
Parallel Functional Programming @ Chalmers
May 2025

OCaml’s Parallel Runtime System
KC Sivaramakrishnan

OCaml 5
• Native-support for concurrency and

parallelism to OCaml

• Started in 2014 as “Multicore OCaml” project

‣ OCaml 5.0 released in Dec 2022

‣ 5.1 — Sep 2023; 5.2 — May 2024; 5.3 — Jan 2025

• This talk

‣ What does a GC need to do to support parallelism?

OCaml Runtime System

compile
with

ocamlopt

foo.ml

foo.o

linked
with

foo.exe

libasmrun.a

OCaml
runtime

OCaml Runtime System
foo.ml

foo.o

linked
with

foo.exe

OCaml
runtime

Garbage
Collector Serialisation Concurrency

Support

Exception
Handling Debugging I/O

… and many more

The focus of this talk

compile
with

ocamlopt

FFI Threading Profiling

Today’s lecture
1. OCaml 4 sequential GC design

2. OCaml 5 multicore GC design

3. Experience porting a multi-process
application to multicore

OCaml Garbage Collector (GC)

Whence the GC

let rec unzip lst =
 match lst with
 | [] -> ([], [])
 | (x, y) :: rest ->
 let (xs, ys) = unzip rest in
 (x :: xs, y :: ys)

Allocations

Whence the GC

let rec unzip lst =
 match lst with
 | [] -> ([], [])
 | (x, y) :: rest ->
 let (xs, ys) = unzip rest in
 (x :: xs, y :: ys)

Free*

Mark and Sweep GC

a b c d e
Program stack

Registers
Globals

Roots

Mark and Sweep GC

• Tri-color marking — White, Grey and Black

‣ Phase 1 — Mark the roots

a b c d e
Program stack

Registers
Globals

a b a
b

Mark stack

Roots

Mark and Sweep GC

• Tri-color marking — White, Grey and Black

‣ Phase 1 — Mark the roots

‣ Phase 2 — DFS Mark

a b c d e
Program stack

Registers
Globals

a b

Mark stack

Roots

Mark and Sweep GC

• Tri-color marking — White, Grey and Black

‣ Phase 1 — Mark the roots

‣ Phase 2 — DFS Mark

‣ Phase 3 — Sweep

a b c d e
Program stack

Registers
Globals

a b

Mark stack

ca b

Sweep

Roots

Mark and Sweep GC

• Trigger GC when allocator doesn’t find a space (or some other metric)

• Time complexity

‣ Marking is O(reachable)

‣ Sweeping is O(allocated)

a b c
Program stack

Registers
Globals

a b

Mark stack

Sweep

Roots

Mark and Sweep GC
• The biggest downside is latency

• OCaml code (mutator) cannot run when the
GC is running

‣ Leads to multi-second pausetimes for GB-

sized heaps

• How can we improve this?

‣ Do not touch the entire heap for GC

‣ Avoid O(reachable) marking and O(allocated)
sweeping

Generational GC
• Generational hypothesis

‣ In a functional programming language, most objects die young

Minor Heap

•Small (2 MB default)

•Bump pointer allocation

•Survivors copied to major heap

Major Heap

Generational GC
Major heap

Minor heap

a b d

e

Program stack
Registers
Globals

Remembered Set
c

f

Roots

Generational GC
Major heap

Minor heap

a b

d

e

Program stack
Registers
Globals

Remembered Set

c f

• Time complexity —
O(reachable)

‣ Entire minor heap is free
after copying

‣ 10% survival rate

• Write barrier for
remembered set

• Working set → Cache
locality

• Major heap GC latency
still remains :-(

Roots

Incremental Mark-and-sweep GC
• Instead of marking and sweeping in one go, alternate between GC and

mutator

‣ Graph will be changed by the mutator!

a b c d e
Program stack

Registers
Globals

a b b

Mark stack

Roots

Incremental Mark-and-sweep GC
• Instead of marking and sweeping in one go, alternate between GC and

mutator

‣ Graph will be changed by the mutator!

