Concurrent Programming with
Effect Handlers

“KC” Sivaramakrishnan

[T

z 3
MADRAS “=*

- /\

OCaml

industrial-strength, pragmatic, functional programming language

Industry

Projects

-

FACEBOOK /. Tarides Bloomberg

* & ahrefs ESimCorp

docker
Microsoft '% Tezos @ Jane Street

J

~

0 ﬁ COMPCERT
_

4)
Iy
Im

J

Higher-order functions

Hindley-Milner Type Inference

Powerful module system

Functional core with imperative and
object-oriented features

Native (x86, Arm, Power, RISC-V),
JavaScript, WebAssembly

No multicore support!

» & < Osuirn -co

Multicore OCaml| ~> OCaml 5

e Brings native support for concurrency and parallelism to OCaml

A
C

Effect Handlers Domains

'

Time Time

Simultaneous |\ C
execution

Overlapped
execution

Time

Overlapped
execution

Effect Handlers

Concurrent Programming

e Computations may be suspended and resumed later

¢ Many languages provide concurrent programming mechanisms as primitives
+ async/await — JavaScript, Python, Rust, C# 5.0, F#, Swift, ...
+ generators — Python, Javascript, ...
+ coroutines — C++,Kotlin, Lua, ...
+ futures & promises — JavaScript, Swift, ...
+ Lightweight threads/processes — Haskell, Go, Erlang
® Often include many different primitives in the same language!

+ JavaScript has async/await, generators, promises, and callbacks

Conc. Prog.in OCaml 4

e No primitive support for concurrent programming in OCaml
+ Lwt and Async - concurrent programming libraries

+ Simulate concurrency through monads >>=

J. Functional Programming 9 (3): 313-323, May 1999. Printed in the United Kingdom 313
© 1999 Cambridge University Press

FUNCTIONAL PEARL

A poor man’s concurrency monad

KOEN CLAESSEN

Chalmers University of Technology
(e-mail: koen@cs.chalmers.se)

Conc. Prog.in OCaml 4

e | wt and Async is callback-oriented programming

let main () =
let url = "https://example.com”™ in
let file_path = "titles.txt" in
fetch_html url >>= fun html —>
extract _titles html >>= fun titles —>

Conc. Prog.in OCaml 4

e |[wt and Async suffer many pitfalls of programming with callbacks
+ No backtraces = debugging is harder
+ No built-in exceptions = OCaml language features cannot be used
+ More closures = more allocations = performance impact
¢ Monads are awkward to use in OCaml as there are no higher-kinded types
mapM :: Monad m => (a -> m b) -> [a] -> m [b]

base GHC.Base

mapM f is equivalent to sequence . map f.

No polymorphism

over m

Function colour issue

Normal
calls

What Color is Your Function?

— Bob Nystrom

Synchronous Asynchronous

I don’t know about you, but nothing gets me going in the morning quite like a
good old fashioned programming language rant. It stirs the blood to see
someone skewer one of those “blub” languages the plebians use, muddling
through their day with it between furtive visits to StackOverflow.

(Meanwhile, you and I, only use the most enlightened of languages. Chisel-sharp
tools designed for the manicured hands of expert craftspersons such as SPeC’ a I ca I I ' N g‘

ourselves.) .
convention

T — ————————————

Native-concurrency Desiderata

Avoid function colouring issue

Avoid pitfalls of monadic concurrency /
callback-oriented programming

Keep the addition to the compiler small

e (OCaml is a volunteer-led effort

Add the smallest primitive that
captures many concurrent
programming patterns

Solution

Effect Handlers

¢ A mechanism for programming with user-defined effects

® Direct-style asynchronous I/O
e Modular and composable basis of non-local control-flow me Sel == S

: : : : ® Resumable parsers
+ Exceptions, generators, lightweight threads, promises, asynchron i

® Probabilistic Programming
e Effect handlers ~= first-class, restartable exceptions ® Reactive Uls

