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Strong Consistency on Multicore 

•  Caches improve memory access latency 
–  Conflict with Multi-processing 

•  Hardware Cache Coherence → Strong consistency 
–  DRF programs are sequentially consistent 

•  Coherence mechanisms have become the bottleneck 
–  Power requirements 
–  Complexity of coherence hardware 
–  Storage requirements of cache meta-data 
–  Heterogeneity : GPUs + FPGAs + Co-processors, etc,. 

Cache Cache Cache Cache
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Rise of Non-cache-coherent Hardware 

•  Hardware support 
–  No coherence !……" coherence islands 

•  Programmer’s view 
–  No sequential consistency! 
–  MPI, TCP/IP, RDMA, etc,. 
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Consistency in the Cloud 

•  Distributed stores: 
–  Shared memory abstraction for the cloud 
–  Geo-replication " minimizing latency, tolerate partial failures, 

availability 
•  CAP Theorem[1] " No highly available, partition tolerant 

system can provide strong consistency 
•  Live with eventual consistency! 

9"

US East

US West

Europe

Cache

[1]"N."Lynch"el"al.,"“Brewer's"conjecture"and"the"feasibility"of"consistent,"available,"par--onPtolerant"web"services”,"ACM"SIGACT"News,"2002."

Cache



Programming under Eventual Consistency  

•  2 distinct concerns 
– Consistency " when updates become visible 

10"

{}" {}"

Add(42)'

Replica 1 Replica 2 

Kyle"



Programming under Eventual Consistency  

•  2 distinct concerns 
– Consistency " when updates become visible 

11"

{42}" {}"

Add(42)'

Replica 1 Replica 2 

Size()' 0
OK'

Kyle"



Programming under Eventual Consistency  

•  2 distinct concerns 
– Consistency " when updates become visible 

12"

{42}" {42}"

Replica 1 Replica 2 

Add(42)'

Add(42)'
Size()' 0

OK'

Kyle"



Programming under Eventual Consistency  
•  2 distinct concerns 
– Consistency " when updates become visible 
– Convergence " how conflicting updates are resolved 
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Programming under Eventual Consistency  
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Key Observation 
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Cache Cache Cache Cache

•  Mutation of shared state causes weak consistency 
issues 

•  Tame shared state mutation " mitigate weak 
consistency issues 

•  Functional programming 
–  Mutations are rare and explicit! 
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Thesis 

Functional programming abstractions simplify scalable 
concurrent programming under weak consistency 
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Aneris : Coherent Shared Memory on 
the Intel SCC 
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•  Distributed programming 
•  RCCE, MPI, TCP/IP 
•  Release consistency + RDMA 

Intel SCC Cluster of Machines 

•  Shared memory 
•  Software Managed 

Cache-Coherence (SMC) 

Cache Coherent 

#  No change to 
programming model 

?? 

Can we program SCC as a cache 
coherent machine? 



Intel SCC: Programmer’s View 
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Context: MultiMLton on the Intel SCC 

•  Parallel extension of MLton 
–  A whole-program, optimizing Standard ML compiler 
–  Immutability is default, mutations are explicit 

•  Concurrency model – Asynchronous CML 

 
 
•  Collectors 
–  LC, PRC, SMC 
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Local Collector (LC) 
•  Thread-local heap " Circumvent the need for coherence 
•  No access to remote core-private memory " no need for cache 

coherence 
•  Requires both read and write memory barriers! 

–  Write barrier globalizes; read barrier handles forwarding pointers 
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Figure 3.4.: Read barrier overhead as a percentage of mutator time.

Evaluation

We evaluated a set of 8 benchmarks (described in Section 3.5) each running on all 48 cores on the SCC
to measure read barrier overheads. Figure 3.4 shows these overheads as a percentage of mutator time. Our
experiments reveal that, on average, the mutator spends 15.3% of the time executing read barriers for our
benchmarks.

The next question to ask is whether the utility of the read barrier justifies its cost. To answer this question,
we measure the number of instances the read barrier is invoked and the number of instances the barrier finds a
forwarded object (see Table 3.1). We see that read barriers find forwarded objects in less than one thousandth
of a percent of the number of instances they are invoked. Thus, in our system, the cost of read barriers is
substantial, but only rarely do they have to perform the task of forwarding references. These results motivate
our interest in a memory management design that eliminates read barriers altogether.

3.3 Procrastinating Collector (PRC)

Eliminating read barriers, however, is non-trivial. Abstractly, one can avoid read barriers by eagerly fixing
all references that point to forwarded objects at the time the object is lifted to the shared heap, ensuring the

Can"we"

eliminate"this"

overhead?"



Procrastinating Collector (PRC) 
•  Exploits concurrent functional nature of programming 

language 
–  SML (Mostly functional) " Mutations are rare 

•  Write barriers << read barriers 
–  ACML " Lots of concurrency 

•  Eliminate read barriers completely 
–  Mutator must never encounter forwarding pointers 

•  (Rare) Write barriers are more expensive 
1.  Immutability: Globalize immutable objects by making a copy. 
2.  Dynamic shape analysis: for objects completely in minor heap, 

globalize and perform minor local GC 
3.  Procrastinate: Other objects, suspend threads instead of globalization 
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Software-managed Coherence (SMC) 
•  Mutability information + software coherence support 

 
 
•  Integrate cache control instructions into memory barriers 
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Results 

•  PRC(SMC) 23%(33%) faster than LC @ 48 cores 
•  99% of the memory accesses in SMC are cacheable! 
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Figure 3.16.: Performance comparison of local collector with read barriers (LC), procrastinating collector without read

barriers (PRC), and collector utilizing software-managed cache coherence (SMC) : Geometric mean for 8 benchmarks.

are collected locally, without the need for stalling all of the mutators. The allocation rate on the SCC is
typically much lower than comparable general purpose commercial offerings. On the SCC, not only is the
processor slow (533MHz) but also the serial memory bandwidth for our experimental setup is only around
70 MB/s.

3.5.1 Performance

Figure 3.16 presents the speedup results and illustrates space-time trade-offs critical for any garbage col-
lector evaluation. Among the three variants, SMC performs the best (Figure 3.16(a)) due to the fact that most
of the accesses under SMC is cached, unlike LC and PRC. We also see that the performance of LC and PRC
start to flatten out due to the contention on the uncached shared memory as we increase the number of cores.
Thus, with increasing number of cores, the uncached shared memory becomes the bottleneck.

Speedup" Heap"size"vs"Total"-me"



Aneris : Conclusion 

•  Concurrent FP language and runtime can 
effectively mask non-cache-coherence 
1.  Utilize thread-local heap architecture to 

circumvent the absence of coherence 
2.  Utilize mutability information to optimize for 

memory/cache hierarchy 
3.  Trade concurrency for minimizing GC overheads 
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Can we discharge synchronous communications 
asynchronously and ensure observable equivalence? 

Distributed Concurrent ML on MultiMLton  
 (Speculative execution) 

Implement: 
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Abstract
One way to ease the burden of concurrent programming is to have
threads communicate synchronously via message-passing, making
explicit the program points where data is transferred from one
thread to another. In a language like Concurrent ML (CML), this
philosophy leads to strong guarantees on the ordering and visibility
of communicated data, simplifying program reasoning. The cost of
synchrony comes with a high price in performance, however, par-
ticularly in distributed environments where communication latency
is high. To ameliorate these costs, we might allow communication
to be asynchronous, having senders buffer data without waiting for
the availability of a matching receiver, thereby allowing execution
of the sender’s continuation to overlap data transmission. However,
while the use of asynchrony can help reclaim performance, it also
complicates program structure and understanding.

