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industrial-strength, pragmatic, functional programming language

Industry Projects
No multicore support!

Higher-order functions 

Hindley-Milner Type Inference 

Powerful module system

Functional core with imperative and 
object-oriented features 

Native (x86, Arm, Power, RISC-V), 
JavaScript



• Brings native support for concurrency and parallelism to OCaml

Multicore OCaml ~> OCaml 5
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• Adds native support for concurrency and parallelism to OCaml

OCaml 5
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Concurrent Programming
• Computations may be suspended and resumed later

• Many languages provide concurrent programming mechanisms as primitives

✦ async/await — JavaScript, Python, Rust, C# 5.0, F#, Swift, …

✦ generators — Python, Javascript, …

✦ coroutines — C++, Kotlin, Lua, …

✦ futures & promises — JavaScript, Swift, …

✦ Lightweight threads/processes — Haskell, Go, Erlang

• Often include many different primitives in the same language!

✦ JavaScript has async/await, generators, promises, and callbacks



Conc. Prog. in OCaml 4
• No primitive support for concurrent programming in OCaml

✦ Lwt and Async - concurrent programming libraries

✦ Simulate concurrency through monads >>=



Conc. Prog. in OCaml 4
• Lwt and Async is callback-oriented programming 

let main () = 
  let url = "https://example.com" in 
  let file_path = "titles.txt" in 
  fetch_html url >>= fun html -> 
  extract_titles html >>= fun titles -> 
  save_titles_to_file titles file_path >>= fun () -> 
  Lwt_io.printf "Titles saved to %s\n" file_path



Conc. Prog. in OCaml 4
• Lwt and Async suffer many pitfalls of programming with callbacks

✦ No backtraces  debugging is harder

✦ No built-in exceptions  OCaml language features cannot be used

✦ More closures  more allocations  performance impact

• Monads are awkward to use in OCaml as there are no higher-kinded types

⟹

⟹

⟹ ⟹

No polymorphism 
over `m`



Function colour issue

 — Bob Nystrom
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Native-concurrency Desiderata
• Avoid function colouring issue

• Avoid pitfalls of monadic concurrency / 
callback-oriented programming

• Keep the addition to the compiler small

• OCaml is a volunteer-led effort

Add the smallest primitive that 
captures many concurrent 

programming patterns



Solution

• A mechanism for programming with user-defined effects

• Modular and composable basis of non-local control-flow mechanisms

✦ Exceptions, generators, lightweight threads, promises, asynchronous IO, coroutines as libraries

• Effect handlers ~= first-class, restartable exceptions

✦ Structured programming with delimited continuations

Effect Handlers

https://github.com/ocaml-multicore/effects-examples

• Direct-style asynchronous I/O 

• Generators 

• Resumable parsers 

• Probabilistic Programming 

• Reactive UIs 

• ….



Exceptions in OCaml

exception Invalid_input of char 

let get_choice () = 
  print_endline "Do you want to continue [y/n]:"; 
  let c = input_char stdin in 
  if c = 'y' then true 
  else if c = 'n' then false 
  else raise (Invalid_input c)

exception 
declaration

Raising the exception



Exceptions in OCaml
exception Invalid_input of char 

let get_choice () = 
  print_endline "Do you want to continue [y/n]:"; 
  let c = input_char stdin in 
  if c = 'y' then true 
  else if c = 'n' then false 
  else raise (Invalid_input c) 

let rec really_get_choice () = 
  try get_choice () 
  with Invalid_input c -> 
    print_endline "Invalid input. Please enter y or n."; 
    really_get_choice ()

Exception handler



Demo



Exceptions in OCaml

exception Invalid_input of char

is the same as

type exn += Invalid_input of char

exn is a built-in extensible variant type



type _ eff += E : string eff 

let comp () = 
  print_string "0 "; 
  print_string (perform E); 
  print_string "3 " 

let main () = 
  try 
    comp () 
  with effect E, k -> 
    print_string "1 "; 
    continue k "2 "; 
    print_string "4 "

Effect handlers

computation

handler

delimited continuation 

suspends current 
computation

resume suspended 
computation

effect declaration



Fiber: A piece of stack 
+ effect handler

type 'a eff += E : string eff 

let comp () = 
  print_string "0 "; 
  print_string (perform E); 
  print_string "3 " 

let main () = 
  try 
    comp () 
  with effect E, k -> 
    print_string "1 "; 
    continue k "2 "; 
    print_string "4 "

comp

comp

Stepping through the example

pc

main

sp k

parentparent

0 1 2 3 4



type _ eff += A : unit eff 
            | B : unit eff 

let baz () = 
  perform A 

let bar () = 
  try 
    baz () 
  with effect B, k -> 
    continue k () 

let foo () = 
  try 
    bar () 
  with effect A, k -> 
    continue k ()

