

everything?”
‘ @ .‘ “42”
<€
Bob simple { DeepThought

Bob,DeepThought;
Bob: 5
Bob=->DeepThoughti:<string>;
DeepThought->Bob:<string>;

Global session type

Monday, June 7, 2010

Simple Example

*What Is the ultimate answer to life, universe and

everything?” ﬂ
>
S Y i
<€

Bob simple { DeepThought
Bob,DeepThought;
Bob: >
Bob=->DeepThoughti:<string>;
DeepThought->Bob:<string>;

}
simple@Bob { Global session type simple@DeepThought {
. Bob: ;
DeepThought: <string>; Bob: <string>;
DeepThought: “<string>; Bob: !<string>;
} }

[ocal session types

Monday, June 7, 2010

Session Implementation

Monday, June 7, 2010

Session Implementation

x Programmer implements the participant with Java
extension for session type

Monday, June 7, 2010

Session Implementation

x Programmer implements the participant with Java
extension for session type

x Session implementation is statically: verified for
conformance with local session type

Monday, June 7, 2010

Session Implementation

x Programmer implements the participant with Java
extension for session type

x Session implementation is statically: verified for
conformance with local session type

® Runtime converts sends, receives and control flow
actions to network transters

Monday, June 7, 2010

Session Implementation

x Programmer implements the participant with Java
extension for session type

x Session implementation is statically: verified for
conformance with local session type

® Runtime converts sends, receives and control flow
actions to network transters

x Exceptions are raised upon node and network failures

Monday, June 7, 2010

Invitation Example - Session Type

invitation {
Bob, InfoSvr, MailSvr;
Bob: ,
InfoSvr->Bob: <Employer>;
InfoSvr->Bob: <Location>;
InfoSvr:

[InfoSvr->Bob: <Member>;
InfoSvr->Bob: <Employer>;
InfoSvr->Bob: <Location>;
InfoSvr->Bob: <EmailAddr>;

Bob:

{INVITE: Bob->MailSvr: <EmailAddr,Event>,
NOOP =}

]*

Monday, June 7, 2010

Invitation Example - Session Type

invitation {
Bob, InfoSvr, MailSvr;

Bob: ,
InfoSvr->Bob: <Employer>;
InfoSvr->Bob: <Location>;
InfoSvr:

[InfoSvr->Bob: <Member>;

InfoSvr->Bob: <Employer>;

InfoSvr->Bob: <Location>;

InfoSvr->Bob: <EmailAddr>;

Bob:

{INVITE: Bob->MailSvr: <EmailAddr,Event>,

NOOP: }

]*

Recursive type

Monday, June 7, 2010

Invitation Example - Session Type

invitation {
Bob, InfoSvr, MailSvr;
Bob: 3
InfoSvr->Bob: <Employer>; Loop guard

InfoSvr->Bob: <Location>-:
InfoSvr:

[InfoSvr->Bob: <Member>;

InfoSvr->Bob: <Employer>;

InfoSvr->Bob: <Location>;

InfoSvr->Bob: <EmailAddr>;

Bob:

{INVITE: Bob->MailSvr: <EmailAddr,Event>,
NOOP: }

]*

Recursive type

Monday, June 7, 2010

Invitation Example - Session Type

invitation {
Bob, InfoSvr, MailSvr;
Bob: ,
InfoSvr->Bob: <Employer>;
InfoSvr->Bob: <Location>;
InfoSvr:

[InfoSvr->Bob: <Member>;
InfoSvr->Bob: <Employer>;
InfoSvr->Bob: <Location>;
InfoSvr->Bob: <EmailAddr>;

Bob:

{INVITE: Bob->MailSvr: <EmailAddr,Event>,
NOOP =}

]*

Monday, June 7, 2010

Invitation Example - Session Type

invitation {
Bob, InfoSvr, MailSvr;
Bob: ,
InfoSvr->Bob: <Employer>;
InfoSvr->Bob: <Location>;
InfoSvr:

[InfoSvr->Bob: <Member>;
InfoSvr->Bob: <Employer>;
InfoSvr->Bob: <Location>;
InfoSvr->Bob: <EmailAddr>;

Bob:

{INVITE: Bob->MailSvr: <EmailAddr,Event>,
NOOP: }

]*

[abel selection

Monday, June 7, 2010

Invitation Example - Session Type

invitation {
Bob, InfoSvr, MailSvr;

Bob: ,
InfoSvr->Bob: <Employer>;
InfoSvr->Bob: <Location>;
InfoSvr:

