OCaml’s Parallel Runtime System

KC Sivaramakrishnan

111

A 3
5 z
MADRAS &

Parallel Functional Programming @ Chalmers
May 2025

OCaml 5

* Native-support for concurrency and
parallelism to OCaml

o Started in 2014 as “Multicore OCaml” project
> OCaml 5.0 released in Dec 2022
> 6.1 — Sep 2023; 6.2 — May 2024; 5.3 — Jan 2025

* This talk
» What does a GC need to do to support parallelism?

Wil
LEA]

Two roads diverged in a wood, and I —

OCaml supports multicore,

And that has made all the differenceg

OCaml Runtime System

compile
with OCaml
ocamiopt runtime
foo.o libasmrun.a
linked
with

foo.exe

OCaml Runtime System

~___—The focus of this talk
OCaml
runtime
compile
Wlt7 ¢ Garbage Serialisation Concurrency
ocamiop Collector Support
foo.o - "
xception .
| Handling i P€PU99INS
linked
with Threading Profiling

-/ ... and many more

Today'’s lecture

1. OCaml 4 sequential GC design
2. OCaml 5 multicore GC design

3. Experience porting a multi-process
application to multicore

buffalo tom
three easy pieces

OCaml Garbage Collector (GC)

Whence the GC

let rec unzip Llst =
match Ust with

| [= (1], [])

L,(x, y) :: rest —>
let (xs, ys) = unzip rest in
.RJXL:: XS, Yy :: ys)

A <

Allocations

Whence the GC

let rec unzip lst =
f matcﬁﬂlst with
oo |10 -, 1)
..... (X, y) i1 rest —
let ,(xs, ys) = unzip rest in

(X :: XS, y =i ys)

Mark and Sweep GC

IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

Mark and Sweep GC

Roots
: Program stack
s —(af—(b)—(c) (=) [
Globals ‘
................................ ~ Mark stack

* Tri-color marking — White, Grey and Black

» Phase 1 — Mark the roots

Mark and Sweep GC

IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

i Program stack
Registers
Globals

—

Mark stack

* Tri-color marking — White, Grey and Black

» Phase 1 — Mark the roots

> Phase 2 — DFS Mark

Mark and Sweep GC

IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

i Program stack
Registers
Globals

OnONN ==

Mark stack

Sweep

* Tri-color marking — White, Grey and Black

» Phase 1 — Mark the roots
» Phase 2 — DFS Mark
> Phase 3 — Sweep

Mark and Sweep GC

IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

. Program stack |
i Registers —> ° o E
Globals

e temneeerennaeerennseeeenngens Mark stack

Sweep
>

* Trigger GC when allocator doesn’t find a space (or some other metric)

* [iIme complexity
> Marking is O(reachable)

> Sweeping is O(allocated)

Mark and Sweep GC

* The biggest downside is latency

« OCaml code (mutator) cannot run when the
GC is running

I’'M LAGGING

> LLeads to multi-second pausetimes for GB-
sized heaps

« How can we improve this?

> Do not touch the entire heap for GC

> Avoid O(reachable) marking and O(allocated)
sweeping

Generational GC

* (Generational hypothesis

> |n a functional programming language, most objects die young

--

+Small (2 MB default
» Bump pointer allocation .
e Survivors copied to major heap

Minor Heap

Generational GC

Major heap

llllllllllllllllllllllllllllllllllllll

Program stack
Registers

: Globals :
Remembered Set

Minor heap

lllllllllllllllllllllllllllllllllllllll

Program stack
Registers
Globals

Remembered Set

L 4
lllllllllllllllllllllllllllllllllllll

Generational GC

Major heap

Minor heap

Time complexity —
O(reachable)

> Entire minor heap is free
after copying

» 10% survival rate

Write barrier for
remembered set

Working set = Cache
locality

Major heap GC latency
still remains :-(

Incremental Mark-and-sweep GC

* |Instead of marking and sweeping in one go, alternate between GC and
mutator

> Graph will be changed by the mutator!

Mark stack

Roots
. Program stack
Globals v

Incremental Mark-and-sweep GC

* |Instead of marking and sweeping in one go, alternate between GC and
mutator

> Graph will be changed by the mutator!

Roots
. Program stack
Globals

Mark stack

* Finishing the GC at this state will free “c” leaving a dangling pointer

Incremental Mark-and-sweep GC

e Snapshot-at-the-beginning (SATB) GC

» Use a deletion barrier to do a bit of work in the mutator

Roots ’
. Program stack :
Globals “

Mark stack

 Grey c when b — c¢ pointer is deleted
* Snapshot-at-the-beginning property

* Ensures that all objects reachable at the beginning of the cycle are reachable at the end

Summary — OCaml 4 GC

* Generational, mark-and-sweep, incremental GC

'« Small (2 MB default
pTTTTTTTm s —> - Bump pointer allocation
. Incremental and | . . .

