Functional Programming Abstractions
for Weakly Consistent Systems

KC Sivaramakrishnan

Final Examination

Outline

Motivation
Thesis

Contributions

— Aneris : A cache-coherent runtime on non-cache-
coherent architecture

— RXCML : A prescription for safely relaxing synchrony

— Quelea : Declarative programming over eventually
consistent memory

Conclusions

~26 cores

~20t0 210+ cores

Replication,

Coherence,

Asynchrony,
Partial failures,
Heterogeneity,

Safe and scalable
concurrent program

Impl. Mech:
H/W cache coherence,
consensus, atomic

o broadcast, distributed locks
Atomicity

violations

Deadlocks

LD

w

Data Races

Strong
Consistency

Prog. Model:
Seq. Consist.,
Linearizability,
Serializability, etc.

Safe and scalable

—_—
concurrent program
k Data Races
Expanding Strong
_________ c hasmN Consistency
bottleneck!
Impl. Mech:
H/W cache coherence,
Atomicity consensus, atomic
violations broadcast, distributed locks

Deadlocks

Strong Consistency on Multicore

* Caches improve memory access latency
— Conflict with Multi-processing
¢ Hardware Cache Coherence > Strong consistency
— DREF programs are sequentially consistent
* Coherence mechanisms have become the bottleneck

— Power requirements

— Complexity of coherence hardware

— Storage requirements of cache meta-data

— Heterogeneity : GPUs + FPGAs + Co-processors, etc,.

Rise of Non-cache-coherent Hardware

Intel SCC Xeon Phi Runnymede

* Hardware support

— No coherence €...... —> coherence islands

* Programmer’s view

— No sequential consistency!
— MPI, TCP/IP, RDMA, etc,.

Consistency in the Cloud
-

.v.

Cache

* Distributed stores:
— Shared memory abstraction for the cloud

— Geo-replication = minimizing latency, tolerate partial failures,
availability

* CAP Theorem!!l - No highly available, partition tolerant
system can provide strong consistency

* Live with eventual consistency!

[1] N. Lynch el al., “Brewer's conjecture and the feasibility of consistent, available, partition-tolerant web services”, ACM SIGACT News, 2002.

9

Programming under Eventual Consistency

e 2 distinct concerns

— Consistency = when updates become visible

Replica 1 Replica 2
{} {}
Add(42)
_—
s

Kyle

Programming under Eventual Consistency

e 2 distinct concerns

— Consistency = when updates become visible

Replica 1 Replica 2

{42}

AdN Slz%

Ker

Programming under Eventual Consistency

e 2 distinct concerns

— Consistency = when updates become visible

Add (42)

Replica 1 /\ Replica 2

{42} {42}

N

Size() 0
Add (42)
\—//

Kyle

Programming under Eventual Consistency

* 2 distinct concerns
— Consistency = when updates become visible
— Convergence = how conflicting updates are resolved
Add (42)

Replica 1 /\ Replica 2

{42} {}
A A

Add(42) OK Rem(42) OK

v

ey PN
s ar

Kyle Stan

Programming under Eventual Consistency

* 2 distinct concerns
— Consistency = when updates become visible

— Convergence = how conflicting updates are resolved

Add(42)
Replica 1 /\ Replica 2
{?7?7} {?7?7}
Ngens2)/
Add (42) OK Rem(42) OK
ot Inconsistency
4 A leaks to the

] [. user

Kyle Stan

14

B N LD

Relaxed consistency

Latency
Partial failures
Safe and scalable
——
concurrent program
Data Races Weak
Consistency

Asynchrony

Atomicity
violations ’ ;

Non-cache-coherence

Deadlocks

Key Observation

Add (42)

Replica 1 /\ Replica 2

{277}

Add(42) [l

J

oK Rem(42) oK

* Mutation of shared state causes weak consistency

1ssues

* Tame shared state mutation = mitigate weak

consistency issues

* Functional programming

— Mutations are rare and explicit!

