
Retrofitting Effect Handlers
onto OCaml

“KC” Sivaramakrishnan

Retrofitting Effect Handlers
onto OCaml

“KC” Sivaramakrishnan

See PLDI’21
paper

Concurrent Programming
• Computations may be suspended and resumed later

Concurrent Programming
• Computations may be suspended and resumed later

• Many languages provide concurrent programming mechanisms
as primitives

✦ async/await — JavaScript, Python, Rust, C# 5.0, F#, …

✦ generators — Python, Javascript, …

✦ coroutines — C++, Kotlin, Lua, …

✦ futures & promises — JavaScript, Swift, …

Concurrent Programming
• Computations may be suspended and resumed later

• Many languages provide concurrent programming mechanisms
as primitives

✦ async/await — JavaScript, Python, Rust, C# 5.0, F#, …

✦ generators — Python, Javascript, …

✦ coroutines — C++, Kotlin, Lua, …

✦ futures & promises — JavaScript, Swift, …

• Often include different primitives for concurrent programming

✦ JavaScript has async/await, generators, promises, and callbacks!!

Concurrent Programming in OCaml
• No primitive support for concurrent programming in OCaml

✦ Lwt and Async - concurrent programming libraries

✦ Callback-oriented programming with monadic syntax >>=

Concurrent Programming in OCaml
• No primitive support for concurrent programming in OCaml

✦ Lwt and Async - concurrent programming libraries

✦ Callback-oriented programming with monadic syntax >>=

• Suffers many pitfalls of callback-oriented programming

✦ No backtraces, no exceptions, more closures

✦ Monads split the ecosystem into Asynchronous and Synchronous

✤ Bob Nystrom, “What colour is your function?”

Solution

• A mechanism for programming with user-defined effects

Effect Handlers

Solution

• A mechanism for programming with user-defined effects

• Modular and composable basis of non-local control-flow
mechanisms

✦ Exceptions, generators, lightweight threads, promises, asynchronous
IO, coroutines as libraries

Effect Handlers

Solution

• A mechanism for programming with user-defined effects

• Modular and composable basis of non-local control-flow
mechanisms

✦ Exceptions, generators, lightweight threads, promises, asynchronous
IO, coroutines as libraries

• Effect handlers ~= first-class, restartable exceptions

✦ Structured programming with delimited continuations

Effect Handlers

Solution

• A mechanism for programming with user-defined effects

• Modular and composable basis of non-local control-flow
mechanisms

✦ Exceptions, generators, lightweight threads, promises, asynchronous
IO, coroutines as libraries

• Effect handlers ~= first-class, restartable exceptions

✦ Structured programming with delimited continuations

Effect Handlers

https://github.com/ocaml-multicore/effects-examples

• Direct-style asynchronous I/O

• Generators

• Resumable parsers

• Probabilistic Programming

• Reactive UIs

• ….

An example

effect E : string

let comp () =

 print_string "0 ";

 print_string (perform E);

 print_string "3 "

let main () =

 try

 comp ()

 with effect E k ->

 print_string "1 ";

 continue k "2 ";

 print_string “4 "

An example

effect E : string

let comp () =

 print_string "0 ";

 print_string (perform E);

 print_string "3 "

let main () =

 try

 comp ()

 with effect E k ->

 print_string "1 ";

 continue k "2 ";

 print_string “4 "

effect declaration

An example

effect E : string

let comp () =

 print_string "0 ";

 print_string (perform E);

 print_string "3 "

let main () =

 try

 comp ()

 with effect E k ->

 print_string "1 ";

 continue k "2 ";

 print_string “4 "

computation

effect declaration

An example

effect E : string

let comp () =

 print_string "0 ";

 print_string (perform E);

 print_string "3 "

let main () =

 try

 comp ()

 with effect E k ->

 print_string "1 ";

 continue k "2 ";

 print_string “4 "

computation

handler

effect declaration

An example

effect E : string

let comp () =

 print_string "0 ";