1 & Survivors copied to major

non-moving Minor . heap
""""""""""""""" Heap E
Idle mark roots mark main sweep

Mutator . Mark

Roots

Start of major cycle End of major cycle

e Fast local allocations

« Max GC latency < 10 ms, 99th percentile latency < 1 ms

Going Multicore

Domains

e A unit of parallelism
 Heavyweight — maps onto an OS thread
> Aim to have 1 domain per physical core

e Stdlib exposes

> Spawn & join, Mutex, Condition, domain-local storage

'e Small 2 MB default)

» Atomic references | .

. Incremental and :

: ; : ie Survi copied ior
. non-moving ;* Survivors copied to majo

* A multicore language needs a multicore runtime!

> A naive Stop-the-world GC would limit parallel scalability

Start of major cycle End of major cycle

Stop-the-world GC

e Assume
» GC overhead of 20%

> Program is perfectly parallelizable

e On 1 core,

» Mutator 80s + GC 20s = 100s

e On 8 cores,
» Mutator 10s + GC 20s = 30s
» Parallel Speedup = 100/30 = 3.3x on 8 cores

'+ Small (2 MB default)
:e Bump pointer allocation
i Survivors copied to major

Incremental and

* On oo cores, . non-moving

» Mutator Os + GC 20s = 20s

> Parallel Speedup = 100/20 = 5x on oo cores Seartof mafor cyl End of or ycl

A concurrent minor GC

* Allow each domain’s minor heap to be independently GCed

Domain 0 Domain | Domain 2

Promotion

Major heap

bromote(y)

let r = Ix

Minor heaps -

Domain 0 Domain |

Promotion

Major heap

let r = Ix

Minor heaps -

Domain 0

Concurrent Minor GC — Prior Art

A concurrent, generational garbage collector
for a multithreaded implementation of ML

Damien Doligez Xavier Leroy PO P L ‘ 9 3

Ecole Normale Supérieure and INRIA Rocquencourt*

Abstract the threads that execute the user’s program, with as
_ . . . little synchronization as possible between the collector

This paper presents the design and implementation of and the mutators (the threads executing the user’s pro-

a “quasl real-time” garbage collector for Concurrent gram).

Caml Light, an implementation of ML with threads. A number of concurrent collectors have been de-

This two-generation svstem combines a fast asvn- o e a1 e

Concurrent Minor GC — Prior Art

Multicore Garbage Collection with Local Heaps

Simon Marlow Simon Peyton Jones
Microsoft Research, Cambridge, U.K. Microsoft Research, Cambridge, U.K.
simonmar@microsoft.com simonpj@microsoft.com
ISMM *| |
Abstract to design collectors in which each processor has a private heap

that can be collected independently without synchronising with
the other processors; there is also a global heap for shared data.
Some of the existing designs are based on static analyses to iden-
tify objects whose references never escape the current thread and

In a parallel, shared-memory, language with a garbage collected
heap, it is desirable for each processor to perform minor garbage
collections independently. Although obvious, it is difficult to make
this idea nav off in nractice. esneciallv in lanouases where muta-

Concurrent Minor GC — Prior Art

MultiMLton: A multicore-aware runtime for

standard ML
JFP*14

K.C. SIVARAMAKRISHNAN

Purdue University, West Lafayette, IN, USA
(e-mail: chandras@purdue. edu)

LUKASZ ZIAREK .
SUNY Buffalo, NY, USA Intel Single-chip Cloud

(e-mail: 1ziarek@buffalo.edu) COmPU ter (SCC)
SURESH JAGANNATHAN

Purdue University, West Lafayette, IN, USA
(e-mail suresh@cs.purdue.edu)

Abstract

MULTIMLTON is an extension of the MLton compiler and runtime system that targets scalable,
multicore architectures. It provides specific support for ACML, a derivative of Concurrent ML that

Concurrent Minor GC — Prior Art

Hierarchical Memory Management for Mutable State

Extended Technical Appendix PPoPP ‘18
Adrien Guatto Sam Westrick Ram Raghunathan
Carnegie Mellon University Carnegie Mellon University Carnegie Mellon University
adrien@guatto.org swestric@cs.cmu.edu ram.r@cs.cmu.edu
Umut Acar Matthew Fluet
Carnegie Mellon University Rochester Institute of Technology
umut@cs.cmu.edu mtf@cs.rit.edu

