Concurrent System Programming
with
Effect Handlers

KC Sivaramakrishnan

University of OCaml
Cambridge Labs

Multicore OCaml|

Native support for concurrency and parallelism in OCaml

Lead from OCaml Labs, University of Cambridge

4

Collaborators Stephen Dolan (OCaml Labs), Leo White (Jane Street)

Expected to hit mainline in late 2019

In this talk,

4

4

Focus on the concurrency subsystem — Effect Handlers
Build scalable concurrent network services in idiomatic fashion
Challenges in adding concurrency to a industrial-strength sequential language

Future work: Effect handler based OS and network services

Concurrency # Parallelism

- Concurrency
» Overlapped execution of processes
Fibers — language level lightweight threads
Parallelism
» Simultaneous execution of computations
Domains — System thread + Context

+ Concurrency n Parallelism = Scalable Concurrency

User-level Schedulers

Multiplexing fibers over domain(s)
Bake scheduler into the runtime (Go, GHC)
Lack of flexibility

Maintenance onus on the compiler developers

» Allow programmers to describe schedulers as OCaml libraries
Parallel search = LIFO work-stealing
Web-server = FIFO runqueue

Data parallel = Gang scheduling
 Effect handlers

Algebraic Effect Handlers : History

Reasoning about computational effects in a pure setting

+ G.Plotkin and J. Power, Algebraic Operations and Generic Effects, 2002

Algebraic Operations and Generic Effects

Gordon Plotkin and John Power *

Division of Informatics, University of Edinburgh, King’s Buildings,
Edinburgh EH9 3JZ, Scotland

Abstract. Given a complete and cocomplete symmetric monoidal closed
category V and a symmetric monoidal V-category C' with cotensors and
a strong V-monad 7" on C, we investigate axioms under which an ObC-
indexed family of operations of the form «ay : (T'z)" — (T'z)" provides
semantics for algebraic operations on the computational A-calculus. We
recall a definition for which we have elsewhere given adequacy results,
and we show that an enrichment of it is equivalent to a range of other pos-
sible natural definitions of algebraic operation. In particular, we define
the notion of generic effect and show that to give a generic effect is equiv-
alent to giving an algebraic operation. We further show how the usual
monadic semantics of the computational A-calculus extends uniformly to
incorporate generic effects. We outline examples and non-examples and
we show that our definition also enriches one for call-by-name languages
with effects.

Algebraic Effect Handlers : History

Reasoning about computational effects in a pure setting
+ G.Plotkin and J. Power, Algebraic Operations and Generic Effects, 2002

Handlers for programming

+ @G. Plotkin and M. Pretnar, Handlers of Algebraic Effects, 2009

Handlers of Algebraic Effects

Gordon Plotkin * and Matija Pretnar **

Laboratory for Foundations of Computer Science,
School of Informatics, University of Edinburgh, Scotland

Abstract. We present an algebraic treatment of exception handlers and,
more generally, introduce handlers for other computational effects repre-
sentable by an algebraic theory. These include nondeterminism, interac-
tive input/output, concurrency, state, time, and their combinations; in
all cases the computation monad is the free-model monad of the theory.
Each such handler corresponds to a model of the theory for the effects
at hand. The handling construct, which applies a handler to a compu-
tation, is based on the one introduced by Benton and Kennedy, and is
interpreted using the homomorphism induced by the universal property
of the free model. This general construct can be used to describe previ-
ously unrelated concepts from both theory and practice.

Algebraic Effect Handlers : History

Reasoning about computational effects in a pure setting

G. Plotkin and J. Power, Algebraic Operations and Generic Effects, 2002
Handlers for programming

G. Plotkin and M. Pretnar, Handlers of Algebraic Effects, 2009
Many prototype languages integrate algebraic effect handlers

Eff, Links, Koka, Frank,

Multicore OCaml is the first industrial-strength language to integrate
effect handlers

Basics: recovering from errors
(Demo)

Dynamic Semantics

e Powerful control operator to manipulate control flow

» Equivalent in power to other delimited control operators (shift/reset, prompt/
control, etc)

+ Type inference is simpler — no answer type polymorphism problem
4+ Much more pleasant to program with
e Generalises other primitives that manipulate control-flow
» async/await, generators, coroutines, promises
» Can be implemented as libraries rather than as primitives
e Effect handler languages
» Eff, Koka, Links, Frank, Unison, ...