In this paper, we investigate an alternative semantics for CML
that implements sends asynchronously, but guarantees that the re-
sulting execution nonetheless exhibits behavior observably equiva-
lent to one in which all communication is performed synchronously.
Our goal is to retain the expressivity and simplicity of CML’s syn-
chronous operations in writing concurrent programs and reasoning
about them, but give implementations the flexibility to safely regain
performance using asynchronous communication.

We formalize the conditions under which this equivalence
holds, and present an implementation that builds a decentralized de-
pendence graph whose structure can be used to check the integrity
of an execution with respect to this equivalence. We integrate a no-
tion of speculation to allow ill-formed executions to be rolled-back
and re-executed, replacing offending asynchronous actions with
safe synchronous ones. Several realistic case studies deployed in a
cloud environment demonstrate the utility of our approach.

1. Introduction
Concurrent ML [20] (CML) provides an expressive concurrency
mechanism through its use of first-class composable synchronous
events. When synchronized, events allow threads to communicate
data via message-passing over first-class channels. Synchronous
communication simplifies program reasoning because every com-
munication action is also a synchronization point; thus, the contin-
uation of a message-send is guaranteed that the data being sent has
been successfully transmitted to a receiver. The cost of synchrony
comes at a high price in performance, however; recent proposals

[Copyright notice will appear here once ’preprint’ option is removed.]

therefore suggest the use of asynchronous variants of CML’s syn-
chronous events [30] to overcome this cost. While asynchronous
extensions can be used to gain performance, they sacrifice the sim-
plicity provided by synchronous communication in favor of a more
complex and sophisticated set of primitives.

One way to enhance performance without requiring new addi-
tions to the core set of event combinators CML supports, is to give
the underlying runtime the freedom to allow a sender to communi-
cate data asynchronously. In this way, the cost of synchronous com-
munication can be masked by allowing the sender’s continuation to
begin execution even if a matching receiver is not yet available. Be-
cause asynchrony is introduced only by the runtime, applications
do not have to be restructured to explicitly account for new be-
haviors introduced by this additional concurrency. Thus, we wish
to have the runtime enforce the equivalence: [[ send (c, v)]]k ⌘
[[ asend (c, v)]]k where k is a continuation, send is CML’s syn-
chronous send operation that communicates value v on channel c,
and asend is an asynchronous variant that buffers v on c and does
not synchronize on a matching receiver.

To illustrate, consider the following simple program:

send(c1,v1)
f()
send(c2,v2)

g()
recv(c1)

recv(c2)
h()

T1 T2 T3

Thread T1 performs a synchronous send on channel c1 that is re-
ceived by thread T2, after it computes g() . After the communica-
tion is performed, T1 evaluates f() , and then sends v2 on chan-
nel c2 , which is received by thread T3. Upon receipt, T3 evaluates
h() . Assuming f , g , and h perform no communication action of
their own, the synchronous communication on c1 by T1 could have
been safely converted into an asynchronous action in which v1 is
buffered, and read by T2 later upon evaluation of g() . The observ-
able behavior of the program in both cases (i.e., treating the initial
send synchronously or asynchronously) would be the same.

Unfortunately, naı̈vely replacing synchronous communication
with an asynchronous one is not usually meaning-preserving as the
example in Figure 1 illustrates. Under a synchronous evaluation
protocol, T2 would necessarily communicate first with T3, receiv-
ing v3 on channel c2 . It is then able to receive v1 from T1; finally,
T1 can communicate v2 to T3. If the send(c1,v1) operation by
T1 were replaced by asend(c1,v1) , the first receive on T2 has, in
addition to the first send on T3, a new potential matching opportu-
nity – the send of v2 on channel c2 . If the receive by T2 matches

send(c1,v1)
f()
send(c2,v2)

recv(c2)
g()
recv(c1)

send(c2,v3)
h()
recv(c2)

T1 T2 T3

Figure 1: Performing the first send in T1 asynchronously is not
meaning preserving with respect to synchronous evaluation.
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Abstract
One way to ease the burden of concurrent programming is to have
threads communicate synchronously via message-passing, making
explicit the program points where data is transferred from one
thread to another. In a language like Concurrent ML (CML), this
philosophy leads to strong guarantees on the ordering and visibility
of communicated data, simplifying program reasoning. The cost of
synchrony comes with a high price in performance, however, par-
ticularly in distributed environments where communication latency
is high. To ameliorate these costs, we might allow communication
to be asynchronous, having senders buffer data without waiting for
the availability of a matching receiver, thereby allowing execution
of the sender’s continuation to overlap data transmission. However,
while the use of asynchrony can help reclaim performance, it also
complicates program structure and understanding.

In this paper, we investigate an alternative semantics for CML
that implements sends asynchronously, but guarantees that the re-
sulting execution nonetheless exhibits behavior observably equiva-
lent to one in which all communication is performed synchronously.
Our goal is to retain the expressivity and simplicity of CML’s syn-
chronous operations in writing concurrent programs and reasoning
about them, but give implementations the flexibility to safely regain
performance using asynchronous communication.

We formalize the conditions under which this equivalence
holds, and present an implementation that builds a decentralized de-
pendence graph whose structure can be used to check the integrity
of an execution with respect to this equivalence. We integrate a no-
tion of speculation to allow ill-formed executions to be rolled-back
and re-executed, replacing offending asynchronous actions with
safe synchronous ones. Several realistic case studies deployed in a
cloud environment demonstrate the utility of our approach.

1. Introduction
Concurrent ML [20] (CML) provides an expressive concurrency
mechanism through its use of first-class composable synchronous
events. When synchronized, events allow threads to communicate
data via message-passing over first-class channels. Synchronous
communication simplifies program reasoning because every com-
munication action is also a synchronization point; thus, the contin-
uation of a message-send is guaranteed that the data being sent has
been successfully transmitted to a receiver. The cost of synchrony
comes at a high price in performance, however; recent proposals
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therefore suggest the use of asynchronous variants of CML’s syn-
chronous events [30] to overcome this cost. While asynchronous
extensions can be used to gain performance, they sacrifice the sim-
plicity provided by synchronous communication in favor of a more
complex and sophisticated set of primitives.

One way to enhance performance without requiring new addi-
tions to the core set of event combinators CML supports, is to give
the underlying runtime the freedom to allow a sender to communi-
cate data asynchronously. In this way, the cost of synchronous com-
munication can be masked by allowing the sender’s continuation to
begin execution even if a matching receiver is not yet available. Be-
cause asynchrony is introduced only by the runtime, applications
do not have to be restructured to explicitly account for new be-
haviors introduced by this additional concurrency. Thus, we wish
to have the runtime enforce the equivalence: [[ send (c, v)]]k ⌘
[[ asend (c, v)]]k where k is a continuation, send is CML’s syn-
chronous send operation that communicates value v on channel c,
and asend is an asynchronous variant that buffers v on c and does
not synchronize on a matching receiver.

To illustrate, consider the following simple program:

send(c1,v1)
f()
send(c2,v2)

g()
recv(c1)

recv(c2)
h()

T1 T2 T3

Thread T1 performs a synchronous send on channel c1 that is re-
ceived by thread T2, after it computes g() . After the communica-
tion is performed, T1 evaluates f() , and then sends v2 on chan-
nel c2 , which is received by thread T3. Upon receipt, T3 evaluates
h() . Assuming f , g , and h perform no communication action of
their own, the synchronous communication on c1 by T1 could have
been safely converted into an asynchronous action in which v1 is
buffered, and read by T2 later upon evaluation of g() . The observ-
able behavior of the program in both cases (i.e., treating the initial
send synchronously or asynchronously) would be the same.