Abstract strongly typed functional languages is their ability to distin-
It is well known that modern functional programming lan- guish between pure and impure c.ode.. Thls aids in writing
guages are naturally amenable to parallel programming. corre.cF parallel programs by making it easier to avoid race

MaPLe

disentanglement

A concurrent minor GC

Domain 0 Domain | Domain 2

A concurrent minor GC

e OCaml does not have read barriers

* A new branch on reads in OCaml|

» Cheap and fast
Minor
Heap e Read is now GC safe point

> OCaml C FFI makes assumptions about
when GC can run

> In OCaml 4, GC cannot run at field reads

Domain 0 Domain | Domain 2

Read
barrier

C FFl — Breaking GC Invariant

value caml test2(value v)
{
CAMLparaml(v);
CAMLlocall(result);
result = caml _alloc 2 (Tag_@, Field(v, 0), Field(v, 1));
CAMLreturn(result);
I3

C FFl — Breaking GC Invariant

value caml test2(value v)
{
CAMLparaml(v);
CAMLlocall(result);
value rl1 = Field(v, 0):
value r2 = Field(v, 1); //GC can occur here and move object at [r1]
result = caml _alloc 2 (Tag_0, rl, r2);
CAMLreturn(result);

A concurrent minor GC

e OCaml does not have read barriers

* A new branch on reads in OCaml|

» Cheap and fast
Minor
Heap e Read is now GC safe point

> OCaml C FFI makes assumptions about
when GC can run

> In OCaml 4, GC cannot run at field reads

Domain 0 Domain | Domain 2

 GC invariants are broken by this

Read deSign :-(
barrier

Take 2 — A parallel minor GC

Allocation

Dom 0 Minor Heap Arena (2 mb) Pointer

Dom | Minor Heap Arena (2 mb)

‘4
—‘
-

* Private minor heap arenas per domain

» Fast allocations without synchronisation

* No restrictions on pointers between minor heap arenas and major heap

Take 2 — A parallel minor GC

Allocation

Dom 0 Minor Heap Arena (2 mb) Pointer

Dom | Minor Heap Arena (2 mb)

‘4
—‘
-

o Stop-the-world parallel collection for minor heaps

> 2 barriers / minor gc; (some) work sharing between gc threads

* On 24 cores, w/ default heap size (2MB / arena), < 5 ms pause for completing minor GC

Multicore Allocator

* Multicore-aware allocator must avoid synchronisation for allocations

 Major heap uses size-segmented, thread-local, page-sized pools
> Minor heap is domain-local and bump pointer (no synchronisation)

* Pool size distribution
> More pools for small sizes; exponentially decreases
> Most allocations in OCaml are small (99% of objects < 5 words in size)

> Malloc for large allocations

* Global pool of unused pages

> Take away: most allocations don’t need synchronization

OCaml 5 major GC

 Mostly concurrent mark-and-sweep GC

Unmarked Marked

Marking Sweeping

f- Mark
Domain 0 § -1 = Mutator Sweep Mark

mark and sweep phases may overlap

Mark
Roots

Sweep

Domain | |

Start of major cycle End of major cycle

OCaml 5 major GC

Unmarked

Marking Sweeping

'J Mark
Domain 0 § - - Mutator Sweep Mark

mark and sweep phases may overlap

Mark

Domain | |
oma : Roots

Sweep

Start of major cycle End of major cycle

« How do we know when sweeping (per domain) is done?

> When a domain has finished sweeping its own pools

OCaml 5 major GC

Marking Sweeping

'J Mark
Domain 0 § - - Mutator Sweep Mark

mark and sweep phases may overlap

Mark
Roots

Sweep

Domain | |

Start of major cycle End of major cycle

* How do we know when marking is done?

> When every domain’s mark stack is empty (thanks, SATB GCI)

OCaml 5 major GC

Unmarked

Marking Sweeping

- S Mark
Domain 0 § - - Mutator Sweep Mark

mark and sweep phases may overlap

Mark

Domain | |
oma : Roots

Sweep

<5 mson

198 cores Start of major cycle End of major cycle

Free

Unmarked Marked Garbage

Stop-the-world @

end of major cycle

Performance Results

LU decomposition (487)

game_of life (78)

o/
>
e
minilight (87)
.—/.
./
o
N
0 20 40 60

num_domains

binarytrees5 (200)

grammatrix (104)

nbody (124)

0 20 40 60

num_domains

evolutionary_algorithm (325)

mandelbrot6 (109)

spectralnorm2 (402)

0 20 40 60

num_domains

floyd warshall (266)

matrix_multiplication (92)

test decompress (45)

> /.\.