 print_string (perform E);

 print_string "3 "

let main () =

 try

 comp ()

 with effect E k ->

 print_string "1 ";

 continue k "2 ";

 print_string “4 "

computation

handler

suspends current

computation

effect declaration

An example

effect E : string

let comp () =

 print_string "0 ";

 print_string (perform E);

 print_string "3 "

let main () =

 try

 comp ()

 with effect E k ->

 print_string "1 ";

 continue k "2 ";

 print_string “4 "

computation

handler

delimited continuation

suspends current

computation

effect declaration

An example

effect E : string

let comp () =

 print_string "0 ";

 print_string (perform E);

 print_string "3 "

let main () =

 try

 comp ()

 with effect E k ->

 print_string "1 ";

 continue k "2 ";

 print_string “4 "

computation

handler

delimited continuation

suspends current

computation

resume suspended

computation

effect declaration

Stepping through the example

effect E : string

let comp () =

 print_string "0 ";

 print_string (perform E);

 print_string "3 "

let main () =

 try

 comp ()

 with effect E k ->

 print_string "1 ";

 continue k "2 ";

 print_string “4 "

pc
main

sp

Stepping through the example

effect E : string

let comp () =

 print_string "0 ";

 print_string (perform E);

 print_string "3 "

let main () =

 try

 comp ()

 with effect E k ->

 print_string "1 ";

 continue k "2 ";

 print_string “4 "

pc

main

sp

comp

Stepping through the example

effect E : string

let comp () =

 print_string "0 ";

 print_string (perform E);

 print_string "3 "

let main () =

 try

 comp ()

 with effect E k ->

 print_string "1 ";

 continue k "2 ";

 print_string “4 "

pc

main
sp

parent

Fiber: A piece of stack
+ effect handler

comp

comp

Stepping through the example

effect E : string

let comp () =

 print_string "0 ";

 print_string (perform E);

 print_string "3 "

let main () =

 try

 comp ()

 with effect E k ->

 print_string "1 ";

 continue k "2 ";

 print_string “4 "

pc

main

sp

parent

0

comp

comp

Stepping through the example

effect E : string

let comp () =

 print_string "0 ";

 print_string (perform E);

 print_string "3 "

let main () =

 try

 comp ()

 with effect E k ->

 print_string "1 ";

 continue k "2 ";

 print_string “4 "

pc

main

sp

k

0

comp

comp

Stepping through the example

effect E : string

let comp () =

 print_string "0 ";

 print_string (perform E);

 print_string "3 "

let main () =

 try

 comp ()

 with effect E k ->

 print_string "1 ";

 continue k "2 ";

 print_string “4 "

pc

main

sp k

0

comp

comp

Stepping through the example

effect E : string

let comp () =

 print_string "0 ";

 print_string (perform E);

 print_string "3 "

let main () =

 try

 comp ()

 with effect E k ->

 print_string "1 ";

 continue k "2 ";

 print_string “4 "

pc

main

sp k

0

comp

comp

Stepping through the example

effect E : string

let comp () =

 print_string "0 ";

 print_string (perform E);

 print_string "3 "

let main () =

 try

 comp ()

 with effect E k ->

 print_string "1 ";

 continue k "2 ";

 print_string “4 "

pc

main

sp k

0 1

comp

comp

Stepping through the example

effect E : string

let comp () =

 print_string "0 ";

 print_string (perform E);

 print_string "3 "

let main () =

 try

 comp ()

 with effect E k ->

 print_string "1 ";

 continue k "2 ";

 print_string “4 "

pc

main

sp k

0 1

comp

comp

Stepping through the example

effect E : string

let comp () =

 print_string "0 ";

 print_string (perform E);

 print_string "3 "

let main () =

 try

 comp ()

 with effect E k ->

 print_string "1 ";

 continue k "2 ";

 print_string “4 "

pc

main

sp

k

parent

0 1

comp

comp

Stepping through the example

effect E : string

let comp () =

 print_string "0 ";