a b c d e
Program stack

Registers
Globals

a b b

Mark stack

• Finishing the GC at this state will free “c” leaving a dangling pointer

Roots

Incremental Mark-and-sweep GC
• Snapshot-at-the-beginning (SATB) GC

‣ Use a deletion barrier to do a bit of work in the mutator

a b c d e
Program stack

Registers
Globals

a b c
b

Mark stack

• Grey c when b → c pointer is deleted

• Snapshot-at-the-beginning property

• Ensures that all objects reachable at the beginning of the cycle are reachable at the end

c

Roots

Summary — OCaml 4 GC
• Generational, mark-and-sweep, incremental GC

Incremental and
non-moving Minor

Heap

Major Heap
• Small (2 MB default)

• Bump pointer allocation

• Survivors copied to major

heap

Mark

mark main

Sweep

sweep

End of major cycle

Mutator

Start of major cycle

Idle

Mark
Roots

mark roots

• Fast local allocations

• Max GC latency < 10 ms, 99th percentile latency < 1 ms

Going Multicore

Domains
• A unit of parallelism

• Heavyweight — maps onto an OS thread

‣ Aim to have 1 domain per physical core

• Stdlib exposes

‣ Spawn & join, Mutex, Condition, domain-local storage

‣ Atomic references

• A multicore language needs a multicore runtime!

‣ A naive Stop-the-world GC would limit parallel scalability

Domain 2 Domain 3

Domain 0 Domain 1

Stop-the-world GC
• Assume

‣ GC overhead of 20%

‣ Program is perfectly parallelizable

• On 1 core,

‣ Mutator 80s + GC 20s = 100s

• On 8 cores,

‣ Mutator 10s + GC 20s = 30s

‣ Parallel Speedup = 100/30 = 3.3x on 8 cores

• On cores,

‣ Mutator 0s + GC 20s = 20s

‣ Parallel Speedup = 100/20 = 5x on cores

∞

∞

Domain 2 Domain 3

Domain 0 Domain 1

Major Heap

Minor
Heap

Minor
Heap

Minor
Heap

Domain 0 Domain 1 Domain 2

A concurrent minor GC
• Allow each domain’s minor heap to be independently GCed

Domain 0 Domain 1

X

Y

let r = !x

promote(y)

Major heap

Minor heaps

Promotion

Domain 0 Domain 1

X Y

promote(y)

y

Major heap

Minor heaps

let r = !x

Promotion

POPL ‘93
Major Heap

Minor
Heap

Minor
Heap

Concurrent Minor GC — Prior Art

ISMM ‘11

Major Heap

Minor
Heap

Minor
Heap

Concurrent Minor GC — Prior Art

POPL ‘93

JFP ‘14

Intel Single-chip Cloud
Computer (SCC)

Major Heap

Minor
Heap

Minor
Heap

Concurrent Minor GC — Prior Art

PPoPP ‘18
H1

H2 H3

H4 H5

disentanglementMaPLe

Concurrent Minor GC — Prior Art

Major Heap

Minor
Heap

Minor
Heap

Minor
Heap

Domain 0 Domain 1 Domain 2

A concurrent minor GC

Major Heap

Minor
Heap

Minor
Heap

Minor
Heap

Domain 0 Domain 1 Domain 2

A concurrent minor GC

Read
barrier

• OCaml does not have read barriers

• A new branch on reads in OCaml

‣ Cheap and fast

• Read is now GC safe point
‣ OCaml C FFI makes assumptions about

when GC can run

‣ In OCaml 4, GC cannot run at field reads

C FFI — Breaking GC Invariant

value caml_test2(value v)
{
 CAMLparam1(v); // Register the parameter as a GC root
 CAMLlocal1(result); // Register the local variable as a GC root
 result = caml_alloc_2 (Tag_0, Field(v, 0), Field(v, 1)); //BUG!
 CAMLreturn(result);
}

C FFI — Breaking GC Invariant

value caml_test2(value v)
{
 CAMLparam1(v); // Register the parameter as a GC root
 CAMLlocal1(result); // Register the local variable as a GC root
 value r1 = Field(v, 0);
 value r2 = Field(v, 1); //GC can occur here and move object at [r1]
 result = caml_alloc_2 (Tag_0, r1, r2);
 CAMLreturn(result);
}

Major Heap

Minor
Heap

Minor
Heap

Minor
Heap

Domain 0 Domain 1 Domain 2

A concurrent minor GC

Read
barrier

• OCaml does not have read barriers

• A new branch on reads in OCaml

‣ Cheap and fast

• Read is now GC safe point
‣ OCaml C FFI makes assumptions about

when GC can run

‣ In OCaml 4, GC cannot run at field reads

• GC invariants are broken by this
design :-(

Take 2 — A parallel minor GC

• Private minor heap arenas per domain

‣ Fast allocations without synchronisation

• No restrictions on pointers between minor heap arenas and major heap

Major Heap

Dom 0

Dom 1

Minor Heap Arena (2 mb)