+ Structured programming with delimited continuations

https://github.com/ocaml-multicore/effects-examples

Exceptions in OCaml

exception Invalid_input of char

exception ¢___—————”””//’

declaration let get _choice () =
print_endline "Do you want to continue [y/n]:";
let ¢ = 1input_char stdin 1in
if ¢ = 'y' then true
else 1if ¢ = 'n' then false
else raise (Invalid_input c)

N\

Raising the exception

Exceptions in OCaml

exception Invalid_input of char

let get _choice () =
print_endline "Do you want to continue [y/n]:";
let ¢ = input_char stdin 1in
if ¢ = 'y' then true
else 1f ¢ = 'n' then false
else raise (Invalid_input c)

let rec really_get choice () = Exception handler
try get_choice () ‘///,
Invalid_input —>

print_endline

Demo

Exceptions in OCaml

exception Invalid_input of char

IS the same as

type exn += Invalid_input of char

IS a bullt-in extensible variant type

Effect handlers

type _ eff += E : string eff

: suspends current
effect declaration let comp () = P

. . computation
print_string "0 "; ’/,//”" P

print_string (perform E);
print_string "3 "

let main () =

try computation
comp () _— > delimited continuation
effect E, k —

handler
print_string R

‘/— print_string

resume suspended
computation

Stepping through the example

parentparent

type 'a eff += E : string eff

let comp () =
print_string "0 ";
print_string (perform E);
print_string "3 "

let main () =
pc —» try
comp ()
with effect E, k —>
print_string "1 ";
continue k "2 ";
print_string "4 "

QHBEQE

Sp —»

Handlers can be nested

type _ eff 4= A : unit eff
| B : unit eff

let baz () =
PC— perform A

let bar () =
try
baz ()
with effect B, k —>
continue k ()

let foo () =
try
bar ()
with effect A, k —>
continue k ()

® Linear search through handlers

+ Handler stacks shallow in practice

Lightweight Threading

type _ eff += Fork : (unit —> unit) —-> unit eff
| Yield : unit eff

let run main =
(x assume queue of continuations)
let run_next () =
match dequeue () with
| Some k —> continue k ()
| None —> ()
in
let rec spawn f =
match f () with
() = run_next () (% value case x*)
effect Yield, k —> enqueue k; run_next ()
effect (Fork f), k —> enqueue k; spawn f

in
spawn main

let fork f = perform (Fork f)
let yield () = perform Yield

Lishtweight threading

let main () =

fork (fun _ —>
print_endline "1l.a";
yield ();
print_endline "1.b");

fork (fun _ —>
print_endline "2.a";
yield ();

print_endline “2.b")

run main

N B NP
oo o W

Demo

Lishtweight threading

let main () =

fork (fun _ —>
print_endline "1l.a";
yield ();
print_endline "1.b");

fork (fun _ —>
print_endline "2.a";
yield ();
print_endline “2.b")

run main

® Direct-style (no monads)
® User-code need not be aware

of effects
® No Async vs Sync distinction

N RPN -
O T 9 Q

Performance: VWebServer

* eio: effects-based direct-style I/O

+ Multiple backends — epoll, select, io_uring

C 25 github.com/ocaml-multicore/eio

O https://github.com... [Model Checking m ICSR Projects Page @ Logbook [Reason

arks @ Convertor @ Department of Co...

