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Motivation

Building distributed systems is difficult

Simplicity over performance and expressivity

Java Remote Method Invocation (RMI)

Invoke remote methods on remote objects through proxies

Hides network complexities from the programmer

Limitations

synchronous and sequential

Overuse can lead to poor performance

cannot reason about sessions
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Bob wants to throw a party to colleagues

Utilize a social networking API for accessing friends’ 
data

Social networking API is implemented in Java RMI

Email invitation is sent for chosen colleagues
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void invite_coworkers() {
  Event evt = me.createEvent(“party”,“June 7th, 2010);
  Employer myEmp = me.getEmployer();
  Location myLoc = me.getLocation();
  for (Member friend : me.getFriends()) {
    if (myEmp.equals(friend.getEmployer()) &&
        myLoc.equals(friend.getLocation()) &&
        User.approve(friend)) {
         mailSvr.sendMail(friend.getEmailId(),evt);
    }
  }
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myEmp
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Reducing Remote Calls
Export entire function call to InfoSvr

Not possible due to user approval process

Remote facade pattern

Specialized remote method for each client access 
pattern

Server code needs to be changed

Data transfer object

Single coarse grained data transfer instead of 
multiple fine grained transfers

Over-approximation
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Goals

How do we...

Automatically reduce remote communication actions

Optimize multi-party communication

while 

preserving semantics of remote execution

not imposing substantial runtime overheads
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Session Type

Abstraction to precisely describe communication 
protocols

Typed messages

Ordered

Explicit control flow information through label 
selection and recursive types

Multiparty Asynchronous Session Types [Honda et al. 
POPL ’08]

bi-party session types for Java [Hu et al. ECOOP ’08] 
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Session Type Guided Optimization

Session types for protocol optimization

Utilize type and control flow information for direct 
optimization

Program transformation through session type guided  
data flow analysis

Java extension for multi-party session types

Language extension

Compiler and runtime framework
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Simple Example
“What is the ultimate answer to life, universe and 

everything?”

“42”

Bob DeepThought

Global session type

protocol simple {
  participants Bob, DeepThought;
  Bob: begin;
  Bob->DeepThought:<string>;
  DeepThought->Bob:<string>;
}
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protocol simple@DeepThought {
  Bob:?begin;
  Bob:?<string>;
  Bob:!<string>;
}

Simple Example
“What is the ultimate answer to life, universe and 

everything?”

“42”

Bob DeepThought

protocol simple@Bob {
  !begin;
  DeepThought:!<string>;
  DeepThought:?<string>;
}

Global session type

Local session types

protocol simple {
  participants Bob, DeepThought;
  Bob: begin;
  Bob->DeepThought:<string>;
  DeepThought->Bob:<string>;
}
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Session Implementation

Programmer implements the participant with Java 
extension for session type

Session implementation is statically verified for 
conformance with local session type

Runtime converts sends, receives and control flow 
actions to network transfers

Exceptions are raised upon node and network failures
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Invitation Example - Session Type
protocol invitation {
  participants Bob, InfoSvr, MailSvr;
  Bob: begin;
  InfoSvr->Bob: <Employer>;
  InfoSvr->Bob: <Location>;
  InfoSvr:
    [InfoSvr->Bob: <Member>;
     InfoSvr->Bob: <Employer>;
     InfoSvr->Bob: <Location>;
     InfoSvr->Bob: <EmailAddr>;
     Bob:
     {INVITE: Bob->MailSvr: <EmailAddr,Event>,
      NOOP:}
    ]*
}
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  InfoSvr->Bob: <Location>;
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     InfoSvr->Bob: <Employer>;
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     InfoSvr->Bob: <EmailAddr>;
     Bob:
     {INVITE: Bob->MailSvr: <EmailAddr,Event>,
      NOOP:}
    ]*
}

Loop guard
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Invitation Example - Session Type