 print_string (perform E);

 print_string "3 "

let main () =

 try

 comp ()

 with effect E k ->

 print_string "1 ";

 continue k "2 ";

 print_string “4 "

pc
main

sp

k

parent

0 1 2

Stepping through the example

effect E : string

let comp () =

 print_string "0 ";

 print_string (perform E);

 print_string "3 "

let main () =

 try

 comp ()

 with effect E k ->

 print_string "1 ";

 continue k "2 ";

 print_string “4 " pc

main

sp k

0 1 2 3

Stepping through the example

effect E : string

let comp () =

 print_string "0 ";

 print_string (perform E);

 print_string "3 "

let main () =

 try

 comp ()

 with effect E k ->

 print_string "1 ";

 continue k "2 ";

 print_string “4 "

pc

main

sp k

0 1 2 3 4

Lightweight Threading
effect Fork : (unit -> unit) -> unit

effect Yield : unit

Lightweight Threading
effect Fork : (unit -> unit) -> unit

effect Yield : unit

let run main =

 ... (* assume queue of continuations *)

 let run_next () =

 match dequeue () with

 | Some k -> continue k ()

 | None -> ()

 in

 let rec spawn f =

 match f () with

 | () -> run_next () (* value case *)

 | effect Yield k -> enqueue k; run_next ()

 | effect (Fork f) k -> enqueue k; spawn f

 in

 spawn main

Lightweight Threading
effect Fork : (unit -> unit) -> unit

effect Yield : unit

let run main =

 ... (* assume queue of continuations *)

 let run_next () =

 match dequeue () with

 | Some k -> continue k ()

 | None -> ()

 in

 let rec spawn f =

 match f () with

 | () -> run_next () (* value case *)

 | effect Yield k -> enqueue k; run_next ()

 | effect (Fork f) k -> enqueue k; spawn f

 in

 spawn main

let fork f = perform (Fork f)

let yield () = perform Yield

Lightweight threading

let main () =

 fork (fun _ -> print_endline "1.a"; yield (); print_endline "1.b");

 fork (fun _ -> print_endline "2.a"; yield (); print_endline “2.b")

;;

run main

Lightweight threading

let main () =

 fork (fun _ -> print_endline "1.a"; yield (); print_endline "1.b");

 fork (fun _ -> print_endline "2.a"; yield (); print_endline “2.b")

;;

run main

1.a

2.a

1.b

2.b

Lightweight threading

let main () =

 fork (fun _ -> print_endline "1.a"; yield (); print_endline "1.b");

 fork (fun _ -> print_endline "2.a"; yield (); print_endline “2.b")

;;

run main

1.a

2.a

1.b

2.b

• Direct-style (no monads)

• User-code need not be aware of effects

• No Async vs Sync distinction

Retrofitting Challenges
• Millions of lines of legacy code

✦ Written without non-local control-flow in mind

✦ Cost of refactoring sequential code itself is prohibitive

Retrofitting Challenges
• Millions of lines of legacy code

✦ Written without non-local control-flow in mind

✦ Cost of refactoring sequential code itself is prohibitive

• OCaml uses the same system stack for both OCaml and C

✦ Fast exceptions and FFI between C and OCaml

✦ No stack overflow checks needed

✦ Excellent compatibility with debugging (gdb) and profiling (perf) tools

Retrofitting Challenges
• Millions of lines of legacy code

✦ Written without non-local control-flow in mind

✦ Cost of refactoring sequential code itself is prohibitive

• OCaml uses the same system stack for both OCaml and C

✦ Fast exceptions and FFI between C and OCaml

✦ No stack overflow checks needed

✦ Excellent compatibility with debugging (gdb) and profiling (perf) tools

Must preserve

feature, tooling, performance

compatibility

Representing Stacks & Continuations

Representing Stacks & Continuations

• A stack of runtime-managed, dynamically growing stack segments

✦ No pointers into OCaml stack

✦ Need stack overflow checks for OCaml code

Representing Stacks & Continuations

• A stack of runtime-managed, dynamically growing stack segments

✦ No pointers into OCaml stack

✦ Need stack overflow checks for OCaml code

• Switch to system stack for C calls

C

frames

OCaml

Frames

C

frames

OCaml

Frames

Stock

OCaml

Stack

grows

down

C

frames

C

frames

Fiber 1

(Many
OCaml

Frames)