/

/

0 20 40 60
num_domains

Retrofitting Parallelism onto OCaml

KC SIVARAMAKRISHNAN, IIT Madras, India

STEPHEN DOLAN, OCaml Labs, UK

LEO WHITE, Jane Street, UK ICFP 2020
SADIQ JAFFER, Opsian, UK and OCaml Labs, UK

TOM KELLY, OCaml Labs, UK

ANMOL SAHOO, IIT Madras, India

SUDHA PARIMALA, IIT Madras, India

ATUL DHIMAN, IIT Madras, India
ANIL MADHAVAPEDDY, University of Cambridge Computer Laboratory, UK and OCaml Labs, UK

OCaml is an industrial-strength, multi-paradigm programming language, widely used in industry and academia.
OCaml is also one of the few modern managed system programming languages to lack support for shared
memory parallel programming. This paper describes the design, a full-fledged implementation and evaluation

PR AR) R SRS S | Y SR 7 2 a0 L WY AJREEE T SRS [1. SE. A A B DU o ¥ 20 DR . SO [

W/ .

Porting Applications to OCaml 5

Based on work done by Thomas Leonard @ Tarides
https://roscidus.com/blog/blog/2024/07/22/performance-2/

https://roscidus.com/blog/blog/2024/07/22/performance-2/

Solver service

 ocaml-ci — CIl for OCaml projects

> Free to use for the OCaml community

> Build and run tests on a matrix of platforms on every commit

- OCaml compilers (4.02 — 5.2), architectures (32- and 64-bit x86, ARM, PPC64, s390x), OSes (Alpine, Debian,
Fedora, FreeBSD, macOS, OpenSUSE and Ubuntu, in multiple versions)

» Select compatible versions of its dependencies

» ~1s per solve; 132 solver runs per commit!

* Solves are done by solver-service

» 160-core ARM machine

> Lwt-based; sub-process based parallelism for solves

* Port it to OCaml 5 to take advantage of better concurrency and shared-memory parallelism

https://github.com/ocurrent/ocaml-ci/
https://github.com/ocurrent/solver-service

Solver service in OCaml 5

 Used Eio to port from multi-process parallel to shared-memory parallel
> Eio, a new OCaml 5 concurrency library
> Support for asynchronous |O (incl io_uring!) and parallelism

g and switches for resource management

e Qutcome

> Simple code, more stable (switches), removal of lots of IPC logic

> No function colouring!

- Reclaim the use of try..with, for and while loops!

e Used TSan to ensure that data races are removed

http://www.apple.com/uk

Data races

let a = ref @ and b = ref 0
 When two threads access the same memory

location let d1 () =
a = 1;
> Without synchronization b
> One of them is a write let d2 () =
_ b := 1;
 Data races are programming errors 2
> Leads to undefined behaviour in G and C++ let () =
_ _ let h = Domain.spawn d2Z2 1in
 OCaml programs with data races remain well- let r1 = d1 () in
typed let r2 = Domain.join h in

assert (not (r1 =0 && r2 = 0))
> May observe non-sequentially-consistent

behaviour

Bounding Data Races in Space and Time

(Extended version, with appendices)

Stephen Dolan
University of Cambridge, UK

Abstract

We propose a new semantics for shared-memory parallel
programs that gives strong guarantees even in the presence
of data races. Our local data race freedom property guar-
antees that all data-race-free portions of programs exhibit
sequential semantics. We provide a straightforward oper-
ational semantics and an equivalent axiomatic model, and
evaluate an implementation for the OCaml programming

] “““““““ n““ f\"n]“f\l‘:f\“ flf\mf\“n"“n"‘hﬂ LLA‘- :4— :ﬂ “I\nn:L]l\ "I\

KC Sivaramakrishnan
University of Cambridge, UK

PLDI 2018

Anil Madhavapeddy
University of Cambridge, UK

The primary reasoning tools provided to programmers by
these models are the data-race-freedom (DRF) theorems. Pro-
grammers are required to mark as atomic all variables used
for synchronisation between threads, and to avoid data races,
which are concurrent accesses (except concurrent reads) to
nonatomic variables. In return, the DRF theorems guaran-
tee that no relaxed behaviour will be observed. Concisely,

data-race-free programs have sequential semantics.
When nrosrams are not data-race-free. siich models sive

ThreadSanitizer (since 5.2)