Label selection

protocol invitation {
  participants Bob, InfoSvr, MailSvr;
  Bob: begin;
  InfoSvr->Bob: <Employer>;
  InfoSvr->Bob: <Location>;
  InfoSvr:
    [InfoSvr->Bob: <Member>;
     InfoSvr->Bob: <Employer>;
     InfoSvr->Bob: <Location>;
     InfoSvr->Bob: <EmailAddr>;
     Bob:
     {INVITE: Bob->MailSvr: <EmailAddr,Event>,
      NOOP:}
    ]*
}

Choice guard
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Invitation Example - Type Driven 
Optimizations
protocol invitation {
  participants Bob, InfoSvr, MailSvr;
  Bob: begin;
  InfoSvr->Bob: <Employer>;
  InfoSvr->Bob: <Location>;
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Invitation Example - Type Driven 
Optimizations
protocol invitation {
  participants Bob, InfoSvr, MailSvr;
  Bob: begin;
  InfoSvr->Bob: <Employer>;
  InfoSvr->Bob: <Location>;
  InfoSvr:
    [InfoSvr->Bob: <Member>;
     InfoSvr->Bob: <Employer>;
     InfoSvr->Bob: <Location>;
     InfoSvr->Bob: <EmailAddr>;
     Bob:
     {INVITE: Bob->MailSvr: <EmailAddr, Event>,
      NOOP:}
    ]*
}

Multiple contiguous sends can be batched
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Invitation Example - Type Driven 
Optimizations
protocol invitation {
  participants Bob, InfoSvr, MailSvr;
  Bob: begin;
  InfoSvr->Bob: <Employer,Location>;
  InfoSvr:
    [InfoSvr->Bob: <Member,Employer, Location, EmailAddr>;
     Bob:
     {INVITE: Bob->MailSvr: <EmailId, Event>,
      NOOP:}
    ]*
}

Can we batch together this recursive type?

No intervening receives by InfoSvr in recursive type
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Optimizations
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Invitation Example - Type Driven 
Optimizations

protocol invitation {
  participants Bob, InfoSvr, MailSvr;
  Bob: begin;
  InfoSvr->Bob: <Employer,Location>;

  InfoSvr->Bob: <Member,Employer, Location, EmailAddr>*;
  Bob:{INVITE: Bob->MailSvr: <EmailId, Event>, NOOP:}*
}

Recursive type unrolling factor is a tunable parameter

Runtime handles marshaling and unmarshaling the 
batches
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Invitation Example - Exporting Continuations

protocol invitation {
  participants Bob, InfoSvr, MailSvr;
  Bob: begin;
  InfoSvr->Bob: <Employer,Location>;

  InfoSvr->Bob: <Member,Employer,Location,EmailAddr>*;
  Bob:{INVITE: Bob->MailSvr: <EmailAddr,Event>, NOOP:}*
}

Can we bypass Bob?
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Invitation Example - Exporting Continuations

Rewriting communication requests

Cannot be exported if

local state is accessed - file, database, system status, 
etc.,

protocol invitation {
  participants Bob, InfoSvr, MailSvr;
  Bob: begin;
  InfoSvr->Bob: <Employer,Location>;
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}
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Invitation Example - Exporting Continuations

Rewriting communication requests

Cannot be exported if

local state is accessed - file, database, system status, 
etc.,

system calls are invoked

protocol invitation {
  participants Bob, InfoSvr, MailSvr;
  Bob: begin;
  InfoSvr->Bob: <Employer,Location>;

  InfoSvr->Bob: <Member,Employer,Location,EmailAddr>*;
  Bob:{INVITE: Bob->MailSvr: <EmailAddr,Event>, NOOP:}*
}

Can we bypass Bob?
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void invite_coworkers() {
  Event evt = me.createEvent(“party”, date);
  Employer myEmp = me.getEmployer();
  Location myLoc = me.getLocation();
  for (Member friend : me.getFriends()) {
    if (myEmp.equals(friend.getEmployer()) &&
        myLoc.equals(friend.getLocation()) &&
        User.approve(friend)) {
         mailSvr.sendMail(friend.getEmailId(),evt);
    }
  }