Unfortunately, naı̈vely replacing synchronous communication
with an asynchronous one is not usually meaning-preserving as the
example in Figure 1 illustrates. Under a synchronous evaluation
protocol, T2 would necessarily communicate first with T3, receiv-
ing v3 on channel c2 . It is then able to receive v1 from T1; finally,
T1 can communicate v2 to T3. If the send(c1,v1) operation by
T1 were replaced by asend(c1,v1) , the first receive on T2 has, in
addition to the first send on T3, a new potential matching opportu-
nity – the send of v2 on channel c2 . If the receive by T2 matches

send(c1,v1)
f()
send(c2,v2)

recv(c2)
g()
recv(c1)

send(c2,v3)
h()
recv(c2)

T1 T2 T3

Figure 1: Performing the first send in T1 asynchronously is not
meaning preserving with respect to synchronous evaluation.
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Abstract
One way to ease the burden of concurrent programming is to have
threads communicate synchronously via message-passing, making
explicit the program points where data is transferred from one
thread to another. In a language like Concurrent ML (CML), this
philosophy leads to strong guarantees on the ordering and visibility
of communicated data, simplifying program reasoning. The cost of
synchrony comes with a high price in performance, however, par-
ticularly in distributed environments where communication latency
is high. To ameliorate these costs, we might allow communication
to be asynchronous, having senders buffer data without waiting for
the availability of a matching receiver, thereby allowing execution
of the sender’s continuation to overlap data transmission. However,
while the use of asynchrony can help reclaim performance, it also
complicates program structure and understanding.

In this paper, we investigate an alternative semantics for CML
that implements sends asynchronously, but guarantees that the re-
sulting execution nonetheless exhibits behavior observably equiva-
lent to one in which all communication is performed synchronously.
Our goal is to retain the expressivity and simplicity of CML’s syn-
chronous operations in writing concurrent programs and reasoning
about them, but give implementations the flexibility to safely regain
performance using asynchronous communication.

We formalize the conditions under which this equivalence
holds, and present an implementation that builds a decentralized de-
pendence graph whose structure can be used to check the integrity
of an execution with respect to this equivalence. We integrate a no-
tion of speculation to allow ill-formed executions to be rolled-back
and re-executed, replacing offending asynchronous actions with
safe synchronous ones. Several realistic case studies deployed in a
cloud environment demonstrate the utility of our approach.

1. Introduction
Concurrent ML [20] (CML) provides an expressive concurrency
mechanism through its use of first-class composable synchronous
events. When synchronized, events allow threads to communicate
data via message-passing over first-class channels. Synchronous
communication simplifies program reasoning because every com-
munication action is also a synchronization point; thus, the contin-
uation of a message-send is guaranteed that the data being sent has
been successfully transmitted to a receiver. The cost of synchrony
comes at a high price in performance, however; recent proposals
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therefore suggest the use of asynchronous variants of CML’s syn-
chronous events [30] to overcome this cost. While asynchronous
extensions can be used to gain performance, they sacrifice the sim-
plicity provided by synchronous communication in favor of a more
complex and sophisticated set of primitives.

One way to enhance performance without requiring new addi-
tions to the core set of event combinators CML supports, is to give
the underlying runtime the freedom to allow a sender to communi-
cate data asynchronously. In this way, the cost of synchronous com-
munication can be masked by allowing the sender’s continuation to
begin execution even if a matching receiver is not yet available. Be-
cause asynchrony is introduced only by the runtime, applications
do not have to be restructured to explicitly account for new be-
haviors introduced by this additional concurrency. Thus, we wish
to have the runtime enforce the equivalence: [[ send (c, v)]]k ⌘
[[ asend (c, v)]]k where k is a continuation, send is CML’s syn-
chronous send operation that communicates value v on channel c,
and asend is an asynchronous variant that buffers v on c and does
not synchronize on a matching receiver.

To illustrate, consider the following simple program:

send(c1,v1)
f()
send(c2,v2)

g()
recv(c1)

recv(c2)
h()

T1 T2 T3

Thread T1 performs a synchronous send on channel c1 that is re-
ceived by thread T2, after it computes g() . After the communica-
tion is performed, T1 evaluates f() , and then sends v2 on chan-
nel c2 , which is received by thread T3. Upon receipt, T3 evaluates
h() . Assuming f , g , and h perform no communication action of
their own, the synchronous communication on c1 by T1 could have
been safely converted into an asynchronous action in which v1 is
buffered, and read by T2 later upon evaluation of g() . The observ-
able behavior of the program in both cases (i.e., treating the initial
send synchronously or asynchronously) would be the same.

Unfortunately, naı̈vely replacing synchronous communication
with an asynchronous one is not usually meaning-preserving as the
example in Figure 1 illustrates. Under a synchronous evaluation
protocol, T2 would necessarily communicate first with T3, receiv-
ing v3 on channel c2 . It is then able to receive v1 from T1; finally,
T1 can communicate v2 to T3. If the send(c1,v1) operation by
T1 were replaced by asend(c1,v1) , the first receive on T2 has, in
addition to the first send on T3, a new potential matching opportu-
nity – the send of v2 on channel c2 . If the receive by T2 matches

send(c1,v1)
f()
send(c2,v2)

recv(c2)
g()
recv(c1)

send(c2,v3)
h()
recv(c2)

T1 T2 T3

Figure 1: Performing the first send in T1 asynchronously is not
meaning preserving with respect to synchronous evaluation.
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Abstract
One way to ease the burden of concurrent programming is to have
threads communicate synchronously via message-passing, making
explicit the program points where data is transferred from one
thread to another. In a language like Concurrent ML (CML), this
philosophy leads to strong guarantees on the ordering and visibility
of communicated data, simplifying program reasoning. The cost of
synchrony comes with a high price in performance, however, par-
ticularly in distributed environments where communication latency
is high. To ameliorate these costs, we might allow communication
to be asynchronous, having senders buffer data without waiting for
the availability of a matching receiver, thereby allowing execution
of the sender’s continuation to overlap data transmission. However,
while the use of asynchrony can help reclaim performance, it also
complicates program structure and understanding.

In this paper, we investigate an alternative semantics for CML
that implements sends asynchronously, but guarantees that the re-
sulting execution nonetheless exhibits behavior observably equiva-
lent to one in which all communication is performed synchronously.
Our goal is to retain the expressivity and simplicity of CML’s syn-
chronous operations in writing concurrent programs and reasoning
about them, but give implementations the flexibility to safely regain
performance using asynchronous communication.

We formalize the conditions under which this equivalence
holds, and present an implementation that builds a decentralized de-
pendence graph whose structure can be used to check the integrity
of an execution with respect to this equivalence. We integrate a no-
tion of speculation to allow ill-formed executions to be rolled-back
and re-executed, replacing offending asynchronous actions with
safe synchronous ones. Several realistic case studies deployed in a
cloud environment demonstrate the utility of our approach.

1. Introduction
Concurrent ML [20] (CML) provides an expressive concurrency
mechanism through its use of first-class composable synchronous
events. When synchronized, events allow threads to communicate
data via message-passing over first-class channels. Synchronous
communication simplifies program reasoning because every com-
munication action is also a synchronization point; thus, the contin-
uation of a message-send is guaranteed that the data being sent has
been successfully transmitted to a receiver. The cost of synchrony
comes at a high price in performance, however; recent proposals

[Copyright notice will appear here once ’preprint’ option is removed.]

therefore suggest the use of asynchronous variants of CML’s syn-
chronous events [30] to overcome this cost. While asynchronous
extensions can be used to gain performance, they sacrifice the sim-
plicity provided by synchronous communication in favor of a more
complex and sophisticated set of primitives.