16

Thesis

Functional programming abstractions simplify scalable
concurrent programming under weak consistency

/ 1\

Cache-coherent, seq. Strongly Consistent Declarative, extensible,
consistent prog. model CML Semantics high-level prog. model
Aneris RxCML Quelea
Non-cache-coherent Asynchronous Distributed Off-the-shelf eventually

Multicore System consistent data store

ISMM €12, MARC ‘12, JFP ‘14 PADL ‘14 In submission to PLDI €15

Aneris : Coherent Shared Memory on
the Intel SCC

Cache Coherent Intel SCC Cluster of Machines

v No change to * Shared memory Distributed programming
programming model * Software Managed « RCCE, MPI, TCP/IP
Cache-Coherence (SMC) * Release consistency + RDMA

Can we program SCC as a cache
coherent machine?

18

Intel SCC: Programmer’s View

No cache coherence

(caching disabled)

Software managed cache
coherence (release consistency)

Shared memory (off-chip)

Private Private
memory memory
Core 0 Core 1

Private | = Private
memory memory
Core 2 Core 47

19

Context: MultiMLton on the Intel SCC

* Parallel extension of MLton
— A whole-program, optimizing Standard ML compiler

— Immutability is default, mutations are explicit

* Concurrency model - Asynchronous CML

send (c, v)

v € recv (c)

 Collectors
— LC, PRC, SMC

Local Collector (LC)

Thread-local heap = Circumvent the need for coherence

No access to remote core-private memory = no need for cache
coherence

Can we
eliminate this
! overhead? sointers

Requires both read and write memc

— Write barrier globalizes; read barrier hanc

25—

Overhead (%)

Core 0 Core 1 Core 47

Procrastinating Collector (PRC)

* Exploits concurrent functional nature of programming
language
— SML (Mostly functional) = Mutations are rare

* Write barriers << read barriers

— ACML - Lots of concurrency

* Eliminate read barriers completely

— Mutator must never encounter forwarding pointers

* (Rare) Write barriers are more expensive

1.
2.

Immutability: Globalize immutable objects by making a copy.

Dynamic shape analysis: for objects completely in minor heap,
globalize and perform minor local GC

Procrastinate: Other objects, suspend threads instead of globalization

22

Software-managed Coherence (SMC)

* Mutability information + software coherence support

* Integrate cache control instructions into memory barriers

23

Results

4.5
K4

oo |LC

H-8 PRC| :

ized T

rmal

S 2.0 N

1.5k N e

0 10 20 30 40 50 1% 1 2 3 4 5 6
Cores Heap size relative to min heap size

Speedup Heap size vs Total time

» PRC(SMC) 23%(33%) faster than LC @ 48 cores
* 99% of the memory accesses in SMC are cacheable!

24

Aneris : Conclusion

* Concurrent FP language and runtime can
effectively mask non-cache-coherence

1. Utilize thread-local heap architecture to
circumvent the absence of coherence

2. Utilize mutability information to optimize for
memory/cache hierarchy

3. Trade concurrency for minimizing GC overheads

25

RxCML

Composable :
Abstraction Synchronous Transactional GlalLrba.ge
communication memory collection
Domain Asynchronous Shared memory Memory
distributed system concurrency management

Synchronous communication =
atomic { data transfer +
synchronization }

synchrony latency

Can we discharge synchronous communications
asynchronously and ensure observable equivalence?

Formalize:
[send (c,v)]k = [asend(c,v)]k
Implement:

Distributed Concurrent ML on MultiMLton
(Speculative execution)

val

val
val

val

val
val
val
val
val
val
val

val

spawn

channel
send

recv

sendEvt
recvEvt
sync
never
alwaysEvt
wrap
guard

choose

Concurrent ML

(unit -> unit) -> thread_id

Thread
creation

Synchronous
message
passing

unit -> ‘a chan

‘a chan * ‘a -> unit

‘a chan -> ‘a

LY

chan * ‘a -> unit event

LY

chan -> ‘a event

(e o
event -> ‘a First-class events

- -
Q Q Q Q Q

event
‘a -> ‘a event

‘a event -> (‘a -> ‘b) -> ‘b event
(unit -> ‘a event) -> ‘a event

‘a event list -> ‘a event

T1 12 T3

send(cl,vl) recv(c2) || send(c2,v3)
@) a() h(
send(c2,v2) recv(cl) || recv(c2)

11 12 13
A
send(cl,vl) a recv(c2) <-> send(c2,v3)
£() \B o g() h()
send(c2,v2) v recv(cl) recv(c2)
A A

T1 12 T3

send(cl,vl) recv(c2) || send(c2,v3)
@) a() h(
send(c2,v2) recv(cl) || recv(c2)

11 12 T3
C

asend(cl,vl) L‘, A recv(c2) <¥> send(c2,v3)

! ! !