Invitation Example - Exporting Bob’s Code

Local state/system call
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Invitation Example - No Local State Access
void invite_coworkers’() {
  Event evt = me.createEvent(“party”, date);
  Employer myEmp = me.getEmployer();
  Location myLoc = me.getLocation();
  for (Member friend : me.getFriends()) {
    if (myEmp.equals(friend.getEmployer()) &&
        myLoc.equals(friend.getLocation())) {
         mailSvr.sendMail(friend.getEmailId(),evt);
    }
  }
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Invitation Example - No Local State Access
void invite_coworkers’() {
  Event evt = me.createEvent(“party”, date);
  Employer myEmp = me.getEmployer();
  Location myLoc = me.getLocation();
  for (Member friend : me.getFriends()) {
    if (myEmp.equals(friend.getEmployer()) &&
        myLoc.equals(friend.getLocation())) {
         mailSvr.sendMail(friend.getEmailId(),evt);
    }
  }

Executed at InfoSvr

me and friend are local objects

Only remote operation is sendMail(), which is also 
batched
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Experimental Setup

Benchmarks

Batching

Exporting continuations

Batching experiments were conducted on Emulab

Emulab machines were 850 MHz Intel Pentium 3 with 
512 MB of RAM
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Batching

2 Emulab nodes with 1MBPS link.

Tested for various RTT and signature sizes

Batching performs well and the overhead is very little

client:
[client->server: <Signature>;
 server->client: <bool>]*
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Exporting Continuation

Algorithmic trading

Remote methods - fetchQuotes() and doTrading()

Local/exported method - findTradingOptions()

Server configuration - dual core machine - 3 GHz and 4GB RAM

Client configuration - Intel Pentium II 500 MHz

client throughput server throughput
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Conclusion

Limitations

Aggressive continuation exporting can overload 
participants

Security issues with client code executing on the server

Future Work

User annotations for continuation exporting

Group communication abstraction

Formally prove that the transformations are correct
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Questions?
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Extra slides - Session Implementation

protocol simple@Bob{
  !begin;
  DeepThought:!<string>;
  DeepThought:?<int>;
}
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  !begin;
  DeepThought:!<string>;
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}

SessionRegistry.instantiate(simple,“session1”);
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Extra slides - Session Implementation

protocol simple@Bob{
  !begin;
  DeepThought:!<string>;
  DeepThought:?<int>;
}

SessionRegistry.instantiate(simple,“session1”);
SessionSocket ss = 
   SessionRegistry.lookup(simple,“session1”,Bob);
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Extra slides - Session Implementation

protocol simple@Bob{
  !begin;
  DeepThought:!<string>;
  DeepThought:?<int>;
}

SessionRegistry.instantiate(simple,“session1”);
SessionSocket ss = 
   SessionRegistry.lookup(simple,“session1”,Bob);
ss.begin ();

Monday, June 7, 2010



Extra slides - Session Implementation

protocol simple@Bob{
  !begin;
  DeepThought:!<string>;
  DeepThought:?<int>;
}

SessionRegistry.instantiate(simple,“session1”);
SessionSocket ss = 
   SessionRegistry.lookup(simple,“session1”,Bob);
ss.begin ();
ss.send (DeepThought, “what is the ultimate 
   answer to life, universe, and everything?”);
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Extra slides - Session Implementation

protocol simple@Bob{
  !begin;
  DeepThought:!<string>;
  DeepThought:?<int>;
}

SessionRegistry.instantiate(simple,“session1”);
SessionSocket ss = 
   SessionRegistry.lookup(simple,“session1”,Bob);
ss.begin ();
ss.send (DeepThought, “what is the ultimate 
   answer to life, universe, and everything?”);
int answer = ss.receive (DeepThought); 
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