One way to enhance performance without requiring new addi-
tions to the core set of event combinators CML supports, is to give
the underlying runtime the freedom to allow a sender to communi-
cate data asynchronously. In this way, the cost of synchronous com-
munication can be masked by allowing the sender’s continuation to
begin execution even if a matching receiver is not yet available. Be-
cause asynchrony is introduced only by the runtime, applications
do not have to be restructured to explicitly account for new be-
haviors introduced by this additional concurrency. Thus, we wish
to have the runtime enforce the equivalence: [[ send (c, v)]]k ⌘
[[ asend (c, v)]]k where k is a continuation, send is CML’s syn-
chronous send operation that communicates value v on channel c,
and asend is an asynchronous variant that buffers v on c and does
not synchronize on a matching receiver.

To illustrate, consider the following simple program:

send(c1,v1)
f()
send(c2,v2)

g()
recv(c1)

recv(c2)
h()

T1 T2 T3

Thread T1 performs a synchronous send on channel c1 that is re-
ceived by thread T2, after it computes g() . After the communica-
tion is performed, T1 evaluates f() , and then sends v2 on chan-
nel c2 , which is received by thread T3. Upon receipt, T3 evaluates
h() . Assuming f , g , and h perform no communication action of
their own, the synchronous communication on c1 by T1 could have
been safely converted into an asynchronous action in which v1 is
buffered, and read by T2 later upon evaluation of g() . The observ-
able behavior of the program in both cases (i.e., treating the initial
send synchronously or asynchronously) would be the same.

Unfortunately, naı̈vely replacing synchronous communication
with an asynchronous one is not usually meaning-preserving as the
example in Figure 1 illustrates. Under a synchronous evaluation
protocol, T2 would necessarily communicate first with T3, receiv-
ing v3 on channel c2 . It is then able to receive v1 from T1; finally,
T1 can communicate v2 to T3. If the send(c1,v1) operation by
T1 were replaced by asend(c1,v1) , the first receive on T2 has, in
addition to the first send on T3, a new potential matching opportu-
nity – the send of v2 on channel c2 . If the receive by T2 matches

send(c1,v1)
f()
send(c2,v2)

recv(c2)
g()
recv(c1)

send(c2,v3)
h()
recv(c2)

T1 T2 T3

Figure 1: Performing the first send in T1 asynchronously is not
meaning preserving with respect to synchronous evaluation.
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Formalization 
Reason axiomatically 

Well-formed execution     Obs (WF_Exec (P)) � {Obs (Sync_Exec (P))} 

All"Execu-ons"

WellPformed"

execu-ons"

Sync"

Execu-ons"

•  No happens before cycle 
•  Sensible intra-thread semantics 
•  No outstanding speculative actions 

Recipe for 
implementation 

Theorem"
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Implementation 
•  Dependence graph � Axiomatic execution 

–  WF check before observable actions 
–  Ill-formed? Rollback and re-execute non-speculatively – Progress! 

•  Channel consistency 
–  Channel state replicas at each site 
–  Preserve CML semantics – Strong consistency! 
–  Recover strong consistency using speculative execution 

•  Mutable references 
–  Cross-site references are prohibited 
–  Checkpoint " local continuation capture + communication log 
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Results 
•  Benchmark: Optimistic OLTP & P2P Collaborative editing 

In the absence of contention, the involvement of the lock server adds unnecessary
overhead. By communicating with lockChan asynchronously, we can allow the client
(the thread performing the transaction), to concurrently proceed with obtaining other
locks or executing the transaction. However, the transactional guarantees are lost in
this case. Under �CML such serializability violation shows up as a cycle in the happens-
before dependence graph. �CML rejects such executions, causing the transaction to abort,
and re-execute non-speculatively.

For our evaluation, we implemented a distributed version of this program ( vacation )
taken from the STAMP benchmark suite [4]. To adapt the benchmark for a distributed
environment, we partitioned resources into 16 shards, each protected by a lock server.
The workload was setup for moderate contention, and each transaction involves 10 op-
erations. The shards were spread across 16 EC2 M1 large instances within the same
EC2 availability zone. The clients were instantiated from all of the different regions
on M1 small instances to simulate the latencies involved in a real web-application. A
benchmark run involved 10K transactions, spread equally across all of the available
clients. Each benchmark run was repeated 5 times.
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Fig. 4: Performance comparison
on distributed vacation (OLTP)
benchmark. Lower is better.

The performance results are presented in the
Figure 4. The number of clients concurrently is-
suing transaction requests was increased from 1
to 48. �CML is the speculative version, while Sync
is the synchronous, non-speculative variant. The
1-client Sync version took 1220 seconds to com-
plete. For comparison, we extended the original
C version with a similar shared distribution struc-
ture. This run was 1.3X faster than the CML base-
line. The benchmark execution under �CML scales
much better than the Sync version due to opti-
mistic transactions. With 48 clients, �CML version
was 5.8X faster than then Sync version. Under
�CML, the number of transaction conflicts does increase with the number of clients. With
48 clients, 9% of the transactions executed under �CML were tagged as conflicting and
re-executed non-speculatively. This does not, however, adversely affect scalability.

4.2 Collaborative Editing

Our next case study is a real-time, decentralized collaborative editing tool. Typically,
such commercial offerings such as Google Docs, Apache Wave, EtherPad, etc,utilize a
centralized server to coordinate between the authors. Not only does the server eventu-
ally become a bottleneck, but service providers also need to store a copy of the docu-
ment, along with other personal information, which is undesirable. We consider a fully
decentralized solution, in which authors works on a local copy of the shared document
for responsiveness, with updates from other authors added incrementally to the working
copy. Although replicas are allowed to diverge, they are expected to converge eventu-
ally. This convergence is achieved through operational transformation [22]. Dealing
with operational transformation in the absence of a centralized server is tricky [16], and
commercial collaborative editing services like Google Wave impose additional restric-

tions with respect to the frequency of remote updates [24] in order to build a tractable
implementation.

We simplify the design by performing causal atomic broadcast when sending up-
dates to the replicas. Causal atomic broadcast ensures that the updates are applied on
all replicas in the same global order, providing a semblance of a single centralized
server. Implemented naı̈vely, i.e., performing the broadcast synchronously, however, is
an expensive operation, requiring coordination among all replicas for every broadcast
operation compromising responsiveness. Our relaxed execution model overcomes this
inefficiency. The key advantage of our system is that the causal atomic broadcast is
performed speculatively, allowing client threads to remain responsive.

We use a collaborative editing benchmark generator described in [14] to generate
a random trace of operations, based on parameters such as trace length, percentage of
insertions, deletions, number of replicas, local operation delay, etc. Our benchmarking
trace contains 30K operations, 85%(15%) of which are insertions(deletions), and 20%
of which are concurrent operations. We insert a 25 ms delay between two consecutive
local operations to simulate user-interaction. Updates from each replica is causal atomi-
cally broadcasted every 250 ms. Each replica is represented by a �CML instance placed in
widely distributed Amazon EC2 availability zones chosen to capture the geo-distributed
nature of collaborative editing. The average inter-instance latency was 173 ms, with a
standard deviation of 71.5. Results are reported as the average of five runs.
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Fig. 5: Performance comparison on
collaborative editing benchmark.
Lower is better.

We consider the time taken by a collaborative
editing session to be the time between the first
operation generation and the completion of the
last broadcast operation, at which point the doc-
uments at every replica would have converged.
Figure 5 shows results with respect to total run-
ning time. Sync represents an ordinary CML exe-
cution, while �CML represents our new implemen-
tation. With 2-authors, �CML version took 485 sec-
onds to complete, and was 37% faster than the
synchronous version. As we increase the number
of concurrent authors, the number of communi-
cation actions per broadcast operation increases.
Hence, we expect the benchmark run to take longer to complete. The non-speculative
version scales poorly due to the increasing number of synchronizations involved in the
broadcast operations. Indeed, Sync is 7.6X slower than �CML when there are six concur-
rent authors. Not surprisingly, �CML also takes longer to complete a run as we increase
the number of concurrent authors. This is because of increasing communication actions
per broadcast as well as increase in mis-speculations. However, with six authors, it only
takes 1.67X longer to complete the session when compared to having just two authors,
and illustrates the utility of speculative communication.