Minor Heap Arena (2 mb)

Allocation
Pointer

Take 2 — A parallel minor GC

Major Heap

Dom 0

Dom 1

Minor Heap Arena (2 mb)

Minor Heap Arena (2 mb)

Allocation
Pointer

• Stop-the-world parallel collection for minor heaps

‣ 2 barriers / minor gc; (some) work sharing between gc threads

• On 24 cores, w/ default heap size (2MB / arena), < 5 ms pause for completing minor GC

Multicore Allocator
• Multicore-aware allocator must avoid synchronisation for allocations

• Major heap uses size-segmented, thread-local, page-sized pools
‣ Minor heap is domain-local and bump pointer (no synchronisation)

• Pool size distribution

‣ More pools for small sizes; exponentially decreases

‣ Most allocations in OCaml are small (99% of objects < 5 words in size)

‣ Malloc for large allocations

• Global pool of unused pages

‣ Take away: most allocations don’t need synchronization

OCaml 5 major GC
• Mostly concurrent mark-and-sweep GC

Sweep MarkMark
Roots Mutator

Sweep MarkMark
Roots

Start of major cycle End of major cycle

mark and sweep phases may overlap

Domain 0

Domain 1

Garbage FreeUnmarked Marked

Marking Sweeping

OCaml 5 major GC

• How do we know when sweeping (per domain) is done?

‣ When a domain has finished sweeping its own pools

Sweep MarkMark
Roots Mutator

Sweep MarkMark
Roots

Start of major cycle End of major cycle

mark and sweep phases may overlap

Domain 0

Domain 1

Garbage FreeUnmarked Marked

Marking Sweeping

OCaml 5 major GC

• How do we know when marking is done?

‣ When every domain’s mark stack is empty (thanks, SATB GC!)

Sweep MarkMark
Roots Mutator

Sweep MarkMark
Roots

Start of major cycle End of major cycle

mark and sweep phases may overlap

Domain 0

Domain 1

Garbage FreeUnmarked Marked

Marking Sweeping

OCaml 5 major GC

Sweep MarkMark
Roots Mutator

Sweep MarkMark
Roots

Start of major cycle End of major cycle

mark and sweep phases may overlap

Domain 0

Domain 1

Garbage FreeUnmarked Marked

Marking Sweeping

Garbage FreeUnmarked Marked

Garbage FreeUnmarked Marked

Stop-the-world @
end of major cycle

< 5 ms on
128 cores

Performance Results

Performance Results

ICFP 2020

Porting Applications to OCaml 5

Based on work done by Thomas Leonard @ Tarides
https://roscidus.com/blog/blog/2024/07/22/performance-2/

https://roscidus.com/blog/blog/2024/07/22/performance-2/

Solver service
• ocaml-ci — CI for OCaml projects

‣ Free to use for the OCaml community

‣ Build and run tests on a matrix of platforms on every commit

- OCaml compilers (4.02 — 5.2), architectures (32- and 64-bit x86, ARM, PPC64, s390x), OSes (Alpine, Debian,
Fedora, FreeBSD, macOS, OpenSUSE and Ubuntu, in multiple versions)

• Select compatible versions of its dependencies

‣ ~1s per solve; 132 solver runs per commit!

• Solves are done by solver-service

‣ 160-core ARM machine

‣ Lwt-based; sub-process based parallelism for solves

• Port it to OCaml 5 to take advantage of better concurrency and shared-memory parallelism

https://github.com/ocurrent/ocaml-ci/
https://github.com/ocurrent/solver-service

Solver service in OCaml 5
• Used Eio to port from multi-process parallel to shared-memory parallel

‣ Eio, a new OCaml 5 concurrency library

‣ Support for asynchronous IO (incl io_uring!) and parallelism

‣ Structured concurrency and switches for resource management

• Outcome

‣ Simple code, more stable (switches), removal of lots of IPC logic

‣ No function colouring!

- Reclaim the use of try…with, for and while loops!

