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Strong Consistency on Multicore

* Caches improve memory access latency
— Conflict with Multi-processing
¢ Hardware Cache Coherence > Strong consistency
— DREF programs are sequentially consistent
* Coherence mechanisms have become the bottleneck

— Power requirements

— Complexity of coherence hardware

— Storage requirements of cache meta-data

— Heterogeneity : GPUs + FPGAs + Co-processors, etc,.



Rise of Non-cache-coherent Hardware

Intel SCC Xeon Phi Runnymede

* Hardware support

— No coherence €...... —> coherence islands

* Programmer’s view

— No sequential consistency!
— MPI, TCP/IP, RDMA, etc,.



Consistency in the Cloud
-

.v.

Cache

* Distributed stores:
— Shared memory abstraction for the cloud

— Geo-replication = minimizing latency, tolerate partial failures,
availability

* CAP Theorem!!l - No highly available, partition tolerant
system can provide strong consistency

* Live with eventual consistency!

[1] N. Lynch el al., “Brewer's conjecture and the feasibility of consistent, available, partition-tolerant web services”, ACM SIGACT News, 2002.
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Programming under Eventual Consistency

e 2 distinct concerns

— Consistency = when updates become visible

Replica 1 Replica 2
{} {}
Add(42)
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Programming under Eventual Consistency

* 2 distinct concerns
— Consistency = when updates become visible
— Convergence = how conflicting updates are resolved
Add (42)
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Programming under Eventual Consistency

* 2 distinct concerns
— Consistency = when updates become visible

— Convergence = how conflicting updates are resolved

Add(42)
Replica 1 /\ Replica 2
{?7?7} {?7?7}
Ngens2)/
Add (42) OK Rem(42) OK
ot Inconsistency
4 A leaks to the

] [ . user
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Key Observation

Add (42)

Replica 1 /\ Replica 2

{277}

Add(42) [ l

J

oK Rem(42) oK

* Mutation of shared state causes weak consistency

1ssues

* Tame shared state mutation = mitigate weak

consistency issues

* Functional programming

— Mutations are rare and explicit!
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Thesis

Functional programming abstractions simplify scalable
concurrent programming under weak consistency

/ 1\

Cache-coherent, seq. Strongly Consistent Declarative, extensible,
consistent prog. model CML Semantics high-level prog. model
Aneris RxCML Quelea
Non-cache-coherent Asynchronous Distributed Off-the-shelf eventually

Multicore System consistent data store

ISMM €12, MARC ‘12, JFP ‘14 PADL ‘14 In submission to PLDI €15



Aneris : Coherent Shared Memory on
the Intel SCC

Cache Coherent Intel SCC Cluster of Machines

v No change to * Shared memory  Distributed programming
programming model * Software Managed « RCCE, MPI, TCP/IP
Cache-Coherence (SMC)  * Release consistency + RDMA

Can we program SCC as a cache
coherent machine?

18



Intel SCC: Programmer’s View

No cache coherence

(caching disabled)

Software managed cache
coherence (release consistency)

Shared memory (off-chip)

Private Private
memory memory
Core 0 Core 1

Private | = Private
memory memory
Core 2 Core 47
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Context: MultiMLton on the Intel SCC

* Parallel extension of MLton
— A whole-program, optimizing Standard ML compiler

— Immutability is default, mutations are explicit

* Concurrency model - Asynchronous CML

send (c, v)

v € recv (c)

 Collectors
— LC, PRC, SMC



Local Collector (LC)

Thread-local heap = Circumvent the need for coherence

No access to remote core-private memory = no need for cache
coherence

Can we
eliminate this
! overhead? sointers

Requires both read and write memc

— Write barrier globalizes; read barrier hanc

25—
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Procrastinating Collector (PRC)

* Exploits concurrent functional nature of programming
language
— SML (Mostly functional) = Mutations are rare

* Write barriers << read barriers

— ACML - Lots of concurrency

* Eliminate read barriers completely

— Mutator must never encounter forwarding pointers

* (Rare) Write barriers are more expensive

1.
2.

Immutability: Globalize immutable objects by making a copy.

Dynamic shape analysis: for objects completely in minor heap,
globalize and perform minor local GC

Procrastinate: Other objects, suspend threads instead of globalization
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Software-managed Coherence (SMC)

* Mutability information + software coherence support

* Integrate cache control instructions into memory barriers
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Results
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0 10 20 30 40 50 1% 1 2 3 4 5 6
# Cores Heap size relative to min heap size

Speedup Heap size vs Total time

» PRC(SMC) 23%(33%) faster than LC @ 48 cores
* 99% of the memory accesses in SMC are cacheable!
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Aneris : Conclusion

* Concurrent FP language and runtime can
effectively mask non-cache-coherence

1. Utilize thread-local heap architecture to
circumvent the absence of coherence

2. Utilize mutability information to optimize for
memory/cache hierarchy

3. Trade concurrency for minimizing GC overheads
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RxCML

Composable :
Abstraction Synchronous Transactional GlalLrba.ge
communication memory collection
Domain Asynchronous Shared memory Memory
distributed system concurrency management

Synchronous communication =
atomic { data transfer +
synchronization }

synchrony latency



Can we discharge synchronous communications
asynchronously and ensure observable equivalence?