5 Related Work
Causal-ordering of messages is considered an important building block [2] for dis-
tributed applications. Similar to our formulation, Charron-Bost et al. [5] develop an
axiomatic formulation for causal-ordered communication primitives, although their fo-

OLTP Collaborative Editing
5.8X faster than sync 
1.4X slower than async 
          @ 48 clients 

7.6X faster than sync 
2.3X slower than async 
         @ 6 authors 

Rx.CML%"%efficient%abstrac7on%over%%
high.latency%distributed%systems!%

33"



RxCML : Conclusion 

Concurrent ML 

Asynchronous 
distributed system 

synchrony latency 
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Execution! 
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Quelea 
•  PL support for working with eventually consistent data 

stores 
•  Problems with existing eventually consistent data stores 

1.  Consistency 
•  Basic eventual, session guarantees, timeline, causal, sequential, recency, 

bounded staleness, etc. + Transaction isolation levels! 
2.  Convergence 

•  LWW register, grow-only counter, and a few more. 
•  Lack primitives for operation composition 

•  Goals 
1.  Automatically map application-level consistency to store-level 

consistency 
2.  Let the programmer describe their own Replicated Data Types 

(RDTs) 
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Quelea: Convergence 
•  RDT specification language 
–  Object state "  trace of operation effects 

•  Trace only-grows 
•  No destructive updates " conflicts preserved! 

–  Operations " reduction over trace 
•  Update conflicts are resolved in the operations 
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5.2 Motivation

Consider how we might implement a highly available bank account on top of an eventually consistent data
store, with the integrity constraint that the balance must be non-negative. We begin by implementing a bank
account replicated data type (RDT) in QUELEA, and then describe the mechanisms to obtain the desired
correctness guarantees.

5.2.1 RDT Specification

A key novelty in QUELEA is that it allows the addition of new RDTs to the store, which obviates the
need for coercing the application logic to utilize the store provided data types. In addition, QUELEA treats
the convergence semantics of the data type separately from its consistency properties. This separation of
concerns permits operational reasoning for conflict resolution, and declarative reasoning for consistency.
The combination of these techniques enhances the programmability of the store.

Let us assume that the bank account object provides three operations: deposit , withdraw and
getBalance , with the assumption that the withdraw fails if the account has insufficient balance. Every
operation in QUELEA is of the following type, written in Haskell syntax:

1 type Operation e a r = [e] ! a ! (r, Maybe e)

It takes a list of effects (the context for the operation), and an input argument, and returns a result along with
an optional effect (read-only operations return Nothing ). The new effect (if emitted) is added to the state
of the object at the current replica, and asynchronously sent to other replicas. The implementation of the bank
account operations in QUELEA is given in Figure 5.2:

The datatype Acc represents the effect type for the bank account. The context of the operations is a snap-
shot of the state of the object at some replica. In this sense, every operation on the RDT is atomic, and thus
permitting sequential reasoning for implementing eventually consistent data types. We have implemented a
large corpus of RDTs for realistic benchmarks including shopping carts, auction and micro-blogging sites in
few tens of lines of code.

5.2.2 Anomalies under Eventual Consistency

Our goal is to choose the correct consistency level for each of the bank account operations such that (1)
the balance remains non-negative and (2) the getBalance operation never incorrectly returns a negative
balance. Let us first consider the anomalies that could arise under eventual consistency.

Consider the execution shown in Figure 5.3(a). Assume that all operations in the figure are on the same
bank account object with the initial balance being zero. Session 1 performs a deposit of 100, followed by
a withdraw of 80 in the same session. The withdraw operation witnesses the deposit and succeeds1.
1Although visibility and session order relations relate effects, we have abused the notation in these examples to relate operations, with
the idea that the relations relate the effect emitted by those operations

Object"snapshot"

(trace"of"effects)"

ReadPonly"returns"

Nothing."



•  Contract language 
–  Express fine-grained app-level consistency 

 
–  A contract enforcement system assigns correct consistency 

level 
•  Describe store semantics in the same contract language 

•  Decidable " Automatically discharged with the help of SMT solver. 
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x, y, ⌘̂ 2 EffVar Op 2 OperName

 2 Contract ::= 8(x : ⌧). | 8x. | ⇡
⌧ 2 EffType ::= Op | ⌧ _ ⌧
⇡ 2 Prop ::= true | R(x, y) | ⇡ _ ⇡

| ⇡ ^ ⇡ | ⇡ ) ⇡

R 2 Relation ::= vis | so | sameobj | R

+

| R [R | R \R

Figure 4. Contract language.

3.4 From Contracts to Implementation
Notice that the contracts for withdraw and getBalance

only express application-level consistency requirements, and
make no reference to the semantics of the underlying store.
To write contracts, a programmer only needs to reason about
the semantics of the application under the QUELEA sys-
tem model. The mapping of application-level consistency re-
quirements to appropriate store-level guarantees is done au-
tomatically behind-the-scene. How might one go about en-
suring that an execution adheres to a contract? The challenge
is that a contract provides a declarative (axiomatic) specifi-
cation of an execution, while what is required is an opera-
tional procedure for enforcing its implicit constraints.

One strategy would be to execute operations specula-
tively. Here, operations are tentatively applied as they are
received from the client or other replicas. We can main-
tain a runtime manifestation of executions, and check well-
formedness conditions at runtime, rolling back executions if
they are ill-formed. However, the overhead of state mainte-
nance and the complexity of user-defined contracts is likely
to make this technique infeasible in practice.

We devise a static approach instead. Contracts are an-
alyzed with the help of a theorem prover, and statically
mapped to a particular store-level consistency property that
the prover guarantees preserves contract semantics. We call
this procedure contract classification. Given the variety and
complexity of store level consistency properties, the idea is
that the system implementer parameterizes the classification
procedure by describing the store semantics in the same con-
tract language as the one used to express the contract on the
operations. In the next section, we describe the contract lan-
guage in detail and describe the classification procedure for
a particular store semantics.

4. Contract Language
4.1 Syntax
The syntax of our core contract language is shown in Figure
4. The language is based on first-order logic (FOL), and ad-
mits prenex universal quantification over typed and untyped
effect variables. We use a special effect variable (⌘̂) to de-
note the effect of current operation - the operation for which
a contract is being written. Notice that ⌘̂ occurs free in the
contract. We will fix its scope when classifying the contracts
(§ 4.4). The type of an effect is simply the name of the op-

⌘ 2 Effect  2 Contract ⌘ 2 Effect Set

A 2 EffSoup ::= ⌘

vis, so, sameobj 2 Relations ::= A ⇥ A
E 2 ExecState ::= (A,vis,so,sameobj)

Figure 5. Axiomatic execution.

eration (eg: withdraw) that induced the effect. We admit
disjunction in types to let an effect variable range over mul-
tiple operation names. The contract 8(a : ⌧1 _ ⌧2).  is just
syntactic sugar for 8a.(oper(a, ⌧1) _ oper(a, ⌧2)) )  . An
untyped effect variable ranges over all operation names.

Quantifier-free propositions in our contract language are
conjunctions, disjunctions and implications of predicates ex-
pressing relations between pairs of effect variables. The syn-
tactic class of relations is seeded with primitive vis, so, and
sameobj relations, and also admits derived relations that are
expressible as union, intersection, or transitive closure3 of
primitive relations. Commonly used derived relations are the
same object session order (soo = so \ sameobj), happens-
before order (hb = (so [ vis)+) and the same object
happens-before order (hbo = (soo [ vis)+).