Fiber 2

C

frames Fiber 3

Main

entry

Effect

handler

External Call

Callback

System

Stack

Multicore

OCaml

Representing Stacks & Continuations

• A stack of runtime-managed, dynamically growing stack segments

✦ No pointers into OCaml stack

✦ Need stack overflow checks for OCaml code

• Switch to system stack for C calls

C

frames

OCaml

Frames

C

frames

OCaml

Frames

Stock

OCaml

Stack

grows

down

C

frames

C

frames

Fiber 1

(Many
OCaml

Frames)

Fiber 2

C

frames Fiber 3

Main

entry

Effect

handler

External Call

Callback

System

Stack

Multicore

OCaml

Formal
Semantics in

PLDI’21 paper

Switching stacks fast
• One-shot — capture and resumption does not involve copying

frames

Switching stacks fast
• One-shot — capture and resumption does not involve copying

frames

• No callee-saved registers in OCaml

✦ Switching between stacks need not save & restore register state

Performance
let foo () =

 (* a *)

 try

 (* b *)

 perform E

 (* d *)

 with effect E k ->

 (* c *)

 continue k ()

 (* e *)

Performance
let foo () =

 (* a *)

 try

 (* b *)

 perform E

 (* d *)

 with effect E k ->

 (* c *)

 continue k ()

 (* e *)

Instruction
Sequence

a to b

b to c

c to d

d to e

Significance

Create a new stack &

run the computation

Performing & handling an effect

Resuming a continuation

Returning from a computation &
free the stack

• Each of the instruction sequences involves a stack switch

Performance
let foo () =

 (* a *)

 try

 (* b *)

 perform E

 (* d *)

 with effect E k ->

 (* c *)

 continue k ()

 (* e *)

Instruction
Sequence

a to b

b to c

c to d

d to e

Significance

Create a new stack &

run the computation

Performing & handling an effect

Resuming a continuation

Returning from a computation &
free the stack

• Each of the instruction sequences involves a stack switch

• Intel(R) Xeon(R) Gold 5120 CPU @ 2.20GHz

✦ Cost measured using Intel PT’s cycle accurate tracing

✦ For calibration, memory read latency is 90 ns (local NUMA node) and
145 ns (remote NUMA node)

Performance
let foo () =

 (* a *)

 try

 (* b *)

 perform E

 (* d *)

 with effect E k ->

 (* c *)

 continue k ()

 (* e *)

Instruction
Sequence

a to b

b to c

c to d

d to e

Significance

Create a new stack &

run the computation

Performing & handling an effect

Resuming a continuation

Returning from a computation &
free the stack

Time (ns)

23

5

11

7

• Each of the instruction sequences involves a stack switch

• Intel(R) Xeon(R) Gold 5120 CPU @ 2.20GHz

✦ Cost measured using Intel PT’s cycle accurate tracing

✦ For calibration, memory read latency is 90 ns (local NUMA node) and
145 ns (remote NUMA node)

Performance: WebServer
• Effect handlers for asynchronous I/O in direct-style

✦ https://github.com/kayceesrk/ocaml-aeio

• Variants

✦ Go + net/http (GOMAXPROCS=1)

✦ OCaml + http/af + Lwt (explicit callbacks)

✦ OCaml + http/af + Effect handlers (MC)

• Performance measured using wrk2

https://github.com/kayceesrk/ocaml-aeio

Performance: WebServer
• Effect handlers for asynchronous I/O in direct-style

✦ https://github.com/kayceesrk/ocaml-aeio

• Variants

✦ Go + net/http (GOMAXPROCS=1)