[0 README & Code of conduct 3[3 License Vd

API reference | #eio Matrix chat | Dev meetings

Eio — Effects-Based Parallel 10 for OCaml

Eio provides an effects-based direct-style IO stack for OCaml 5. For example, you can use Eio to read and write
files, make network connections, or perform CPU-intensive calculations, running multiple operations at the same
time. It aims to be easy to use, secure, well documented, and fast. A generic cross-platform APl is implemented by
optimised backends for different platforms. Eio replaces existing concurrency libraries such as Lwt (Eio and Lwt

libraries can also be used together).

https://github.com/ocaml-multicore/eio

https://github.com/ocaml-multicore/eio

Performance: VWebServer

* eio: effects-based direct-style I/O

+ Multiple backends — epoll, select, io_uring

serviced requests/second

200000 -

175000 H

150000 -

125000 -

100000 -

75000 A

50000

25000 H

0

1
— httpaf_eio OCaml eio
httpaf lwt |
—— httpaf_effects o~ Rust Hyper
—— cohttp_Iwt_unix /"~
rust_hyper e —
— nethttp_go OCaml (Http/af + Lwt)
Go NetHttp
OCaml (cohttp + Lwt)
0 50000 100000 150000 200000250000 300000 350000400000

load requests/second

|00 open connections, 60 seconds w/ io_uring

https://github.com/ocaml-multicore/eio

https://github.com/ocaml-multicore/eio

Generators

e Generators — non-continuous traversal of data structure by yielding values

+ Primitives in JavaScript and Python

functionx generator(i) A
yield 1,
yield i + 10;

I3

const gen = generator(10);

console. log(gen.next().value);
// expected output: 10

console. log(gen.next().value);
// expected output: 20

e Can be derived automatically from any iterator using effect handlers

Generators: effect handlers

module MkGen (S :sig

type 'a t

val iter : ('a —> unit) —> 'a t —> unit
end) : sig

val gen : 'a S.t —> (unit -> 'a option)

end = struct
let gen : type a. a S.t —> (unit —> a option) = fun 1 —
let module M =
struct type _ eff += Yield : a —> unit eff end
in
let open M 1in
let rec step = ref (fun () —>
match S.iter (fun v —> perform (Yield v)) 1 with

| () —> None

| effect (Yield v), k —>
step := (fun () —> continue k ());
Some v)

1in
fun () —> !step ()
end

(Generators: List

module L = MkGen (struct let next = L.gen [1;2;3]
type 'a t = 'a list next() (x Some 1 *)
let iter = List.iter next() (x Some 2 x*)
end) next() (%« Some 3 x)
next() (x None x)

Generators: Tree

type 'a tree = (* Make a complete binary tree of

| Leaf) depth [n] using [0(n)] space
*

let rec make = function
| @ —> Leaf
| n —> let t = make (n-1)
in Node (t,n,t)

| Node of 'a tree *x 'a x 'a tree

let rec iter f = function
| Leaf —> ()
| Node (1, x, r) —
iter £ 1; f x; iter f r

let t = make 2

module T = MkGen(struct
type 'a t = 'a tree let next = T.gen t

let iter = iter next() (* Some 1 x*)
end) next() (% Some 2 *)
next() (% Some 1 %)

next() (% None)

Performance: Generators

® Traverse a complete binary-tree of depth 25

+ 226 stack switches

® [terator — idiomatic recursive traversal
e (Generator

+ Hand-written generator (hw-generator)
“* Specialised for in-order traversal of binary trees

< CPS translation + defunctionalization to remove intermediate closure allocation

+ Generator using effect handlers (eh-generator)

Performance: Generators

OCaml 5 nodejs 14.07

Time (milliseconds) Time (milliseconds)

lterator (baseline)

lterator (baseline) 492
hw-generator 837 (3.76x)

eh-generator 1879 (9.30x) SRNEHEET 43842 (89.1x)

Retrofitting Challenges

Retrofitting Challenges

e Millions of lines of legacy code
+ Written without non-local control-flow in mind

+ Cost of refactoring sequential code itself is prohibitive

e OCaml uses the same system stack for both OCaml and C
+ Fast exceptions and FFl between C and OCaml
+ No stack overflow checks needed