» (Multicore) OCaml is the first industrial-strength language with effect handlers

Coroutines
(Demo)

Asynchronous |/O

® Direct-style

handle conn
request read conn
write conn (respond_to request

e (Callback style

handle conn
ongoing read conn
when_completed ongoing req
write conn (respond_to req

Callback hell!

http://ocamllabs.io/multicore/compare.js

Can we write fast asynchronous I/O code in direct-style?

Yes (Async 1/O demo)

http://ocamllabs.io/multicore/compare.js

Performance

— Async
307 Go
—-— Effects
7 257
£
>, 207
O
C
2 157
C v
p .
— 10+ G
N //'/‘ ‘
O_

10006

8000

6000

Lantency (ms)

4000;

2000

— Async
Go
—-— Effects

—

0% 90.0% 99.0% 99.9% 99.99%99.999%

(a) Medium contention: 1k connections,

10k requests/sec

0% 90.0% 99.0% 99.9% 99.99%99.999%

(b) High contention: 10k connections, 30k

requests/sec

Fig. 2: Latency profile of client requests

Effect System

o WIP effect system for tracking effects in the type
» Make unhandled effect a compile time error

® Nominal => Structural
» No explicit effect declaration
» Row polymorphism

o Effect polymorphism

» val map : (‘a -[!p]-> ‘b) -> ‘a list -[!p] -> ‘b list

Representing continuations

e Continuations are heap-allocated, dynamically resized stacks
» |0s of bytes initially

® |inear delimited continuations
» Capturing a continuation is very cheap
» Simplifies reasoning about resources — sockets, fds, locks etc

® Overheads

» Stacks managed on the heap => stack overflow checks

» FFl is more complex

» ~1% avg (~9% max) slowdown compared to trunk

Enforcing linearity

¢ Continuations must be used exactly once
» Not O times or |+ times

» No linear types => enforce dynamically

¢ Enforce at-most once use by invalidating the continuation on
first-use

» Raises exception on subsequent uses

® Enforcing at-least once use is tricky but important

Enforcing at-least once use

process_file filename process fd

fd Unix.openfile filename perform DoesNotReturn ..
process fd; Unix.close fd process_file “hello.ml”

e Unix.close fd e effect DoesNotReturn k ()

® Make use of the GC for enforcing at least once use

Gc.finalise k K ignore
discontinue k ThreadKilled
Continuation_already used ()

e failwith (Printexc.to_string e

Interrupts

Interrupting ongoing computations is hard

Synchronously, by polling (Go)

» Code pollution, timeliness. ..

Asynchronously, by stopping (GHC, C)

» No context awareness => tricky with resource handling

» Signal handlers are callbacks => introduce concurrency in an
otherwise sequential program

Interrupts are “asynchronous effects”

Preemptive multi-threading

handle_signal : int (% signal number)
'a 'r 'b
a —[Signal: int unit lr 'b

handle Sys.sigvtalrm main) ()
dequeue ()
effect (Async f) k
enqueue (continue Kk run f
effect Yield Kk
enqueue (continue k); dequeue ()
effect (Signal Sys.sigvtalrm) k (x context x)
enqueue (continue k); dequeue ()

Overlapping I/O with Compute

e Scalable OS networking & disk |O interfaces are exposed as
callbacks

» select, epoll, kqueue,Windows IOCP etc

» Effect handlers can expose direct-style API!

¢ What about cases where the above doesn’t work?

» Posix says “File descriptors associated with regular files shall always select
true for ready to read, ready to write, and error conditions.”

e Slow disks (NFS, HDD) => overlap computation with |/O?

e Similarly calls to DB engines, cached RPC calls, 3-rd party libraries...

Overlapping I/O with Compute

effect (Delayed id) k User-level scheduler

!il F2 Fn

Delayed!

Hashtbl.add ongoing_1io 1id Kk
dequeue ()

DI D2

Domain O D3 D4

Overlapping I/O with Compute

effect (Delayed id) k User-level scheduler
Hashtbl.add ongoing_1io 1id Kk
— read() F2 Fn
dequeue () ﬂ. .
effect (Completed id) k / Completed!
K' Hashtbl.find ongoing_io id i
Hashtbl.remove ongoing_10 1id . DI D2
enqueue (continue k !

continue k' () Domain O D3 D4

Summary

o Effect handlers are a great new tool for programming!
® They work really well for system programming
» as long as you stick to the linear version

® They make nasty OS interfaces easier to use

» and find salvation from callback hell!

- ocamllabs/ocaml-multicore