[InfoSvr->Bob: <Member>;

InfoSvr->Bob: <Employer>;

InfoSvr->Bob: <Location>; _,Choice guard
InfoSvr->Bob: <EmailAddr>s—

B _ . [abel selection
{INVITE: Bob->MailSvr: <EmailAddr,Event>,

NOOP: }

]*

Monday, June 7, 2010

Invitation Example - Type Driven
Optimizations

invitation {
Bob, InfoSvr, MailSvr;

Bob: 3
InfoSvr->Bob: <Employer>;
InfoSvr->Bob: <Location>;
InfoSvr:

[InfoSvr->Bob: <Member>;

InfoSvr->Bob: <Employer>;

InfoSvr->Bob: <Location>;

InfoSvr->Bob: <EmailAddr>;

Bob:

{INVITE: Bob->MailSvr: <EmailAddr, Event>,

NOOP:}
]*

Monday, June 7, 2010

Invitation Example - Type Driven
Optimizations

invitation {
Bob, InfoSvr, MailSvr;

Bob: 3
InfoSvr->Bob: <Employer>;
InfoSvr->Bob: <Location>;
InfoSvr:

[InfoSvr->Bob: <Member>;

InfoSvr->Bob: <Employer>;

InfoSvr->Bob: <Location>;

InfoSvr->Bob: <EmailAddr>;

Bob:

{INVITE: Bob->MailSvr: <EmailAddr, Event>,

NOOP:}
]*

Monday, June 7, 2010

Invitation Example - Type Driven
Optimizations

invitation {
Bob, InfoSvr, MailSvr;
Bob: 3
InfoSvr->Bob: <Employer>;
InfoSvr->Bob: <Location>;
InfoSvr:

[InfoSvr->Bob: <Member>;
InfoSvr->Bob: <Employer>;
InfoSvr->Bob: <Location>;
InfoSvr->Bob: <EmailAddr>;

Bob:

{INVITE: Bob->MailSvr: <EmailAddr, Event>,
NOOP:}
]*
}

Multiple contiguous sends can be batched

Monday, June 7, 2010

Invitation Example - Type Driven
Optimizations

invitation {
Bob, InfoSvr, MailSvr;

Bob: -

InfoSvr->Bob: <Employer,Location>;

InfoSvr:
[InfoSvr->Bob: <Member ,Employer, Location, EmailAddr>;
Bob:
{INVITE: Bob->MailSvr: <EmailId, Event>,

NOOP:}
]*

Monday, June 7, 2010

Invitation Example - Type Driven
Optimizations

invitation {
Bob, InfoSvr, MailSvr;

Bob: -

InfoSvr->Bob: <Employer,Location>;

InfoSvr:
[InfoSvr->Bob: <Member,Employer, Location, EmailAddr>;
Bob:
{INVITE: Bob->MailSvr: <EmailId, Event>,

NOOP:}
]*

Monday, June 7, 2010

Invitation Example - Type Driven
Optimizations

invitation {
Bob, InfoSvr, MailSvr;

Bob: -
InfoSvr->Bob: <Employer,Location>;
InfoSvr:
[InfoSvr->Bob: <Member ,Employer, Location, EmailAddr>;
Bob:
{INVITE: Bob=>MailSvr: <Emailld, Event>,
NOOP=:}

]*

? Can we batch together this recursive type?

Monday, June 7, 2010

Invitation Example - Type Driven
Optimizations

invitation {
Bob, InfoSvr, MailSvr;

Bob: -

InfoSvr->Bob: <Employer,Location>;

InfoSvr:
[InfoSvr->Bob: <Member ,Employer, Location, EmailAddr>;
Bob:
{INVITE: Bob=>MailSvr: <Emailld, Event>,

NOOP=:}
]*
}

? Can we batch together this recursive type?