• Used TSan to ensure that data races are removed

http://www.apple.com/uk

Data races
• When two threads access the same memory

location

‣ Without synchronization

‣ One of them is a write

• Data races are programming errors

‣ Leads to undefined behaviour in C and C++

• OCaml programs with data races remain well-
typed

‣ May observe non-sequentially-consistent

behaviour

 1 let a = ref 0 and b = ref 0
 2
 3 let d1 () =
 4 a := 1;
 5 !b
 6
 7 let d2 () =
 8 b := 1;
 9 !a
 10
 11 let () =
 12 let h = Domain.spawn d2 in
 13 let r1 = d1 () in
 14 let r2 = Domain.join h in
 15 assert (not (r1 = 0 && r2 = 0))

Data races
• When two threads access the same memory

location

‣ Without synchronization

‣ One of them is a write

• Data races are programming errors

‣ Leads to undefined behaviour in C and C++

• OCaml programs with data races remain well-
typed

‣ May observe non-sequentially-consistent

behaviour

 1 let a = ref 0 and b = ref 0
 2
 3 let d1 () =
 4 a := 1;
 5 !b
 6
 7 let d2 () =
 8 b := 1;
 9 !a
 10
 11 let () =
 12 let h = Domain.spawn d2 in
 13 let r1 = d1 () in
 14 let r2 = Domain.join h in
 15 assert (not (r1 = 0 && r2 = 0))

PLDI 2018

ThreadSanitizer (since 5.2)
• Detect data races dynamically

• Part of the LLVM project — C++, Go, Swift

 1 let a = ref 0 and b = ref 0
 2
 3 let d1 () =
 4 a := 1;
 5 !b
 6
 7 let d2 () =
 8 b := 1;
 9 !a
 10
 11 let () =
 12 let h = Domain.spawn d2 in
 13 let r1 = d1 () in
 14 let r2 = Domain.join h in
 15 assert (not (r1 = 0 && r2 = 0))

==================
WARNING: ThreadSanitizer: data race (pid=3808831)
 Write of size 8 at 0x8febe0 by thread T1 (mutexes: write M90):
 #0 camlSimple_race.d2_274 simple_race.ml:8 (simple_race.exe+0x420a72)
 #1 camlDomain.body_706 stdlib/domain.ml:211 (simple_race.exe+0x440f2f)
 #2 caml_start_program <null> (simple_race.exe+0x47cf37)
 #3 caml_callback_exn runtime/callback.c:197 (simple_race.exe+0x445f7b)
 #4 domain_thread_func runtime/domain.c:1167 (simple_race.exe+0x44a113)

 Previous read of size 8 at 0x8febe0 by main thread (mutexes: write M86):
 #0 camlSimple_race.d1_271 simple_race.ml:5 (simple_race.exe+0x420a22)
 #1 camlSimple_race.entry simple_race.ml:13 (simple_race.exe+0x420d16)
 #2 caml_program <null> (simple_race.exe+0x41ffb9)
 #3 caml_start_program <null> (simple_race.exe+0x47cf37)
[...]

Eio solver service performance
• … was underwhelming ….initially

Performance analysis
• perf (incl. call graph), eBFP works

‣ Frame-pointers across effect handlers!

• Runtime Events

‣ Every OCaml 5 program has tracing support built-in

‣ Events are written to a shared ring buffer that can be read by an external process

$ olly trace foo.trace foo.exe https://perfetto.dev/

Problem indentified
• Switch from sched_other to sched_rr

• git log for each solve to find earliest commit
‣ 50ms penalty for STW subprocess spawn

‣ Avoid by implementing it in OCaml

Still some work to do

Explore OCaml 5
• Use Eio for concurrency and parallelism in OCaml 5

‣ Makes your asynchronous IO program more reliable

• Other libraries

‣ Saturn: Verified multicore safe data structures

‣ Kcas: Software transactional memory for OCaml

• Use TSan to remove data races

‣ Data races will not lead to crashes

• Expect that the initial performance may be
underwhelming

‣ Existing external tools such as perf, eBPF based profiling,

statmemprof continue to work

‣ New tools are available on OCaml 5 enabled through runtime
events — Olly, eio-trace, etc.

https://github.com/ocaml-multicore/saturn
https://github.com/ocaml-multicore/kcas

ICFP 2024

OCaml 6?

POPL 2025

OOPSLA 2025

JAR 2025