Formalize:
[send (c,v)]k = [asend(c,v)]k
Implement:

Distributed Concurrent ML on MultiMLton
(Speculative execution)



val

val
val

val

val
val
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spawn

channel
send

recv

sendEvt
recvEvt
sync
never
alwaysEvt
wrap
guard

choose

Concurrent ML

(unit -> unit) -> thread_id

Thread
creation

Synchronous
message
passing

unit -> ‘a chan

‘a chan * ‘a -> unit

‘a chan -> ‘a

LY

chan * ‘a -> unit event

LY

chan -> ‘a event

(e o
event -> ‘a First-class events

- -
Q Q Q Q Q

event
‘a -> ‘a event

‘a event -> (‘a -> ‘b) -> ‘b event
(unit -> ‘a event) -> ‘a event

‘a event list -> ‘a event
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send(cl,vl) recv(c2) || send(c2,v3)
@) a() h(
send(c2,v2) recv(cl) || recv(c2)

11 12 T3
C

asend(cl,vl) L‘, A recv(c2) <¥> send(c2,v3)

! ! !

£() Aog() h()

A/N\B
A |

send(c2,v2) v recv(cl) recv(c2)

&

Theorem:

Cyclic dependence = divergent behavior




Formalization

Reason axiomatically E:=(P,A, —po, —co)

Well-formed execution Obs (WF_Exec (P)) € {Obs (Sync_Exec (P))}

Theorem

All Executions

* No happens before cycle
» Sensible intra-thread semantics
* No outstanding speculative actions

Well-formed
executions

Recipe for
implementation



Implementation

* Dependence graph = Axiomatic execution
— WF check before observable actions

— [ll-formed? Rollback and re-execute non-speculatively — Progress!

* Channel consistency

— Channel state replicas at each site

— Preserve CML semantics — Strong consistency!

— Recover strong consistency using speculative execution
* Mutable references

— Cross-site references are prohibited

— Checkpoint = local continuation capture + communication log

32



Results

* Benchmark: Optimistic OLTP & P2P Collaborative editing

510 4 ' J
. 76 &—e® RXx
-~ 28 Q4| m--m Sync o
Qv:’i ;7 §4’ ,,"-
— L’
GEJ 26 5}
= 5  f v ",,—- ]
277 g ."’
24| - 1'___._—_0/0-——‘
0 10 20_ 30 40 50 % 3 4 5 6
# Clients # Authors
OLTP Collaborative Editing
5.8X faster than sync 7.6X faster than sync
1.4X slower than async 2.3X slower than async
@ 48 clients @ 6 authors

Rx-CML -2 efficient abstraction over
high-latency distributed systems!

33



RxCML : Conclusion

Concurrent ML Rx- CM.LZ
Speculative
Execution!
synchrony latency (Performance +
Consistency)
Asynchronous n
distributed system

Strong consistency

of
CML
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Quelea

* PL support for working with eventually consistent data

stores
* Problems with existing eventually consistent data stores
1. Consistency
* Basic eventual, session guarantees, timeline, causal, sequential, recency;,
bounded staleness, etc. + Transaction isolation levels!
2. Convergence
* LWW register, grow-only counter, and a few more.
* Lack primitives for operation composition
* Goals
1. Automatically map application-level consistency to store-level

2.

consistency

Let the programmer describe their own Replicated Data Types
(RDTs)



Quelea: Convergence

* RDT specification language
— Object state = trace of operation effects

* Trace only-grows
* No destructive updates = conflicts preserved!