No Intervening receives by InfoSvr in recursive type

Monday, June 7, 2010

Invitation Example - Type Driven
Optimizations

invitation {

Bob, InfoSvr, MailSvr;
Bob: -

InfoSvr->Bob: <Employer,Location>;
InfoSvr->Bob: <Member,Employer, Location, EmailAddr>" ;

Bob: {INVITE: Bob->MailSvr: <EmaillId, Event>, NOOP:}

Monday, June 7, 2010

Invitation Example - Type Driven
Optimizations

invitation {

Bob, InfoSvr, MailSvr;
Bob: -

InfoSvr->Bob: <Employer,Location>;

InfoSvr->Bob: <Member,Employer, Location, EmailAddr>

°
4

Bob: {INVITE: Bob->MailSvr: <EmaillId, Event>, NOOP:}

x Recursive type unrolling factor is a tunable parameter

Monday, June 7, 2010

Invitation Example - Type Driven
Optimizations

invitation {
Bob, InfoSvr, MailSvr;
Bob: -

InfoSvr->Bob: <Employer,Location>;

InfoSvr->Bob: <Member,Employer, Location, EmailAddr>

°
4

Bob: {INVITE: Bob->MailSvr: <EmaillId, Event>, NOOP:}

x Recursive type unrolling factor is a tunable parameter

x Runtime handles marshaling and unmarshaling the
pbatches

Monday, June 7, 2010

Invitation Example - Exporting Continuations

invitation {

Bob, InfoSvr, MailSvr;
Bob: .

InfoSvr->Bob: <Employer,Location>;

InfoSvr->Bob: <Member,Employer,Location,EmailAddr>

o
4

Bob: {INVITE: Bob->MailSvr: <EmailAddr,Event>, NOOP:}

? Can we bypass Bob?

Monday, June 7, 2010

Invitation Example - Exporting Continuations

invitation {

Bob, InfoSvr, MailSvr;
Bob: .

InfoSvr->Bob: <Employer,Location>;

InfoSvr->Bob: <Member,Employer,Location,EmailAddr>

o
4

Bob: {INVITE: Bob->MailSvr: <EmailAddr,Event>, NOOP:}

? Can we bypass Bob?

x Rewriting communication requests

Monday, June 7, 2010

Invitation Example - Exporting Continuations

invitation {

Bob, InfoSvr, MailSvr;
Bob: .

InfoSvr->Bob: <Employer,Location>;

InfoSvr->Bob: <Member,Employer,Location,EmailAddr>

o
4

Bob: {INVITE: Bob->MailSvr: <EmailAddr,Event>, NOOP:}

? Can we bypass Bob?

x Rewriting communication requests

x Cannot be exported if

Monday, June 7, 2010

Invitation Example - Exporting Continuations

invitation {

Bob, InfoSvr, MailSvr;
Bob: .

InfoSvr->Bob: <Employer,Location>;

InfoSvr->Bob: <Member,Employer,Location,EmailAddr>

o
4

Bob: {INVITE: Bob->MailSvr: <EmailAddr,Event>, NOOP:}

? Can we bypass Bob?

x Rewriting communication requests

x Cannot be exported if

x |ocal state Is accessed - file, database, system status,
etc.,

Monday, June 7, 2010

Invitation Example - Exporting Continuations

invitation {

Bob, InfoSvr, MailSvr;
Bob: .

InfoSvr->Bob: <Employer,Location>;

InfoSvr->Bob: <Member,Employer,Location,EmailAddr>

o
4

Bob: {INVITE: Bob->MailSvr: <EmailAddr,Event>, NOOP:}

? Can we bypass Bob?
x Rewriting communication requests
x Cannot be exported if

x |ocal state Is accessed - file, database, system status,
etc.,

x system calls are invokead

Monday, June 7, 2010

Invitation Example - Exporting Bob’s Code

void invite coworkers() {
Event evt = .createEvent (“party”, date);
Employer myEmp .getEmployer();
Location myLoc .getLocation();

for (Member 3 .getFriends()) {
if (myEmp.equals(.getEmployer()) &&
myLoc.equals(.getLocation()) &&
User.approve()) o
.sendMail (.getEmailId(),evt);
}
}

x [ocal state/system call %

Monday, June 7, 2010

Invitation Example - No Local State Access

void invite coworkers’ () {
Event evt = me.createEvent(“party”, date);
Employer myEmp = me.getEmployer();
Location myLoc = me.getLocation();

for (Member friend : me.getFriends()) {
if (myEmp.equals(friend.getEmployer()) &&
myLoc.equals(friend.getLocation())) {

.sendMail(friend.getEmailId() ,evt);

Monday, June 7, 2010

Invitation Example - No Local State Access

void invite coworkers’ () {
Event evt = me.createEvent(“party”, date);
Employer myEmp = me.getEmployer();
Location myLoc = me.getLocation();

for (Member friend : me.getFriends()) {
if (myEmp.equals(friend.getEmployer()) &&
myLoc.equals(friend.getLocation())) {

.sendMail(friend.getEmailId() ,evt);