4.2 Semantics
QUELEA contracts are constraints over axiomatic definitions
of program executions. Figure 5 summarizes artifacts rele-
vant to define an axiomatic execution. We formalize an ax-
iomatic execution as a tuple (A,vis,so,sameobj), where A,
called the effect soup, is the set of all effects generated dur-
ing the program execution, and vis, so, sameobj ✓ A ⇥ A
are visibility, session order, and same object relations, re-
spectively, witnessed over generated effects at run-time.

Note that the axiomatic definition of an execution (E)
provides interpretations for primitive relations (eg: vis) that
occur free in contract formulas, and also fixes the domain
of quantification to set of all effects (A) observed during the
program execution. As such, E is a potential model for any
first-order formula ( ) expressible in our contract language.
If E is indeed a valid model for  (written as E |=  ), we
say that the execution E satisfied the contract  :

Definition 1. An axiomatic execution E satisfies a contract
 if and only if E |=  .

4.3 Capturing Store Semantics
An important aspect of our contract language is its abil-
ity to capture store-level consistency guarantees, along with
application-level consistency requirements. Similar to [Bur-
ckhardt et al. 2014], we can rigorously define a wide vari-
ety of store semantics including those that combine any sub-
set of session and causality guarantees, and multiple consis-

3 Strictly speaking, R+ is not the transitive closure of R, as transitive clo-
sure is not expressible in FOL. Instead, R+ in our language denotes a su-
perset of transitive closure of R. Formally, R+ is any relation R

0 such that
forall x, y, and z, a) R(x, y) ) R

0(x, y), and b) R0(x, y) ^ R

0(y, z) )
R

0(x, z)
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1 data Acc = Deposit Int | Withdraw Int | GetBalance

2

3 getBalance :: [Acc] ! () ! (Int, Maybe Acc)

4 getBalance ctxt _ =

5 let res = sum [x | Deposit x  ctxt]

6 - sum [x | Withdraw x  ctxt]

7 in (res, Nothing)

8

9 deposit :: [Acc] ! Int ! ((), Maybe Acc)

10 deposit _ amt = (amt, Just $ Deposit amt)

11

12 withdraw :: [Acc] ! Int ! (Bool, Maybe Acc)

13 withdraw ctxt v =

14 if sel1 $ getBalance ctxt () � v

15 then (True, Just $ Withdraw v)

16 else (False, Nothing)

Figure 5.2.: Definition of a bank account expressed in Quelea.

Session 1

withdraw (70)

Session 2
vis

getBalance → -50 

withdraw (80)

deposit (100)
vis    so 

vis

vis    so 

(a) Unsafe withdraw

deposit (100)

Session 1

withdraw (50)

Session 2

getBalance → -50 

Session 3

vis

vis 

(b) Negative balance

deposit (100)

withdraw (50)

getBalance → 100 

vis, so

so

vis 

Session 1

(c) Missing update

Figure 5.3.: Anomalies possible under eventual consistency for the get balance operation.

Subsequently, session 2 perform a withdraw operation, but importantly, due to eventual consistency, only
witnesses the deposit from session 1, but not the subsequent withdraw. Hence, this withdraw also
incorrectly succeeds, violating the integrity constraint. A subsequent getBalance operation, that happens
to witness all the previous operations, would report a negative balance.

It is easy to see that preventing concurrent withdraw operations eliminates this anomaly. This can be
done by insisting that withdraw be executed as a strongly consistent operation. Despite this strengthening,
getBalance operation may incorrectly report a negative balance to the end user. Consider the execution
shown in fig. 5.3(b), which consists of three concurrent sessions performing a deposit , a withdraw ,

•  Goal 
–  deposit, withdraw and getBalance 
–  Balance >= 0 

•  Effects 
This model admits all the inconsistencies associated with

eventual consistency. The goal of this work is to identify
the precise consistency level for each operation such that
application-level constraints are not violated. In the next sec-
tion, we will concretely describe the challenges associated
with constructing a consistent bank account on top of an
ECDS. Subsequently, we will illustrate how our contract and
specification language, armed with the primitive relations
vis, so, sameobj and oper, mitigates these challenges.

3. Motivation
Consider how we might implement a highly available bank
account on top of an ECDS, with the integrity constraint that
the balance must be non-negative. We begin by implement-
ing a bank account replicated data type (RDT) in QUELEA,
and then describe the mechanisms to obtain the desired cor-
rectness guarantees.

3.1 RDT specification
A key novelty in QUELEA is that it allows the addition of
new RDTs to the store, which obviates the need for coercing
the application logic to utilize the store provided data types.
In addition, QUELEA treats the convergence semantics (i.e.,
how conflicting updates are resolved) of the data type sep-
arately from its consistency properties (i.e., when updates
become visible). This separation of concerns permits opera-
tional reasoning for conflict resolution, and declarative rea-
soning for consistency. The combination of these techniques
enhances the programmability of the store.

Let us assume that the bank account object provides three
operations: deposit, withdraw and getBalance, with
the assumption that the withdraw fails if the account has
insufficient balance. Every operation in QUELEA is of the
following type, written in Haskell syntax:
type Operation e a r = [e] ! a ! (r, Maybe e)

An operation takes a list of effects (the history of updates
to that object), and an input argument, and returns a result
along with an optional effect (read-only operations return
Nothing). The new effect (if emitted) is added to the state
of the object at the current replica, and asynchronously sent
to other replicas. The implementation of the bank account
operations in QUELEA is given in Figure 2.

The datatype Acc represents the effect type for the bank
account. The function sum returns the sum of elements in
the list, and sel1 returns the first element of a tuple. For
each operation, hist is a snapshot of the state of the ob-
ject at some replica. In this sense, every operation on the
RDT is atomic, and thus amenable to sequential reasoning.
Here, getBalance is a read-only operation, deposit al-
ways emits an effect, and withdraw only emits an effect
if there is sufficient balance in the account. We have im-
plemented a large corpus of RDTs for realistic benchmarks
including shopping carts, auction and micro-blogging sites,
etc. in a few tens of lines of code, expressed in this style.

data Acc = Deposit Int | Withdraw Int | GetBal

getBalance :: [Acc] ! () ! (Int, Maybe Acc)
getBalance hist _ =
let res = sum [x | Deposit x  hist]

- sum [x | Withdraw x  hist]
in (res, Nothing)

deposit :: [Acc] ! Int ! ((), Maybe Acc)
deposit hist amt = ((), Just $ Deposit amt)

withdraw :: [Acc] ! Int ! (Bool, Maybe Acc)
withdraw hist v =
if sel1 $ getBalance hist () � v
then (True, Just $ Withdraw v)
else (False, Nothing)

Figure 2. Definition of a bank account expressed in Quelea.

3.1.1 Summarization
Observe that the definition of getBalance reduces over the
entire history of updates to an account. If we are to realize
an efficient implementation of this bank account RDT, we
need a summary of the account history. Intuitively, the cur-
rent account balance summarizes the state of an account. A
bank account with the history [Deposit 10, Withdraw

5] is observably equivalent to a bank account with a single
deposit operation [Deposit 5]; we can replace the earlier
history with the latter and a client of the store would not able
to tell the difference between the two.

This notion of observable equivalence can be generalized
to other RDTs as well. For example, a last-writer-wins regis-
ter with multiple updates is equivalent to a register with only
the last write. Similarly, a set with a collection of add and
remove operations is equivalent to a set with a series of addi-
tions of live elements from the original set. Since the notion
of observable equivalence is specific to each RDT, program-
mers can provide a summarization function - (summarize)
of type [e] -> [e] - as a part of the RDT specification.
The summarization function for the bank account is:

summarize hist =
[Deposit $ sel1 $ getBalance hist ()]

Given a bank account history hist, the summarize func-
tion returns a new history with a single deposit of the current
account balance. Our implementation invokes the summa-
rization function associated with an RDT to reduce the size
of the effect sets maintained by replicas.

