
“KC” Sivaramakrishnan

Concurrent Programming with
Effect Handlers

industrial-strength, pragmatic, functional programming language

Higher-order functions

Hindley-Milner Type Inference

Powerful module system

Functional core with imperative and
object-oriented features

Native (x86, Arm, Power, RISC-V),
JavaScript, WebAssembly

Industry Projects

I’m 28!

industrial-strength, pragmatic, functional programming language

Industry Projects
No multicore support!

Higher-order functions

Hindley-Milner Type Inference

Powerful module system

Functional core with imperative and
object-oriented features

Native (x86, Arm, Power, RISC-V),
JavaScript

• Brings native support for concurrency and parallelism to OCaml

Multicore OCaml ~> OCaml 5

Overlapped
execution

A

B

A

C

B

Time

Simultaneous
execution

A
B

C

Time

Effect Handlers Domains

• Adds native support for concurrency and parallelism to OCaml

OCaml 5

Overlapped
execution

A

B

A

C

B

Time

Simultaneous
execution

A
B

C

Time

Effect Handlers Domains

Concurrent Programming
• Computations may be suspended and resumed later

• Many languages provide concurrent programming mechanisms as primitives

✦ async/await — JavaScript, Python, Rust, C# 5.0, F#, Swift, …

✦ generators — Python, Javascript, …

✦ coroutines — C++, Kotlin, Lua, …

✦ futures & promises — JavaScript, Swift, …

✦ Lightweight threads/processes — Haskell, Go, Erlang

• Often include many different primitives in the same language!

✦ JavaScript has async/await, generators, promises, and callbacks

Conc. Prog. in OCaml 4
• No primitive support for concurrent programming in OCaml

✦ Lwt and Async - concurrent programming libraries

✦ Simulate concurrency through monads >>=

Conc. Prog. in OCaml 4
• Lwt and Async is callback-oriented programming

let main () =
 let url = "https://example.com" in
 let file_path = "titles.txt" in
 fetch_html url >>= fun html ->
 extract_titles html >>= fun titles ->
 save_titles_to_file titles file_path >>= fun () ->
 Lwt_io.printf "Titles saved to %s\n" file_path

Conc. Prog. in OCaml 4
• Lwt and Async suffer many pitfalls of programming with callbacks

✦ No backtraces debugging is harder

✦ No built-in exceptions OCaml language features cannot be used

✦ More closures more allocations performance impact

• Monads are awkward to use in OCaml as there are no higher-kinded types

⟹

⟹

⟹ ⟹

No polymorphism
over `m`

Function colour issue

 — Bob Nystrom

Synchronous Asynchronous

Normal
calls

Special calling
convention

Native-concurrency Desiderata
• Avoid function colouring issue

• Avoid pitfalls of monadic concurrency /
callback-oriented programming

• Keep the addition to the compiler small

• OCaml is a volunteer-led effort

Add the smallest primitive that
captures many concurrent

programming patterns

Solution

• A mechanism for programming with user-defined effects

• Modular and composable basis of non-local control-flow mechanisms

✦ Exceptions, generators, lightweight threads, promises, asynchronous IO, coroutines as libraries

• Effect handlers ~= first-class, restartable exceptions

✦ Structured programming with delimited continuations

Effect Handlers

https://github.com/ocaml-multicore/effects-examples

• Direct-style asynchronous I/O

• Generators

• Resumable parsers

• Probabilistic Programming

• Reactive UIs

• ….