£() Aog() h()

A/N\B
A |

send(c2,v2) v recv(cl) recv(c2)

&

Theorem:

Cyclic dependence = divergent behavior

Formalization

Reason axiomatically E:=(P,A, —po, —co)

Well-formed execution Obs (WF_Exec (P)) € {Obs (Sync_Exec (P))}

Theorem

All Executions

* No happens before cycle
» Sensible intra-thread semantics
* No outstanding speculative actions

Well-formed
executions

Recipe for
implementation

Implementation

* Dependence graph = Axiomatic execution
— WF check before observable actions

— [ll-formed? Rollback and re-execute non-speculatively — Progress!

* Channel consistency

— Channel state replicas at each site

— Preserve CML semantics — Strong consistency!

— Recover strong consistency using speculative execution
* Mutable references

— Cross-site references are prohibited

— Checkpoint = local continuation capture + communication log

32

Results

* Benchmark: Optimistic OLTP & P2P Collaborative editing

510 4 ' J
. 76 &—e® RXx
-~ 28 Q4| m--m Sync o
Qv:’i ;7 §4’ ,,"-
— L’
GEJ 26 5}
= 5 f v ",,—-]
277 g ."’
24| - 1'___._—_0/0-——‘
0 10 20_ 30 40 50 % 3 4 5 6
Clients # Authors
OLTP Collaborative Editing
5.8X faster than sync 7.6X faster than sync
1.4X slower than async 2.3X slower than async
@ 48 clients @ 6 authors

Rx-CML -2 efficient abstraction over
high-latency distributed systems!

33

RxCML : Conclusion

Concurrent ML Rx- CM.LZ
Speculative
Execution!
synchrony latency (Performance +
Consistency)
Asynchronous n
distributed system

Strong consistency

of
CML

34

Quelea

* PL support for working with eventually consistent data

stores
* Problems with existing eventually consistent data stores
1. Consistency
* Basic eventual, session guarantees, timeline, causal, sequential, recency;,
bounded staleness, etc. + Transaction isolation levels!
2. Convergence
* LWW register, grow-only counter, and a few more.
* Lack primitives for operation composition
* Goals
1. Automatically map application-level consistency to store-level

2.

consistency

Let the programmer describe their own Replicated Data Types
(RDTs)

Quelea: Convergence

* RDT specification language
— Object state = trace of operation effects

* Trace only-grows
* No destructive updates = conflicts preserved!

— Operations =2 reduction over trace

* Update conflicts are resolved in the operations

type Operation e a r = [e] — a — (r, Maybe e)

Object snapshot Read-only returns
(trace of effects) Nothing.

36

Quelea: Consistency

* Contract language

— Express fine-grained app-level consistency

x,y,n € EffVar Op € OperName
Y € Contract == V(z:7)y | Voo |«
T € EffType = Op|TVT
m € Prop = true | R(z,y) | 7V o .
| nAT T Primitive relations
R € Relation ==/ vis | so | sameobj ¥R™
| RUR| RNR
— A contract enforcement system assigns correct consistency

level

* Describe store semantics in the same contract language

A = 17”51‘01'(3 = 1//op
* Decidable - Automatically discharged with the help of SMT solver.