Handlers can be nested

foo bar baz

sp

parent
parent

pc

k

• Linear search through handlers
✦ Handler stacks shallow in practice



Lightweight Threading
type _ eff += Fork  : (unit -> unit) -> unit eff 
            | Yield : unit eff

let run main = 
  ... (* assume queue of continuations *) 
  let run_next () = 
    match dequeue () with 
    | Some k -> continue k () 
    | None -> () 
  in 
  let rec spawn f = 
    match f () with 
    | () -> run_next () (* value case *) 
    | effect Yield, k -> enqueue k; run_next () 
    | effect (Fork f), k -> enqueue k; spawn f 
  in 
  spawn main

let fork f = perform (Fork f) 
let yield () = perform Yield



Lightweight threading
let main () =  
  fork (fun _ ->  
    print_endline "1.a";  
    yield ();  
    print_endline "1.b"); 
  fork (fun _ ->  
    print_endline "2.a";  
    yield ();  
    print_endline “2.b") 
;; 
run main 

1.a 
2.a 
1.b 
2.b



Demo



Lightweight threading
let main () =  
  fork (fun _ ->  
    print_endline "1.a";  
    yield ();  
    print_endline "1.b"); 
  fork (fun _ ->  
    print_endline "2.a";  
    yield ();  
    print_endline “2.b") 
;; 
run main 

1.a 
2.a 
1.b 
2.b

• Direct-style (no monads) 
• User-code need not be aware 

of effects 
• No Async vs Sync distinction

Ability to specialise scheduler 
unlike GHC Haskell / Go 



Performance: WebServer

https://github.com/ocaml-multicore/eio

• eio: effects-based direct-style I/O

✦ Multiple backends — epoll, select, io_uring

https://github.com/ocaml-multicore/eio


Performance: WebServer
• eio: effects-based direct-style I/O

✦ Multiple backends — epoll, select, io_uring

100 open connections, 60 seconds w/ io_uring

OCaml eio

Rust Hyper

OCaml (Http/af + Lwt)

Go NetHttp

OCaml (cohttp + Lwt)

https://github.com/ocaml-multicore/eio

https://github.com/ocaml-multicore/eio


Generators
• Generators — non-continuous traversal of data structure by yielding values

✦ Primitives in JavaScript and Python

• Can be derived automatically from any iterator using effect handlers

function* generator(i) { 
  yield i; 
  yield i + 10; 
} 
const gen = generator(10); 

console.log(gen.next().value); 
// expected output: 10 

console.log(gen.next().value); 
// expected output: 20



Generators: effect handlers
module MkGen (S :sig                                                                 
  type 'a t                                                                          
  val iter : ('a -> unit) -> 'a t -> unit                                            
end) : sig                                                                           
  val gen : 'a S.t -> (unit -> 'a option)                                            
end = struct                                                                        
  let gen : type a. a S.t -> (unit -> a option) = fun l ->                           
    let module M =  
      struct type _ eff += Yield : a -> unit eff end  
    in                            
    let open M in                                                                    
    let rec step = ref (fun () ->                                                    
      match S.iter (fun v -> perform (Yield v)) l with                               
      | () -> None                                                                   
      | effect (Yield v), k ->                                                        
          step := (fun () -> continue k ());                                         
          Some v)                                                                    
    in                                                                               
    fun () -> !step ()                                                               
end



Generators: List

module L = MkGen (struct 
  type 'a t = 'a list 
  let iter = List.iter 
end)

let next = L.gen [1;2;3] 
next() (* Some 1 *) 
next() (* Some 2 *) 
next() (* Some 3 *) 
next() (* None *)



Generators: Tree
type 'a tree = 
| Leaf 
| Node of 'a tree * 'a * 'a tree 

let rec iter f = function 
  | Leaf -> () 
  | Node (l, x, r) ->  
      iter f l; f x; iter f r 

module T = MkGen(struct 
  type 'a t = 'a tree 
  let iter = iter 
end)

let t = make 2 

let next = T.gen t 
next() (* Some 1 *) 
next() (* Some 2 *) 
next() (* Some 1 *) 
next() (* None *)

2

1 1

(* Make a complete binary tree of 
   depth [n] using [O(n)] space 
*) 
let rec make = function 
  | 0 -> Leaf 
  | n -> let t = make (n-1)  
         in Node (t,n,t)

3

2

1



Performance: Generators
• Traverse a complete binary-tree of depth 25

✦ 226 stack switches

• Iterator — idiomatic recursive traversal

• Generator

✦ Hand-written generator (hw-generator)

✤ Specialised for in-order traversal of binary trees

✤ CPS translation + defunctionalization to remove intermediate closure allocation

✦ Generator using effect handlers (eh-generator) 



Performance: Generators

Variant Time (milliseconds)

Iterator (baseline) 202

hw-generator 837 (3.76x)

eh-generator 1879 (9.30x)

OCaml 5

Variant Time (milliseconds)

Iterator (baseline) 492

generator 43842 (89.1x)

nodejs 14.07  



Retrofitting Challenges



Retrofitting Challenges
• Millions of lines of legacy code

✦ Written without non-local control-flow in mind

✦ Cost of refactoring sequential code itself is prohibitive

• OCaml uses the same system stack for both OCaml and C

✦ Fast exceptions and FFI between C and OCaml

✦ No stack overflow checks needed

✦ Excellent compatibility with debugging (gdb) and profiling (perf) tools

Must preserve 
feature, tooling, performance

compatibility  



Representing Stacks & Continuations
• A stack of runtime-managed, dynamically growing stack segments