Exceptions in OCaml

exception Invalid_input of char

let get_choice () =
 print_endline "Do you want to continue [y/n]:";
 let c = input_char stdin in
 if c = 'y' then true
 else if c = 'n' then false
 else raise (Invalid_input c)

exception
declaration

Raising the exception

Exceptions in OCaml
exception Invalid_input of char

let get_choice () =
 print_endline "Do you want to continue [y/n]:";
 let c = input_char stdin in
 if c = 'y' then true
 else if c = 'n' then false
 else raise (Invalid_input c)

let rec really_get_choice () =
 try get_choice ()
 with Invalid_input c ->
 print_endline "Invalid input. Please enter y or n.";
 really_get_choice ()

Exception handler

Demo

Exceptions in OCaml

exception Invalid_input of char

is the same as

type exn += Invalid_input of char

exn is a built-in extensible variant type

type _ eff += E : string eff

let comp () =
 print_string "0 ";
 print_string (perform E);
 print_string "3 "

let main () =
 try
 comp ()
 with effect E, k ->
 print_string "1 ";
 continue k "2 ";
 print_string "4 "

Effect handlers

computation

handler

delimited continuation

suspends current
computation

resume suspended
computation

effect declaration

Fiber: A piece of stack
+ effect handler

type 'a eff += E : string eff

let comp () =
 print_string "0 ";
 print_string (perform E);
 print_string "3 "

let main () =
 try
 comp ()
 with effect E, k ->
 print_string "1 ";
 continue k "2 ";
 print_string "4 "

comp

comp

Stepping through the example

pc

main

sp k

parentparent

0 1 2 3 4

type _ eff += A : unit eff
 | B : unit eff

let baz () =
 perform A

let bar () =
 try
 baz ()
 with effect B, k ->
 continue k ()

let foo () =
 try
 bar ()
 with effect A, k ->
 continue k ()

Handlers can be nested

foo bar baz

sp

parent
parent

pc

k

• Linear search through handlers
✦ Handler stacks shallow in practice

Lightweight Threading
type _ eff += Fork : (unit -> unit) -> unit eff
 | Yield : unit eff

let run main =
 ... (* assume queue of continuations *)
 let run_next () =
 match dequeue () with
 | Some k -> continue k ()
 | None -> ()
 in
 let rec spawn f =
 match f () with
 | () -> run_next () (* value case *)
 | effect Yield, k -> enqueue k; run_next ()
 | effect (Fork f), k -> enqueue k; spawn f
 in
 spawn main

let fork f = perform (Fork f)
let yield () = perform Yield

Lightweight threading
let main () =
 fork (fun _ ->
 print_endline "1.a";
 yield ();
 print_endline "1.b");
 fork (fun _ ->
 print_endline "2.a";
 yield ();
 print_endline “2.b")
;;
run main

1.a
2.a
1.b
2.b

Demo

Lightweight threading
let main () =
 fork (fun _ ->
 print_endline "1.a";
 yield ();
 print_endline "1.b");
 fork (fun _ ->
 print_endline "2.a";
 yield ();
 print_endline “2.b")
;;
run main

1.a
2.a
1.b
2.b

• Direct-style (no monads)
• User-code need not be aware

of effects
• No Async vs Sync distinction

Ability to specialise scheduler
unlike GHC Haskell / Go

Performance: WebServer

https://github.com/ocaml-multicore/eio

• eio: effects-based direct-style I/O

✦ Multiple backends — epoll, select, io_uring

https://github.com/ocaml-multicore/eio

Performance: WebServer
• eio: effects-based direct-style I/O

✦ Multiple backends — epoll, select, io_uring

100 open connections, 60 seconds w/ io_uring

OCaml eio

Rust Hyper

OCaml (Http/af + Lwt)

Go NetHttp

OCaml (cohttp + Lwt)

https://github.com/ocaml-multicore/eio

https://github.com/ocaml-multicore/eio

Generators
• Generators — non-continuous traversal of data structure by yielding values

✦ Primitives in JavaScript and Python

• Can be derived automatically from any iterator using effect handlers

function* generator(i) {
 yield i;
 yield i + 10;
}
const gen = generator(10);

console.log(gen.next().value);
// expected output: 10

console.log(gen.next().value);
// expected output: 20

Generators: effect handlers
module MkGen (S :sig
 type 'a t
 val iter : ('a -> unit) -> 'a t -> unit
end) : sig
 val gen : 'a S.t -> (unit -> 'a option)
end = struct
 let gen : type a. a S.t -> (unit -> a option) = fun l ->
 let module M =
 struct type _ eff += Yield : a -> unit eff end
 in
 let open M in
 let rec step = ref (fun () ->
 match S.iter (fun v -> perform (Yield v)) l with
 | () -> None
 | effect (Yield v), k ->
 step := (fun () -> continue k ());
 Some v)
 in
 fun () -> !step ()
end