37

Bank Account RDT

e Goal

— deposit, withdraw and getBalance

— Balance >=0

e Effects

data Acc = Deposit Int | Withdraw Int | GetBalance

getBalance :: [Acc] — () — (Int, Maybe Acc)
getBalance hist _ =
let res = sum [x | Deposit x < hist]

- sum [x | Withdraw x < hist]
in (res, Nothing)

withdraw :: [Acc] — Int — (Bool, Maybe Acc)
withdraw hist v =
if sell $ getBalance hist () > v

then (True, Just $ Withdraw v)
else (False, Nothing)

38

Bank Account Contracts

Effect of current

 Bal — operation
— Any two withdraw operations must be totally ordered

W (1) = VY (a : Withdraw). sameobj(a,) = vis(a,) v vis(y,a) va =1

— A get balance operation witnessing a withdraw must witness
all its visible deposits

Session 1
' deposit (100) I _ Vep(1) = V(a:Deposit), (b: Withdraw).
"""""""\> vis(a,b) /\ViS(b,ﬂ) = vis(a,n)
Session 2
| withdraw (50) < I/Jd(ﬁ) = true

S I VIS
Session 3 \>
|

¥
i getBalance — -50 |
_______________ 39

Implementation

Support for
coordination-free txns

Off-the-shelf Distributed Store le Off-the-shelf store res |

a

x | . _ Business Logic :

¥ |. Failure handling ; | (incl. Txns) |

: ~ <> - <> | o Persistence (on- d1sk) | :

l I- Eventual cons1stency : @ @ I
. | |

: 5 |

- - ___]

select 1nsert l_
———————————————————— REST API
L Shlm Layer (RDTS) |° Soft-state (in-mem) et it
| Datatype operations : , —— abg |
y I ;| v |
| @ @ @ @ le Summarization : : . ig |
IL __________________ :. Stronger consistency§ : Clients :

40

Evaluation: Classification

Operation Transaction
Classes \ \/_ Classes
Benchmark | LOC | #T | EC | CC [SC | RC | MAV | RR |
LWW Reg 108 | 1 2 2 2 0 0 0
DynamoDB 126 | 1 3 1 2 0 0 0
Bank Account | 155 1 1 1 1 1 0 1
Shopping List | 140 | 1 2 1 1 0 0 0
Online store 340 | 4 9 1 0 2 0 1
ebay clone «——rRuUBiS 640 | 6| 14| 2| 1] 4| 2| o
twitter clone €——+Microblog 659 | 5| 13| 6| 1 6 3| 1

* Performance evaluation
— Amazon EC2 + Cassandra cluster + Quelea shim layer

 Bank account

— deposit =2 EC, withdraw = SC, getBalance = CC

— Compared to all operations tagged SC, Quelea had
* 1DC = 40%(139%) lower(higher) latency(throughput)
* 2DC = 86%(618%) lower(higher) latency(throughput)

Quelea: Conclusions

* PL support for eventual consistency

— Convergence

* Grow-only trace of effects

* Reductions resolve conflicts
— Consistency

 Contract language for declarative reasoning

» SMT solver for contract classification

* Realized on top of off-the-shelf stores!

Summary

Functional programming abstractions simplify scalable
concurrent programming under weak consistency

Aneris

* Immutability
— Eliminating read
barriers
— Cached shared
heap
* Mostly functional
nature

— Small shared heap

X;Quelea

* No destructive

RXCMLﬁ

* Explicit comm.
— simplifies formal

reasoning up dates
— tractable dep. graph — Sequential
* Checkpoint reasoning for
— Save current eventually
icontimila;;%n & consistent
gnore RDTS

Publications

* Aneris
— JFP 2014 - MultiMLton language and runtime system
— ISMM 2012 - Local & Procrastinating collectors
— MARC 2012 - Software managed coherence
* Best paper award
* RxCML
— PADL 2014

* Quelea
— In submission to PLDI 2015

SQL

Future Work

Constraints

Not NULL,
Unique,

Primary Key,
Foreign Key,

Check,
Default

Contract
Inference

Programming model

Backends

Declarative
Consistency!

Optimistic Strong

Quelea _
Concurrency Consistency
Shared Mem, Distr. Mem, KV interface,
Fences, Locks, SMC, RDMA, Vector clocks,
Cond Var MPB Consensus
. . Cassandra, Riak,
Traditional VM Aneris DynamoDB
A aa \
2 1 e \

CC multicore Non-CC multicore

Geo-distributed

compute cluster e

Thank you!