+ Excellent compatibility with debugging (gdb) and profiling (perf) tools

Must preserve
feature, tooling, performance
compatibility

Representing Stacks & Continuations

e A stack of runtime-managed, dynamically growing stack segments

+ No pointers into OCaml stack

+ Need stack overflow checks for OCaml code

e Switch to system stack for C calls

Stack
grows
down

C
frames W
™ Main

OCam! L4

entry
Frames
~. External
C call
frames |KY
iCallback

OCaml
Frames

OCaml 4.xx

C
HETUES

System
Stack

Effect
handler

.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
s
(L
wnn®
MLl

Callback

OCaml 5.xx

PLDI
2021

Retrofitting Effect Handlers onto OCaml

KC Sivaramakrishnan Stephen Dolan Leo White

IIT Madras OCaml Labs Jane Street

Chennai, India Cambridge, UK London, UK

kcsrk@cse.iitm.ac.in stephen.dolan@cl.cam.ac.uk leo@lpw25.net

Tom Kelly Sadiq Jaffer Anil Madhavapeddy
OCaml Labs Opsian and OCaml Labs University of Cambridge and OCaml Labs

Cambridge, UK Cambridge, UK Cambridge, UK

tom.kelly@cantab.net sadig@toao.com avsm2@cl.cam.ac.uk
Abstract 1 Introduction

F'H‘P!"'I']’\QI’IAIPY'Q]’\Q‘TP]’\PPY\ o‘;\ﬂ'\prino‘ mnonmentitm ac a mpr‘l'\- p,‘H‘Pf"I' hQﬂAIPYQ rdlﬂ nrnvir]p a mnﬂn]gr annr]ah'nn ‘Fnr 11CATY -

Switching stacks fast

® (One-shot — capture and resumption does not involve copying frames

® No callee-saved registers in OCaml

+ Switching between stacks need not save & restore register state

foo ()
(x a *x)

(x b %)
perform E
(x d x)

effect E, k
(x Cc *)
continue k ()
(x e %)

Instruction e
Significance
Sequence
atob Create a new stack & run the computation 23
btoc Performing & handling an effect S
ctod Resuming a continuation 11
dtoe Returning from a computation & free the stack 14

e FEach of the instruction sequences involves a stack switch

* |ntel(R) Xeon(R) Gold 5120 CPU @ 2.20GHz

* For reference, memory read latency is 90 ns (local NUMA node) and 145 ns (remote NUMA node)

Backwards Compatibility

e OCaml is a systems programming language

+ Manipulates resources such as files, sockets, buffers, etc.

e OCaml code is written in defensive style to guard against exceptional behaviour and clear up
resources

let copy ic oc = P o raiSe SYS_error
—Tet ree~op () = A when channel is

i

. let 1 =input_line ic in Closed
raises _ o -
End_of_file at the output_string oc (1~ "\n"); -
T o loop () T __—
in

try loop () with
| End_of_file -—> close_in ic; close_out oc
| e —> close_1in ic; close_out oc; raise e

We would like to make this code transparently asynchronous

Why Asynchronous |O?

Computation is fast; 1O is slow

Modern OSes can batch and parallelise 10
+ Select, Epoll, kqueue, io_uring, IOCP, GCD

Creating multiple OS threads for IO
parallelism is expensive

Why Asynchronous |O?

Computation is fast; 1O is slow

Modern OSes can batch and parallelise 10
+ Select, Epoll, kqueue, io_uring, IOCP, GCD

Creating multiple OS threads for IO

parallelism is expensive
User

Multiplex computations on the same OS
thread and parallelise 10

Kernel

+ Suspend and resume at |O operations

Asynchronous 1O

type _ eff += In_line : in_channel —> string eff
| Out_str : out_channel % string —> unit eff

let input_line ic = perform (In_line ic)
let output_string oc s = perform (Out_str (oc,s))

let run_aio f = match f () with
Vo => Vv
effect ... —> ...
effect (In_line chan), k —>
» register_async_input_line chan k;
run_next ()
| effect (Out_str (chan, s)), k —>
—» register_async_output_string chan s k;
run_next ()

e Continue with appropriate value when the asynchronous |O call returns

¢ But what about termination? — End_of_file and Sys_error exceptional cases.