Generators: List

module L = MkGen (struct
 type 'a t = 'a list
 let iter = List.iter
end)

let next = L.gen [1;2;3]
next() (* Some 1 *)
next() (* Some 2 *)
next() (* Some 3 *)
next() (* None *)

Generators: Tree
type 'a tree =
| Leaf
| Node of 'a tree * 'a * 'a tree

let rec iter f = function
 | Leaf -> ()
 | Node (l, x, r) ->
 iter f l; f x; iter f r

module T = MkGen(struct
 type 'a t = 'a tree
 let iter = iter
end)

let t = make 2

let next = T.gen t
next() (* Some 1 *)
next() (* Some 2 *)
next() (* Some 1 *)
next() (* None *)

2

1 1

(* Make a complete binary tree of
 depth [n] using [O(n)] space
*)
let rec make = function
 | 0 -> Leaf
 | n -> let t = make (n-1)
 in Node (t,n,t)

3

2

1

Performance: Generators
• Traverse a complete binary-tree of depth 25

✦ 226 stack switches

• Iterator — idiomatic recursive traversal

• Generator

✦ Hand-written generator (hw-generator)

✤ Specialised for in-order traversal of binary trees

✤ CPS translation + defunctionalization to remove intermediate closure allocation

✦ Generator using effect handlers (eh-generator)

Performance: Generators

Variant Time (milliseconds)

Iterator (baseline) 202

hw-generator 837 (3.76x)

eh-generator 1879 (9.30x)

OCaml 5

Variant Time (milliseconds)

Iterator (baseline) 492

generator 43842 (89.1x)

nodejs 14.07

Retrofitting Challenges

Retrofitting Challenges
• Millions of lines of legacy code

✦ Written without non-local control-flow in mind

✦ Cost of refactoring sequential code itself is prohibitive

• OCaml uses the same system stack for both OCaml and C

✦ Fast exceptions and FFI between C and OCaml

✦ No stack overflow checks needed

✦ Excellent compatibility with debugging (gdb) and profiling (perf) tools

Must preserve
feature, tooling, performance

compatibility

Representing Stacks & Continuations
• A stack of runtime-managed, dynamically growing stack segments

✦ No pointers into OCaml stack

✦ Need stack overflow checks for OCaml code

• Switch to system stack for C calls

C
frames

C
frames

Fiber 1
(Many
OCaml

Frames)

Fiber 2

C
frames Fiber 3

Main
entry

Effect
handler

External Call

Callback

System
Stack

OCaml 5.xx

C
frames

OCaml
Frames

C
frames

OCaml
Frames

OCaml 4.xx

Stack
grows
down

Main
entry

External
call

Callback

Representing Stacks & Continuations
• A stack of runtime-managed, dynamically growing stack segments

✦ No pointers into OCaml stack

✦ Need stack overfl

• Switch to system stack for C calls

C
frames

C
frames

Fiber 1
(Many
OCaml

Frames)

Fiber 2

C
frames Fiber 3

Main
entry

Effect
handler

External Call

Callback

System
Stack

OCaml 5.xx

C
frames

OCaml
Frames

C
frames

OCaml
Frames

OCaml 4.xx

Stack
grows
down

Main
entry

External
call

Callback

PLDI
2021

Switching stacks fast
• One-shot — capture and resumption does not involve copying frames

• No callee-saved registers in OCaml

✦ Switching between stacks need not save & restore register state

let foo () =
 (* a *)
 try
 (* b *)
 perform E
 (* d *)
 with effect E, k ->
 (* c *)
 continue k ()
 (* e *)

Instruction
Sequence Significance Time (ns)

a to b Create a new stack & run the computation 23

b to c Performing & handling an effect 5

c to d Resuming a continuation 11

d to e Returning from a computation & free the stack 7

• Each of the instruction sequences involves a stack switch

• Intel(R) Xeon(R) Gold 5120 CPU @ 2.20GHz

★ For reference, memory read latency is 90 ns (local NUMA node) and 145 ns (remote NUMA node)

Backwards Compatibility
• OCaml is a systems programming language

✦ Manipulates resources such as files, sockets, buffers, etc.