✦ OCaml + http/af + Lwt (explicit callbacks)

✦ OCaml + http/af + Effect handlers (MC)

• Performance measured using wrk2

https://github.com/kayceesrk/ocaml-aeio

Performance: WebServer
• Effect handlers for asynchronous I/O in direct-style

✦ https://github.com/kayceesrk/ocaml-aeio

• Variants

✦ Go + net/http (GOMAXPROCS=1)

✦ OCaml + http/af + Lwt (explicit callbacks)

✦ OCaml + http/af + Effect handlers (MC)

• Performance measured using wrk2

• Direct style (no monadic syntax)

• Can use OCaml exceptions!

• Backtrace per thread (request)

• gdb & perf work!

https://github.com/kayceesrk/ocaml-aeio

Performance: WebServer
• eio: effects-based I/O over Linux kernel’s new io_uring

support

Performance: WebServer
• eio: effects-based I/O over Linux kernel’s new io_uring

support
WIP :-)

Backwards Compatibility
• OCaml is a systems programming language

✦ Manipulates resources such as files, sockets, buffers, etc.

Backwards Compatibility
• OCaml is a systems programming language

✦ Manipulates resources such as files, sockets, buffers, etc.

• OCaml code is written in defensive style to guard against
exceptional behaviour and clear up resources

Backwards Compatibility
• OCaml is a systems programming language

✦ Manipulates resources such as files, sockets, buffers, etc.

• OCaml code is written in defensive style to guard against
exceptional behaviour and clear up resources

let copy ic oc =

 let rec loop () =

 let l = input_line ic in

 output_string oc (l ^ "\n");

 loop ()

 in

 try loop () with

 | End_of_file -> close_in ic; close_out oc

 | e -> close_in ic; close_out oc; raise e

Backwards Compatibility
• OCaml is a systems programming language

✦ Manipulates resources such as files, sockets, buffers, etc.

• OCaml code is written in defensive style to guard against
exceptional behaviour and clear up resources

let copy ic oc =

 let rec loop () =

 let l = input_line ic in

 output_string oc (l ^ "\n");

 loop ()

 in

 try loop () with

 | End_of_file -> close_in ic; close_out oc

 | e -> close_in ic; close_out oc; raise e

raises
End_of_file at

the end

Backwards Compatibility
• OCaml is a systems programming language

✦ Manipulates resources such as files, sockets, buffers, etc.

• OCaml code is written in defensive style to guard against
exceptional behaviour and clear up resources

let copy ic oc =

 let rec loop () =

 let l = input_line ic in

 output_string oc (l ^ "\n");

 loop ()

 in

 try loop () with

 | End_of_file -> close_in ic; close_out oc

 | e -> close_in ic; close_out oc; raise e

raise Sys_error
when channel is

closed
raises

End_of_file at
the end

Backwards Compatibility
• OCaml is a systems programming language

✦ Manipulates resources such as files, sockets, buffers, etc.

• OCaml code is written in defensive style to guard against
exceptional behaviour and clear up resources

let copy ic oc =

 let rec loop () =

 let l = input_line ic in

 output_string oc (l ^ "\n");

 loop ()

 in

 try loop () with

 | End_of_file -> close_in ic; close_out oc

 | e -> close_in ic; close_out oc; raise e

We would like to make this code transparently asynchronous

raise Sys_error
when channel is

closed
raises

End_of_file at
the end

Asynchronous IO
effect In_line : in_channel -> string

effect Out_str : out_channel * string -> unit

Asynchronous IO
effect In_line : in_channel -> string

effect Out_str : out_channel * string -> unit

let input_line ic = perform (In_line ic)

let output_string oc s = perform (Out_str (oc,s))

Asynchronous IO

let run_aio f = match f () with

| v -> v

| effect (In_line chan) k ->

 register_async_input_line chan k;

 run_next ()

| effect (Out_str (chan, s)) k ->

 register_async_output_string chan s k;

 run_next ()

effect In_line : in_channel -> string

effect Out_str : out_channel * string -> unit

let input_line ic = perform (In_line ic)

let output_string oc s = perform (Out_str (oc,s))