— Operations =2 reduction over trace

* Update conflicts are resolved in the operations

type Operation e a r = [e] — a — (r, Maybe e)

Object snapshot Read-only returns
(trace of effects) Nothing.
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Quelea: Consistency

* Contract language

— Express fine-grained app-level consistency

x,y,n € EffVar Op € OperName
Y € Contract == V(z:7)y | Voo |«
T € EffType = Op|TVT
m € Prop = true | R(z,y) | 7V o .
| nAT T Primitive relations
R € Relation ==/ vis | so | sameobj ¥R™
| RUR| RNR
— A contract enforcement system assigns correct consistency

level

* Describe store semantics in the same contract language

A = 17”51‘01'(3 = 1//op
* Decidable - Automatically discharged with the help of SMT solver.
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Bank Account RDT

e Goal

— deposit, withdraw and getBalance

— Balance >=0

e Effects

data Acc = Deposit Int | Withdraw Int | GetBalance

getBalance :: [Acc] — () — (Int, Maybe Acc)
getBalance hist _ =
let res = sum [x | Deposit x < hist]

- sum [x | Withdraw x < hist]
in (res, Nothing)

withdraw :: [Acc] — Int — (Bool, Maybe Acc)
withdraw hist v =
if sell $ getBalance hist () > v

then (True, Just $ Withdraw v)
else (False, Nothing)
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Bank Account Contracts

Effect of current

 Bal — operation
— Any two withdraw operations must be totally ordered

W (1) = VY (a : Withdraw). sameobj(a, ) = vis(a, ) v vis(y,a) va =1

— A get balance operation witnessing a withdraw must witness
all its visible deposits

Session 1
' deposit (100) I _ Vep(1) = V(a:Deposit), (b: Withdraw).
"""""""\> vis(a,b) /\ViS(b,ﬂ) = vis(a,n)
Session 2
| withdraw (50) < I/Jd(ﬁ) = true

S I VIS
Session 3 \>
|

¥
i getBalance — -50 |
_______________ 39




Implementation

Support for
coordination-free txns

Off-the-shelf Distributed Store  le Off-the-shelf store res |

a

x | . _ Business Logic :

¥ |. Failure handling ; | (incl. Txns) |

: ~ <> - <> | o Persistence (on- d1sk) | :

l I- Eventual cons1stency : @ @ I
. | |

: 5 |

- - ___ ]

select 1nsert l_
———————————————————— REST API
L Shlm Layer (RDTS) |° Soft-state (in-mem) et it
| Datatype operations : , —— abg |
y I ;| v |
| @ @ @ @ le Summarization : : . ig |
IL __________________ :. Stronger consistency§ : Clients :
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Evaluation: Classification

Operation Transaction
Classes \ \/_ Classes
Benchmark | LOC | #T | EC | CC [ SC | RC | MAV | RR |
LWW Reg 108 | 1 2 2 2 0 0 0
DynamoDB 126 | 1 3 1 2 0 0 0
Bank Account | 155 1 1 1 1 1 0 1
Shopping List | 140 | 1 2 1 1 0 0 0
Online store 340 | 4 9 1 0 2 0 1
ebay clone  «——rRuUBiS 640 | 6| 14| 2| 1] 4| 2| o
twitter clone €——+Microblog 659 | 5| 13| 6| 1 6 3| 1

* Performance evaluation
— Amazon EC2 + Cassandra cluster + Quelea shim layer

 Bank account

— deposit =2 EC, withdraw = SC, getBalance = CC

— Compared to all operations tagged SC, Quelea had
* 1DC = 40%(139%) lower(higher) latency(throughput)
* 2DC = 86%(618%) lower(higher) latency(throughput)



Quelea: Conclusions

* PL support for eventual consistency

— Convergence

* Grow-only trace of effects

* Reductions resolve conflicts
— Consistency

 Contract language for declarative reasoning

» SMT solver for contract classification

* Realized on top of off-the-shelf stores!



Summary

Functional programming abstractions simplify scalable
concurrent programming under weak consistency

Aneris

* Immutability
— Eliminating read
barriers
— Cached shared
heap
* Mostly functional
nature

— Small shared heap

X;Quelea

* No destructive

RXCMLﬁ

* Explicit comm.
— simplifies formal

reasoning up dates
— tractable dep. graph — Sequential
* Checkpoint reasoning for
— Save current eventually
icontimila;;%n & consistent
gnore RDTS



Publications

* Aneris
— JFP 2014 - MultiMLton language and runtime system
— ISMM 2012 - Local & Procrastinating collectors
— MARC 2012 - Software managed coherence
* Best paper award
* RxCML
— PADL 2014

* Quelea
— In submission to PLDI 2015



SQL

Future Work

Constraints

Not NULL,
Unique,

Primary Key,
Foreign Key,

Check,
Default

Contract
Inference

Programming model

Backends

Declarative
Consistency!

Optimistic Strong

Quelea _
Concurrency Consistency
Shared Mem, Distr. Mem, KV interface,
Fences, Locks, SMC, RDMA, Vector clocks,
Cond Var MPB Consensus
. . Cassandra, Riak,
Traditional VM Aneris DynamoDB
A aa \
2 1 e \

CC multicore Non-CC multicore

Geo-distributed

compute cluster e



Thank you!