Discontinue

discontinue k End of file

® We add a discontinue primitive to resume a continuation by raising an exception

® On End_of_file and Sys_error, the asynchronous 1O scheduler uses discontinue
to raise the appropriate exception

let copy 1ic oc =

let rec loop () =
let 1 = 1input_Lline 1ic 1in
output_string oc (1 ~ "\n");
Lloop ()

Will continue 1n
to work try loop () with
| End_of_file -> close_in ic; close_out oc
| e => close_1in ic; close_out oc; raise e

Linearity

e Resources such as sockets, file descriptors, channels and buffers are linear
resources

+ Created and destroyed exactly once

e OCaml functions return exactly once with value or exception

+ Defensive programming already guards against exceptional return cases

e With effect handlers, functions may return at-most-once if continuation is
not resumed

+ This breaks resource-safe legacy code

Linearity

type _ eff +4= E : unit eff
let foo () = perform E

let bar () =
let 1c = open_in "input.txt" in
match foo () with
| v => close_1in 1ic
| exception e —> close_1in 1ic; railse e

let baz () =
try bar () with
| effect E, _ —> () [EIMCEISIEIIED.

We assume that captured continuations are resumed
exactly once, either using continue or discontinue

Backtraces

e OCaml has excellent compatibility with off-the-shelf debugging and profiling tools

+ GDB, LLDB, perf, libunwind, etc.

* DWARF — debugging information format

+ Unwind the program stack to get a backtrace, find the source variables

+ Bespoke bytecode format (Turing complete!), included in executables, interpreted at
runtime

Fiber | Fiber 2

Stack

grows
down

Bespoke DWARF bytecode for
unwinding across fibers

Demo

Join in the fun!

Riot O R

The OCaml runtime
for software artisans.

Riot is a multi-core runtime for the OCaml programming language that brings Erlang-style
concurrency to OCaml via lightweight processes and message passing. On top of it we're
building all the components you need to build reliable network services and applications.

Riot Stack

O ocaml-multicore | effects-examples

<> Code (%) Issues 3 i Pull requests

effects-examples ' Pubiic

All examples
from talk and

() Actions more

O ocaml-multicore | eio

<> Code (~) Issues 33 i9 Pull

elo Public

Eio

Miou, a simple scheduler for OCaml 5

let () = Miou.run @@ fun () —>
print_endline "Hello World!"

Miou

Join in the fun!

= O ocaml-multicore |/ effects-examples
All examples from

<> Code () Issues 3 19 Pullrequests () Actions talk and more

effects-examples Pubiic

Riot O [
= O ocaml-multicore / eio

The ocaml run.tlme <> Code () Issues 33 i9 Pulli
for software artisans.

Miou, a simple scheduler for OCaml 5

let () = Miou.run @ fun () —>
. print_endline "Hello World!"
Riot is a multi-core runtime for the OCaml programming language that brings Erlang-style elo Public

concurrency to OCaml via lightweight processes and message passing. On top of it we're

building all the components you need to build reliable network services and applications.

Riot Stack Eio Miou

ag
«adl OCaml 8 ® OCaml beginners Ask specific beginner questions here.
‘ categories » ’ ’ tags » ‘ New (6) Top Categories -+ New Topic
general S
Topic Replies ~ Activity : Giorgious Today at 3:16 PM
i | |
We Want Your Feedback on the odoc Developer Experience . 2 28m begln ners - Oh th el k yOU ’
B Community user-feedback, odoc

= gdiazlo Todayat 3:16 PM
advanced-help &7 | believe I've got this form the eio project.

A May update on wasm_of_ocaml o 2 oh

M Community wasm, webassembly

discuss.ocaml.org OCaml Discord

http://discuss.ocaml.org