Asynchronous IO

let run_aio f = match f () with

| v -> v

| effect (In_line chan) k ->

 register_async_input_line chan k;

 run_next ()

| effect (Out_str (chan, s)) k ->

 register_async_output_string chan s k;

 run_next ()

• Continue with appropriate value when the asynchronous IO call returns

effect In_line : in_channel -> string

effect Out_str : out_channel * string -> unit

let input_line ic = perform (In_line ic)

let output_string oc s = perform (Out_str (oc,s))

Asynchronous IO

let run_aio f = match f () with

| v -> v

| effect (In_line chan) k ->

 register_async_input_line chan k;

 run_next ()

| effect (Out_str (chan, s)) k ->

 register_async_output_string chan s k;

 run_next ()

• Continue with appropriate value when the asynchronous IO call returns

• But what about termination? — End_of_file and Sys_error
exceptional cases.

effect In_line : in_channel -> string

effect Out_str : out_channel * string -> unit

let input_line ic = perform (In_line ic)

let output_string oc s = perform (Out_str (oc,s))

Discontinue

• We add a discontinue primitive to resume a continuation by
raising an exception

• On End_of_file and Sys_error, the asynchronous IO scheduler
uses discontinue to raise the appropriate exception

discontinue k End_of_file

Linearity
• Resources such as sockets, file descriptors, channels and buffers

are linear resources

✦ Created and destroyed exactly once

Linearity
• Resources such as sockets, file descriptors, channels and buffers

are linear resources

✦ Created and destroyed exactly once

• OCaml functions return exactly once with value or exception

✦ Defensive programming already guards against exceptional return
cases

Linearity
• Resources such as sockets, file descriptors, channels and buffers

are linear resources

✦ Created and destroyed exactly once

• OCaml functions return exactly once with value or exception

✦ Defensive programming already guards against exceptional return
cases

• With effect handlers, functions may return at-most once if
continuation not resumed

✦ This breaks resource-safe legacy code

Linearity
effect E : unit

let foo () = perform E

Linearity
effect E : unit

let foo () = perform E

let bar () =

 let ic = open_in "input.txt" in

 match foo () with

 | v -> close_in ic

 | exception e -> close_in ic; raise e

Linearity
effect E : unit

let foo () = perform E

let bar () =

 let ic = open_in "input.txt" in

 match foo () with

 | v -> close_in ic

 | exception e -> close_in ic; raise e

let baz () =

 try bar () with

 | effect E _ -> () (* leaks ic *)

Linearity
effect E : unit

let foo () = perform E

We assume that captured continuations are resumed exactly once
either using continue or discontinue

let bar () =

 let ic = open_in "input.txt" in

 match foo () with

 | v -> close_in ic

 | exception e -> close_in ic; raise e

let baz () =

 try bar () with

 | effect E _ -> () (* leaks ic *)

Backtraces
• OCaml has excellent compatibility with debugging and profiling

tools — gdb, lldb, perf, libunwind, etc.

✦ DWARF stack unwinding support

Backtraces
• OCaml has excellent compatibility with debugging and profiling

tools — gdb, lldb, perf, libunwind, etc.

✦ DWARF stack unwinding support

• Multicore OCaml supports DWARF stack unwinding across fibers

Backtraces

effect E : unit

let foo () = perform E

let bar () =

 let ic = open_in "input.txt" in

 match foo () with

 | v -> close_in ic

 | exception e ->

 close_in ic; raise e

let baz () =

 try bar () with

 | effect E _ -> () (* leak *)

• OCaml has excellent compatibility with debugging and profiling
tools — gdb, lldb, perf, libunwind, etc.