3.2 Anomalies under Eventual Consistency
Our goal is to choose the correct consistency level for each
of the bank account operations such that (1) the balance
remains non-negative and (2) the getBalance operation
never incorrectly returns a negative balance.

Consider the execution shown in Figure 3(a). Assume
that all operations in the figure are on the same bank ac-
count object with the initial balance being zero. Session 1
performs a deposit of 100, followed by a withdraw of

3

This model admits all the inconsistencies associated with
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ing a bank account replicated data type (RDT) in QUELEA,
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A key novelty in QUELEA is that it allows the addition of
new RDTs to the store, which obviates the need for coercing
the application logic to utilize the store provided data types.
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insufficient balance. Every operation in QUELEA is of the
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The datatype Acc represents the effect type for the bank
account. The function sum returns the sum of elements in
the list, and sel1 returns the first element of a tuple. For
each operation, hist is a snapshot of the state of the ob-
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including shopping carts, auction and micro-blogging sites,
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data Acc = Deposit Int | Withdraw Int | GetBal

getBalance :: [Acc] ! () ! (Int, Maybe Acc)
getBalance hist _ =
let res = sum [x | Deposit x  hist]

- sum [x | Withdraw x  hist]
in (res, Nothing)

deposit :: [Acc] ! Int ! ((), Maybe Acc)
deposit hist amt = ((), Just $ Deposit amt)

withdraw :: [Acc] ! Int ! (Bool, Maybe Acc)
withdraw hist v =
if sel1 $ getBalance hist () � v
then (True, Just $ Withdraw v)
else (False, Nothing)

Figure 2. Definition of a bank account expressed in Quelea.

3.1.1 Summarization
Observe that the definition of getBalance reduces over the
entire history of updates to an account. If we are to realize
an efficient implementation of this bank account RDT, we
need a summary of the account history. Intuitively, the cur-
rent account balance summarizes the state of an account. A
bank account with the history [Deposit 10, Withdraw

5] is observably equivalent to a bank account with a single
deposit operation [Deposit 5]; we can replace the earlier
history with the latter and a client of the store would not able
to tell the difference between the two.
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to other RDTs as well. For example, a last-writer-wins regis-
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the last write. Similarly, a set with a collection of add and
remove operations is equivalent to a set with a series of addi-
tions of live elements from the original set. Since the notion
of observable equivalence is specific to each RDT, program-
mers can provide a summarization function - (summarize)
of type [e] -> [e] - as a part of the RDT specification.
The summarization function for the bank account is:

summarize hist =
[Deposit $ sel1 $ getBalance hist ()]

Given a bank account history hist, the summarize func-
tion returns a new history with a single deposit of the current
account balance. Our implementation invokes the summa-
rization function associated with an RDT to reduce the size
of the effect sets maintained by replicas.

3.2 Anomalies under Eventual Consistency
Our goal is to choose the correct consistency level for each
of the bank account operations such that (1) the balance
remains non-negative and (2) the getBalance operation
never incorrectly returns a negative balance.

Consider the execution shown in Figure 3(a). Assume
that all operations in the figure are on the same bank ac-
count object with the initial balance being zero. Session 1
performs a deposit of 100, followed by a withdraw of
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1 data Acc = Deposit Int | Withdraw Int | GetBalance

2

3 getBalance :: [Acc] ! () ! (Int, Maybe Acc)

4 getBalance ctxt _ =

5 let res = sum [x | Deposit x  ctxt]

6 - sum [x | Withdraw x  ctxt]

7 in (res, Nothing)

8

9 deposit :: [Acc] ! Int ! ((), Maybe Acc)

10 deposit _ amt = (amt, Just $ Deposit amt)

11

12 withdraw :: [Acc] ! Int ! (Bool, Maybe Acc)

13 withdraw ctxt v =

14 if sel1 $ getBalance ctxt () � v

15 then (True, Just $ Withdraw v)

16 else (False, Nothing)

Figure 5.2.: Definition of a bank account expressed in Quelea.
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(b) Negative balance

deposit (100)

withdraw (50)

getBalance → 100 
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so

vis 

Session 1

(c) Missing update

Figure 5.3.: Anomalies possible under eventual consistency for the get balance operation.

Subsequently, session 2 perform a withdraw operation, but importantly, due to eventual consistency, only
witnesses the deposit from session 1, but not the subsequent withdraw. Hence, this withdraw also
incorrectly succeeds, violating the integrity constraint. A subsequent getBalance operation, that happens
to witness all the previous operations, would report a negative balance.

It is easy to see that preventing concurrent withdraw operations eliminates this anomaly. This can be
done by insisting that withdraw be executed as a strongly consistent operation. Despite this strengthening,
getBalance operation may incorrectly report a negative balance to the end user. Consider the execution
shown in fig. 5.3(b), which consists of three concurrent sessions performing a deposit , a withdraw ,

ψgb(η) = ∀(a ∶ Deposit), (b ∶Withdraw).
vis(a, b) ∧ vis(b, η)⇒ vis(a, η)

ψw(η̂) = ∀(a ∶Withdraw). sameobj(a, η̂)⇒ vis(a, η̂) ∨ vis(η, a) ∨ a = η̂

Effect"of"current""

opera-on"

ψd(η̂) = true
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Quelea Replicated Store

O�-the-shelf Distributed Store •  O�-the-shelf store
•  Failure handling
•  Persistence (on-disk)
•  Eventual consistency

•  So�-state (in-mem)
•  Datatype operations
•  Summarization
•  Stronger consistency

select insert

Shim Layer (RDTs)

Clients

obj.oper(args)

res Business Logic 
(incl. Txns)

REST API

Figure 8. Implementation Model.

6. Implementation
QUELEA is implemented as a shallow extension of GHC
Haskell and runs on top of Cassandra, an off-the-shelf even-
tually consistent distributed data (or backing) store respon-
sible for all data management issues (i.e., replication, fault
tolerance, availability, and convergence). Template Haskell
is used to implement static contract classification, and proof
obligations are discharged with the help of the Z3 [Z3] SMT
solver. Figure 8 illustrates the overall system architecture.

Replicated data types and various consistency semantics
are implemented and enforced in the shim layer. Our imple-
mentation supports eventual, causal, and strong consistency
for data type operations, and RC, MAV, and RR semantics
for transactions. This functionality is implemented entirely
on top of the standard interface exposed by Cassandra. From
an engineering perspective, leveraging an off-the-shelf data
store enables an implementation comprising roughly only
2500 lines of Haskell code, which is packaged as a library.

Each new effect in QUELEA is realized as a row insertion
in Cassandra, and the state of an object is the set of all corre-
sponding rows. The shim layer maintains a causally consis-
tent in-memory snapshot of a subset of objects in the back-
ing store, by explicitly tracking dependencies introduced be-
tween effects due to visibility, session and same transaction
relations. Dependence tracking is similar to the techniques
presented in [Bailis et al. 2013b] and [Lloyd et al. 2013]. Be-
cause Cassandra provides durability, convergence, and fault
tolerance, each shim layer node simply acts as a soft-state
cache, with no inter-node communication, and can safely be
terminated at any point. Similarly, new shim layer nodes can
be spawned on demand.