✦ No pointers into OCaml stack

✦ Need stack overflow checks for OCaml code

• Switch to system stack for C calls

C  
frames

C  
frames
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OCaml 
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Representing Stacks & Continuations
• A stack of runtime-managed, dynamically growing stack segments

✦ No pointers into OCaml stack

✦ Need stack overfl

• Switch to system stack for C calls
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PLDI 
2021



Switching stacks fast
• One-shot — capture and resumption does not involve copying frames

• No callee-saved registers in OCaml

✦ Switching between stacks need not save & restore register state

let foo () =                                                                      
   (* a *)                                                                        
  try                                                                             
    (* b *)                                                                       
    perform E                                                                    
    (* d *)                                                                       
  with effect E, k ->                                                              
    (* c *)                                                                       
    continue k ()                                                                
    (* e *)                                                                      

Instruction 
Sequence Significance Time (ns)

a to b Create a new stack & run the computation 23

b to c Performing & handling an effect 5

c to d Resuming a continuation 11

d to e Returning from a computation & free the stack 7

• Each of the instruction sequences involves a stack switch

• Intel(R) Xeon(R) Gold 5120 CPU @ 2.20GHz

★ For reference, memory read latency is 90 ns (local NUMA node) and 145 ns (remote NUMA node)



Backwards Compatibility
• OCaml is a systems programming language

✦ Manipulates resources such as files, sockets, buffers, etc. 

• OCaml code is written in defensive style to guard against exceptional behaviour and clear up 
resources

let copy ic oc = 
  let rec loop () = 
    let l = input_line ic in 
    output_string oc (l ^ "\n"); 
    loop () 
  in 
  try loop () with 
  | End_of_file  -> close_in ic; close_out oc 
  | e -> close_in ic; close_out oc; raise e

We would like to make this code transparently asynchronous

raise Sys_error 
when channel is 

closed
raises 

End_of_file at the 
end



Why Asynchronous IO?
• Computation is fast; IO is slow

• Modern OSes can batch and parallelise IO

✦ Select, Epoll, kqueue, io_uring, IOCP, GCD

• Creating multiple OS threads for IO 
parallelism is expensive

IO

Comp CompIdle

Kernel

User

Comp CompIdle

IO



Why Asynchronous IO?
• Computation is fast; IO is slow

• Modern OSes can batch and parallelise IO

✦ Select, Epoll, kqueue, io_uring, IOCP, GCD

• Creating multiple OS threads for IO 
parallelism is expensive

• Multiplex computations on the same OS 
thread and parallelise IO

✦ Suspend and resume at IO operations IO

Kernel

User

IO

A A AB BIdle



Asynchronous IO

let run_aio f = match f () with 
| v -> v 
| effect ... -> ... 
| effect (In_line chan), k -> 
    register_async_input_line chan k; 
    run_next () 
| effect (Out_str (chan, s)), k -> 
    register_async_output_string chan s k; 
    run_next ()

• Continue with appropriate value when the asynchronous IO call returns

• But what about termination? — End_of_file and Sys_error exceptional cases.

type _ eff += In_line : in_channel -> string eff 
            | Out_str : out_channel * string -> unit eff

let input_line ic = perform (In_line ic) 
let output_string oc s = perform (Out_str (oc,s))



Discontinue

• We add a discontinue primitive to resume a continuation by raising an exception

• On End_of_file and Sys_error, the asynchronous IO scheduler uses discontinue 
to raise the appropriate exception

discontinue k End_of_file

let copy ic oc = 
  let rec loop () = 
    let l = input_line ic in 
    output_string oc (l ^ "\n"); 
    loop () 
  in 
  try loop () with 
  | End_of_file  -> close_in ic; close_out oc 
  | e -> close_in ic; close_out oc; raise e

Will continue 
to work 



Linearity
• Resources such as sockets, file descriptors, channels and buffers are linear 

resources

✦ Created and destroyed exactly once

• OCaml functions return exactly once with value or exception

✦ Defensive programming already guards against exceptional return cases

• With effect handlers, functions may return at-most-once if continuation is 
not resumed

✦ This breaks resource-safe legacy code



Linearity
type _ eff += E : unit eff 
let foo () = perform E

We assume that captured continuations are resumed 
exactly once, either using continue or discontinue

let bar () =  
  let ic = open_in "input.txt" in 
  match foo () with 
  | v -> close_in ic 
  | exception e -> close_in ic; raise e

let baz () =  
  try bar () with 
  | effect E, _ -> () (* leaks ic *)



Backtraces
• OCaml has excellent compatibility with off-the-shelf debugging and profiling tools

✦ GDB, LLDB, perf, libunwind, etc.

• DWARF — debugging information format

✦ Unwind the program stack to get a backtrace, find the source variables

✦ Bespoke bytecode format (Turing complete!), included in executables, interpreted at 
runtime

foo

baz bar
Stack 
grows 
down

Fiber 1 Fiber 2

Bespoke DWARF bytecode for 
unwinding across fibers 
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