• OCaml code is written in defensive style to guard against exceptional behaviour and clear up
resources

let copy ic oc =
 let rec loop () =
 let l = input_line ic in
 output_string oc (l ^ "\n");
 loop ()
 in
 try loop () with
 | End_of_file -> close_in ic; close_out oc
 | e -> close_in ic; close_out oc; raise e

We would like to make this code transparently asynchronous

raise Sys_error
when channel is

closed
raises

End_of_file at the
end

Why Asynchronous IO?
• Computation is fast; IO is slow

• Modern OSes can batch and parallelise IO

✦ Select, Epoll, kqueue, io_uring, IOCP, GCD

• Creating multiple OS threads for IO
parallelism is expensive

IO

Comp CompIdle

Kernel

User

Comp CompIdle

IO

Why Asynchronous IO?
• Computation is fast; IO is slow

• Modern OSes can batch and parallelise IO

✦ Select, Epoll, kqueue, io_uring, IOCP, GCD

• Creating multiple OS threads for IO
parallelism is expensive

• Multiplex computations on the same OS
thread and parallelise IO

✦ Suspend and resume at IO operations IO

Kernel

User

IO

A A AB BIdle

Asynchronous IO

let run_aio f = match f () with
| v -> v
| effect ... -> ...
| effect (In_line chan), k ->
 register_async_input_line chan k;
 run_next ()
| effect (Out_str (chan, s)), k ->
 register_async_output_string chan s k;
 run_next ()

• Continue with appropriate value when the asynchronous IO call returns

• But what about termination? — End_of_file and Sys_error exceptional cases.

type _ eff += In_line : in_channel -> string eff
 | Out_str : out_channel * string -> unit eff

let input_line ic = perform (In_line ic)
let output_string oc s = perform (Out_str (oc,s))

Discontinue

• We add a discontinue primitive to resume a continuation by raising an exception

• On End_of_file and Sys_error, the asynchronous IO scheduler uses discontinue
to raise the appropriate exception

discontinue k End_of_file

let copy ic oc =
 let rec loop () =
 let l = input_line ic in
 output_string oc (l ^ "\n");
 loop ()
 in
 try loop () with
 | End_of_file -> close_in ic; close_out oc
 | e -> close_in ic; close_out oc; raise e

Will continue
to work

Linearity
• Resources such as sockets, file descriptors, channels and buffers are linear

resources

✦ Created and destroyed exactly once

• OCaml functions return exactly once with value or exception

✦ Defensive programming already guards against exceptional return cases

• With effect handlers, functions may return at-most-once if continuation is
not resumed

✦ This breaks resource-safe legacy code

Linearity
type _ eff += E : unit eff
let foo () = perform E

We assume that captured continuations are resumed
exactly once, either using continue or discontinue

let bar () =
 let ic = open_in "input.txt" in
 match foo () with
 | v -> close_in ic
 | exception e -> close_in ic; raise e

let baz () =
 try bar () with
 | effect E, _ -> () (* leaks ic *)

Backtraces
• OCaml has excellent compatibility with off-the-shelf debugging and profiling tools

✦ GDB, LLDB, perf, libunwind, etc.

• DWARF — debugging information format

✦ Unwind the program stack to get a backtrace, find the source variables

✦ Bespoke bytecode format (Turing complete!), included in executables, interpreted at
runtime

foo

baz bar
Stack
grows
down

Fiber 1 Fiber 2

Bespoke DWARF bytecode for
unwinding across fibers

Demo

Join in the fun!
All examples
from talk and

more

Riot Stack Eio Miou

Join in the fun!
All examples from

talk and more

Riot Stack Eio Miou

discuss.ocaml.org OCaml Discord

http://discuss.ocaml.org