The shim layer nodes periodically fetch updates from the
backing store for eventually consistent operations, and on-
demand for causally consistent and strongly consistent op-
erations. Strongly consistent operations are performed after
obtaining exclusive leases on objects. The lease mechanism
is implemented with the help of Cassandra’s support for
conditional updates and expiring columns. Cassandra does
not provide general-purpose transactions. Since the trans-
action guarantees provided by QUELEA are coordination-
free [Bailis et al. 2013a], we realize efficient implemen-
tations by explicitly tracking dependencies between opera-

tions and transactions. Importantly, the weaker isolation se-
mantics of transactions in QUELEA permit transactions to be
discharged if at least one shim layer node is reachable.

We utilize the summarize function (§ 3.1.1) to summa-
rize the object state both in the shim layer node and the back-
ing store, typically when the number of effects on an ob-
ject crosses a tunable threshold. Shim layer summarization is
straight-forward; a summarization thread takes the local lock
on the cached object, and replaces its state with the summa-
rized state. The shim layer node only remains unavailable
for that particular object during summarization (usually a
few milliseconds). Performing summarization in the back-
ing store is more complicated since the whole process needs
to be atomic from a client’s perspective, but Cassandra does
not provide multi-row transactions. We have engineered and
implemented a scalable summarization mechanism for the
backing store that permits concurrent client operations, but
nonetheless prohibits these operations from witnessing in-
termediate states of the summarization process.

7. Evaluation
We present an evaluation study of our implementation, re-
port contract profiles of benchmark programs, and illustrate
the performance benefits of fine-grained consistency classi-
fication on operations and transactions. We also evaluate the
impact of the summarization. We have implemented the fol-
lowing applications, which includes individual RDTs as well
as larger applications composed of several RDTs:

• LWW register: A last-write-wins register that provides
read and write operations, where the read returns the
value of the latest write.

• DynamoDB register: An integer register that allows
eventual and strong puts and gets, conditional puts, in-
crement and decrement operations.

• Bank account: Our running example.
• Shopping list: A collaborative shopping list that allows

concurrent addition and deletion of items.
• Online store: An online store with shopping cart func-

tionality and dynamically changing item prices. The
checkout process verifies that the customer only pays
the accepted price.

• RUBiS: An eBay-like auction site [RUBiS]. The applica-
tion allows users to browse items, bid for items on sale,
and pay for items from a wallet modeled after a bank ac-
count.

• Microblog: A twitter-like microblogging site, modeled
after Twissandra [Twissandra]. The application allows
adding new users, adding and replying to tweets, follow-
ing, unfollowing and blocking users, and fetching a user’s
timeline, userline, followers and following.

The distribution of contracts in these applications is given
in Table 1. We see that majority of the operations and trans-
actions are classified as eventually consistent and RC, re-
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Benchmark LOC #T EC CC SC RC MAV RR
LWW Reg 108 1 2 2 2 0 0 0
DynamoDB 126 1 3 1 2 0 0 0
Bank Account 155 1 1 1 1 1 0 1
Shopping List 140 1 2 1 1 0 0 0
Online store 340 4 9 1 0 2 0 1
RUBiS 640 6 14 2 1 4 2 0
Microblog 659 5 13 6 1 6 3 1

Table 1. The distribution of classified contracts. #T refers
to the number of tables in the application. The columns 4-
6 (7-9) represent operations (transactions) assigned to this
consistency (isolation) level.

spectively. Operation contracts are used to enforce integrity
and visibility constraints on individual fields in the tables.
Transactions are mainly used to consistently modify and ac-
cess related fields across tables. In QUELEA, the contract
classification process is completely performed at compile
time and has no overheads at runtime. The proof obligations
associated with contract classification is discharged through
the Z3 SMT Solver. Across our benchmarks, classifying a
contract took 11.5 milliseconds on average.

For our performance evaluation, we deploy QUELEA ap-
plications in clusters, where each cluster is composed of five
fully replicated Cassandra replicas within the same datacen-
ter. We instantiate one shim layer node co-located on the
same VM as a Cassandra replica. Clients are instantiated
within the same data center as the store, and run transactions.
We deploy each cluster and client node on an c3.4xlarge

Amazon EC2 instance. We call this a 1DC configuration.
For our geo-distributed experiments (2DC), we instantiate 2
clusters, each with five nodes, and place the clusters on US-
east (Virginia) and US-west (Oregon) locations. The average
inter-region latency was 85ms.

Figure 9(a) shows throughput vs. latency of operations
in the bank account example as we increase the number of
clients in a 1DC configuration. Our client workload was gen-
erated using the YCSB benchmark [Cooper et al. 2010]. The
benchmark uniformly chooses from 100,000 keys, where
the operation spread was 25% withdraw, 25% deposit and
50% getBalance, which corresponds to the default 50:50
read:write mix in YCSB. We increased the number of clients
from 128 to 1024, and each experiment ran for 180 seconds.

The lines marked EC and CC correspond to all oper-
ations (including withdraw) being assigned EC and CC
consistency levels. These levels compromise correctness as
withdraw has to be an SC operation. The SC line corre-
sponds to a configuration where all operations are strongly
consistent; this ensures application correctness, at the cost of
performance. QUELEA corresponds to our implementation,
which classifies operations based on their contract specifi-
cations. With 512 clients, the QUELEA implementation was
within 41% of the latency and 18% of the throughput of EC,
whereas SC operations had 162% higher latency and 52%

lower throughput than EC operations. Observe that there is
a point in each case after which the latency increases while
the throughput decreases; these correspond to points where
the store becomes saturated with client requests. In a 2DC

configuration (not shown here), the average latency of SC
operations with 512 clients increased by 9.4⇥ due to the
cost of geo-distributed coordination, whereas QUELEA op-
erations were only 2.2⇥ slower, mainly due to the increased
cost of withdraw operations. Importantly, the latency of
getBalance and deposit remained almost the same, il-
lustrating the benefit of fine-grained contract classification.

We compare the performance of different transaction iso-
lation level choices in Figure 9(b) using the LWW register.
The numbers were obtained under a 1DC configuration. The
YCSB workload was modified to issue 10 operations per
transaction, with a default 50:50 read:write mix. Each op-
eration is assumed to be eventually consistent. NoTxn cor-
responds to a configuration that does not use transactions.
Compared to this, RC is only 12% shower in terms of latency
with 512 clients, whereas RR is 2.3X slower. The difference
between RC and NoTxn is due to the meta-data overhead of
recording transaction information in the object state. For RR
transactions, the cost of capturing and maintaining a snap-
shot is the biggest source of overhead.

We also compared (not shown) the performance of EC
LWW operations directly against Cassandra, which uses
last-writer-wins as the only convergence semantics. While
Cassandra provides no stronger-than-eventual consistency
properties, QUELEA was within 30%(20%) of latency(throughput)
of Cassandra with 512 clients, supporting our thesis that
programmers only have to incur relatively low overhead
for a more expressive programming model which provides
stronger provable consistency guarantees.

Figure 9(c) compares the QUELEA implementation of
RUBiS in a 1DC configuration against a single replica
(NoRep) and a strongly replicated (StrongRep) 1DC deploy-
ment. The benchmark uses the default RUBiS bidding mix,
which has 15% read-write interactions, which is represen-
tative of the auction workload. Without replication, NoRep
trivially provides strong consistency. However, this deploy-
ment does not scale beyond 1750 operations per second.
Strong replication offers better throughput at the cost of
greater latency due to inter-replica coordination. The QUE-
LEA deployment offers the benefit of replication, while only
paying the cost of coordination when necessary.

Finally, we study the impact of summarization in Fig-
ure 9(d). We use 128 clients and a single QUELEA replica,
with all clients operating on the same LWW register to
stress test the summarization mechanism. The shim layer
cache (memory) is summarized every 64 updates, while the
updates in the backing store (disk) are summarized every
4096 updates. Each point in the graph represents the aver-
age latency of the previous 1000 operations. Each exper-
iment is run for one minute. Without summarization, the
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