® Executed at InfoSvr

Monday, June 7, 2010

Invitation Example - No Local State Access

void invite coworkers’ () {
Event evt = me.createEvent(“party”, date);
Employer myEmp = me.getEmployer();
Location myLoc = me.getLocation();

for (Member friend : me.getFriends()) {
if (myEmp.equals(friend.getEmployer()) &&
myLoc.equals(friend.getLocation())) {
.sendMail (friend.getEmailId(),evt);
}
}

® Executed at InfoSvr

» me and friend are local objects

Monday, June 7, 2010

Invitation Example - No Local State Access

void invite coworkers’ () {
Event evt = me.createEvent(“party”, date);
Employer myEmp = me.getEmployer();
Location myLoc = me.getLocation();

for (Member friend : me.getFriends()) {
if (myEmp.equals(friend.getEmployer()) &&
myLoc.equals(friend.getLocation())) {

.sendMail(friend.getEmailId() ,evt);

}
}

® Executed at InfoSvr

» me and friend are local objects

x Only remote operation 1S sendMail (), which is also
batched

Monday, June 7, 2010

Experimental Setup

. Benchmarks
x Batching

x Exporting continuations

x Batching experiments were conducted on Emulab

» Emulab machines were 850 MHz Intel Pentium 3 with
512 MB of RAM

Monday, June 7, 2010

Batching

x 2 Emulab nodes with TMBPS link.

client:
[client->server: <Signature>;
server->client: <bool>]*

x [ested for various RTI-and signature Sizes

x Batching performs well-and the overhead is very little

Basic 80ms ——
Batcing 80ms
Basic 150ms
Batching 150ms

60
Batch size

Monday, June 7, 2010

Exporting Continuation

= Algorithmic trading
x Remote methods - fetchQuotes () and doTradingy()
x | ocal/exported method - £findTradingOptions ()
x Server configuration - dual core machine - 3-GiHz and 4GB RAM

» Client configuration - Intel Pentium | 500-MHz

Local exec. —+—
Exporting cont, -

Fraction of requests satisfied

Local exec. —+—
Exporting cont. - O

8 2 4 8 16
Number of clients Number of clients

3
@
(2]
~—
§2
(7))
@
-
o
@
-~
c
@
(&)
—
@
o
>
a
=
o
-
o
—
=
’_

client throughput server throughput

Monday, June 7, 2010

Conclusion

x| imitations

x Aggressive continuation -exporting can overload
participants

® Security issues with client. code executing on the server
® Future Work

x {User annotations for continuation exporting

x Group communication abstraction

® Formally prove that the transformations are correct

Monday, June 7, 2010

Questions?

Monday, June 7, 2010

Extra slides - Session Implementation

simple@Bob{

4
DeepThought: !<string>;
DeepThought:?<int>;

Monday, June 7, 2010

Extra slides - Session Implementation

SessionRegistry.instantiate(simple,“sessionl”);

simple@Bob{
DeepThought: !<string>;
DeepThought:?<int>;
}

Monday, June 7, 2010

Extra slides - Session Implementation

SessionRegistry.instantiate(simple,“sessionl”);
SessionSocket ss =
simple@Bob{ SessionRegistry.lookup(simple, “sessionl” ,Bob);

’
DeepThought: !<string>;
DeepThought:?<int>;

}

Monday, June 7, 2010

Extra slides - Session Implementation

SessionRegistry.instantiate(simple,“sessionl”);
SessionSocket ss =
simple@Bob{ SessionRegistry.lookup(simple, “sessionl” ,Bob);
Z ss.begin ();
4
DeepThought: !<string>;
DeepThought:?<int>;

}

Monday, June 7, 2010

Extra slides - Session Implementation

SessionRegistry.instantiate(simple,“sessionl”);
SessionSocket ss =
simple@Bob{ SessionRegistry.lookup(simple, “sessionl” ,Bob);
ss.begin ();
ss.send (DeepThought, “what is the ultimate
answer to life, universe, and everything?”);

4
DeepThought: !<string>;
DeepThought:?<int>;

Monday, June 7, 2010

Extra slides - Session Implementation

SessionRegistry.instantiate(simple,“sessionl”);
SessionSocket ss =
simple@Bob{ SessionRegistry.lookup(simple, “sessionl” ,Bob);
v ss.begin ();
DeepThcl)ught: <string>: ss.send (Deeka.lought, .”what is the ultimzflte 13
_ answer to life, universe, and everything?”);
DeepThought:?<int>; int answer = ss.receive (DeepThought);

Monday, June 7, 2010