✦ DWARF stack unwinding support

• Multicore OCaml supports DWARF stack unwinding across fibers

Backtraces

effect E : unit

let foo () = perform E

let bar () =

 let ic = open_in "input.txt" in

 match foo () with

 | v -> close_in ic

 | exception e ->

 close_in ic; raise e

let baz () =

 try bar () with

 | effect E _ -> () (* leak *)

• OCaml has excellent compatibility with debugging and profiling
tools — gdb, lldb, perf, libunwind, etc.

✦ DWARF stack unwinding support

• Multicore OCaml supports DWARF stack unwinding across fibers

foo

baz bar
Stack

grows

down

Fiber 1 Fiber 2

Backtraces

effect E : unit

let foo () = perform E

let bar () =

 let ic = open_in "input.txt" in

 match foo () with

 | v -> close_in ic

 | exception e ->

 close_in ic; raise e

let baz () =

 try bar () with

 | effect E _ -> () (* leak *)

• OCaml has excellent compatibility with debugging and profiling
tools — gdb, lldb, perf, libunwind, etc.

✦ DWARF stack unwinding support

• Multicore OCaml supports DWARF stack unwinding across fibers

foo

baz bar
Stack

grows

down

Fiber 1 Fiber 2

Bespoke DWARF bytecode for
unwinding across fibers

Backtraces
effect E : unit

let foo () = perform E

let bar () =

 let ic = open_in "input.txt" in

 match foo () with

 | v -> close_in ic

 | exception e ->

 close_in ic; raise e

let baz () =

 try bar () with

 | effect E _ -> () (* leak *)

(lldb) bt

* thread #1, name = 'a.out', stop reason = …

 * #0: 0x58b208 caml_perform

 #1: 0x56aa5d camlTest__foo_83 at test.ml:4

 #2: 0x56aae2 camlTest__bar_85 at test.ml:9

 #3: 0x56a9fc camlTest__fun_199 at test.ml:14

 #4: 0x58b322 caml_runstack + 70

 #5: 0x56ab99 camlTest__baz_91 at test.ml:14

 #6: 0x56ace6 camlTest__entry at test.ml:21

 #7: 0x56a41c caml_program + 60

 #8: 0x58b0b7 caml_start_program + 135

 #9: …

Thanks!
• Multicore OCaml

✦ https://github.com/ocaml-multicore/ocaml-multicore

• Effects Examples

✦ https://github.com/ocaml-multicore/effects-examples

• Sivaramakrishnan et al, “Retrofitting Effect Handlers onto OCaml”,
PLDI 2021

✦ https://arxiv.org/abs/2104.00250

https://github.com/ocaml-multicore/ocaml-multicore
https://github.com/ocaml-multicore/effects-examples
https://arxiv.org/abs/2104.00250
https://arxiv.org/abs/2104.00250

Bonus Slides

Fiber Layout

Free space

OCaml Frames

Context block

parent_fiber

clos_heffect

clos_hexn

clos_hval

pc(ExnHandle)

NULL

pc(RetVal)

Red Zone

saved_exn_ptr

saved_sp

HEADER WORD
fiber

calls

calls

handler_info

Top-level
exn handler

Variable size

2 words

16 words

fiber_info

stack
threshold

Fiber Layout

Free space

OCaml Frames

Context block

parent_fiber

clos_heffect

clos_hexn

clos_hval

pc(ExnHandle)

NULL

pc(RetVal)

Red Zone

saved_exn_ptr

saved_sp

HEADER WORD
fiber

calls

calls

handler_info

Top-level
exn handler

Variable size

2 words

16 words

fiber_info

stack
threshold

“KC” Sivaramakrishnan
• Who am I?

✦ Asst Prof at IIT Madras, India

✦ Lead the development of Multicore OCaml project

• Interested in learning

✦ Compiling effect handlers for uncooperative environments (Wasm, Java,
C, JavaScript)

✦ Pragmatic effect systems

✦ New use cases for effects

• Talks

✦ Retrofitting effect handlers onto OCaml (30 minutes)

✦ ParaFuzz: Fuzzing Multicore OCaml programs (15 minutes)