* Detect data races dynamically

 Part of the LLVM project — C++, Go, Swift

let a = ref @ and b = ref 0 WARNING: ThreadSanitizer: data race (pid=3808831)
Write of size 8 at 0x8febel0 by thread Tl (mutexes: write M90)

let d1 () = #0 camlSimple race.d2 274 simple race.ml:8 (simple race.exe
? =15 #1 camlDomain.body 706 stdlib/domain.ml:211 (simple race.ex
1o ¥ #2 caml start program <null> (simpLé_race.exe+Ox47cf37)
1 S #3 caml callback exn runtime/ca}lbéck.c:197 (simple race.ex
eE ?i §z<;:?}#‘ _______ #4 domain_thread_funqmggg;imefaomain.c:1167 (simple race.ex
I TP
' ~“u~~ Previous read of size 8 at 0x8febe0 by main thread (mutexes:
let () = ~~”u... #0 camlSimple race.dl 271 simple race.ml:5 (simple race.exe
let h = Domain.spawn d2 in “"==-a.___ #1 camlSimple_race.entry_gimpié_race.ml:13 (simple race.exe
let rl1 = d1 () in #7 ~caml- -program-<mull> (simple race.exe+0x41ffb9)
let r2 = Domain.jolin h 1in #3 caml start program <null> (simple race.exe+0x47cf37)

assert (not (rl =0 & r2 =0)) [...]

Eio solver service performance

e ... was underwhelminginitially

S0
45
40

W W
o= R &)

- Processes

wd= DOmains

Solves per second
— — N N
O U O o

(o)

~

o

0 10 20 30 40 50 60 70
Workers (CPUs)

Performance analysis

» perf (incl. call graph), eBFP works

> Frame-pointers across effect handlers!

 Runtime Events
» Every OCaml 5 program has tracing support built-in

> Events are written to a shared ring buffer that can be read by an external process

$ olly trace foo.trace foo.exe

stw_api_barrier minor_leave_barrier
mino...

interrupt_remote
stw_handler

...

stw_leader
minor_leave_barrier

Problem indentified

e Switch from sched other to sched rr

 git log for each solve to find earliest commit

> 50ms penalty for STW subprocess spawn

> Avoid by implementing it in OCaml

Requests per second

50

45

40

w
(&)

w
o

N
o1

N
o

[EY
(&)

[ERY
o

o

o

-@-Processes, sched-other
-o—Processes, sched-rr

A Domains, sched-other (original)

->«-Domains, sched-rr

The real service on the ARM server

-»%=-Domains, sched-rr, ocaml-git (dubious; loaded?)

®-Domains, sched-rr, ocaml-git, new opam
—=—Domains, sched-other, ocaml-git, new opam

A

V=

10

20

30

40
Workers

50

60

70

80

Still some work to do

Explore OCaml 5

* Use Eio for concurrency and parallelism in OCaml 5

> Makes your asynchronous IO program more reliable

e Other libraries

» Saturn: Verified multicore safe data structures

> Kcas: Software transactional memory for OCaml

e Use TSan to remove data races

» Data races will not lead to crashes

» Expect that the initial performance may be
underwhelming

Two roads diverged in a wood, and I -
— I took the one less traveled by,

> EXisting external tools such as perf, eBPF based profiling,
statmemprof continue to work

+ I took both in paralleIMSEéiﬁgg;
OCaml supports multicore,

And that has made all the difference.

> New tools are available on OCaml 5 enabled through runtime
events — Olly, eio-trace, etc.

https://github.com/ocaml-multicore/saturn
https://github.com/ocaml-multicore/kcas

OCaml 6?

Oxidizing OCaml with Modal Memory Management

A Mechanically Verified Garbage Collector for
Data Rac OCaml JAR 2025

AINA LINN C
BENJAMIN P

LAILA ELBEF Sheera Shamsu!, Dipesh Kafle?’, Dhruv Maroo', Kartik Nagar®, \ 2025

EESP\:SAT[E’(Karthikeyan Bhargavan®, KC Sivaramakrishnan*

?:ﬁ:éf%r LIIT Madras, Chennai, 600036, India.

FRANCOIS P °NIT Trichy, Trichy, 620015, India.

DEREK DRE) SInria, Paris, 75014, France.

We present DRI 4Tarides and IIT Madras, Chennai, 600036, India. i
threaded OCaml

I e mmeegeeall, DUL USING a

p &

| — 4 O

traditional effect system would require adding extensive effect annotations to the millions of lines of existing
code in these languages. Recent proposals seek to address this problem by removing the need for explicit effect
polymorphism. However, they typically rely on fragile syntactic mechanisms or on introducing a separate
notion of second-class function. We introduce a novel semantic approach based on modal effect types.

