
Retrofitting a Concurrent GC
onto OCaml

KC Sivaramakrishnan

OCaml Labs
University of
Cambridge

OCaml
industrial-strength, pragmatic, functional programming language

Hindley-Milner Type Inference

Powerful module system

• Functional core with imperative and
object-oriented features

• Native (x86, ARM, …), JavaScript, JVM

The Coq Proof Assistant

Facebook:

Microsoft: Project Everest

OCaml
industrial-strength, pragmatic, functional programming language

Hindley-Milner Type Inference

Powerful module system

• Functional core with imperative and
object-oriented features

• Native (x86, ARM, …), JavaScript, JVM

The Coq Proof Assistant

Facebook:

Microsoft: Project Everest

No multicore support!

Multicore OCaml
• Native support for concurrency and parallelism in OCaml

• Lead from OCaml Labs, University of Cambridge

‣ Collaborators Stephen Dolan (OCaml Labs), Leo White (Jane Street)

• Expected to hit mainline in late 2019

• In this talk,

‣ Overview of Multicore GC, with a few deep dives

Multicore OCaml GC: Desiderata
• Code backwards compatibility

✦ Do not break existing code

• Performance backwards compatibility

✦ Do not slow down existing programs

• Minimise pause times

✦ Latency is more important than throughput

• Performance predictability and stability

✦ Slow and stable better than fast but
unpredictable

• Minimize knobs

✦ 90% of programs should run at 90% peak
performance by default

Outline
• Difficult to appreciate GC choices in isolation

• Begin with a GC for a sequential purely functional language

✦ Gradually add mutations, parallelism and concurrency

B

Sequential purely functional

• Stop-the-world mark and sweep

• Tri-color marking

✦ States: White (Unmarked), Grey (Marking), Black (Marked)

• White —> Grey (mark stack) —> Black

• Mark stack is empty => done marking

✦ Tri-color invariant: No black object points to a white object

• Sweeping : walk the heap and free white objects

stackregisters heap

A

C

B

D

E

B

A

mark stack

B

D

B

Sequential purely functional

• Pros

✦ Simple

✦ Can perform the GC incrementally

✤ …|—mutator—|—mark—|—mutator—|—mark—|—mutator—|—sweep—|…

• Cons

✦ Need to maintain free-list of objects => allocations overheads + fragmentation

stackregisters heap

A

B

DA

mark stack

B

D

Generational GC
• Generational Hypothesis

✦ Young objects are much more likely to die than old objects

minor heap

major heap

stackregisters
frontier

• Minor heap collected by copying collection

✦ Survivors promoted to major heap

✦ Only touches live objects (typically, < 10% of total)

• Roots are registers and stack

✦ purely functional => no pointers from major to minor

Mutations
• OCaml does not prohibit mutations

✦ Mutable references, Arrays…

• Encourages it with syntactic support!

✦ Mutations are pervasive in real-world code

type client_info =
 { addr: Unix.inet_addr;
 port: int;
 user: string;
 credentials: string;
 mutable last_heartbeat_time: Time.t;
 mutable last_heartbeat_status: string;
 }

let handle_heartbeat cinfo time status =
 cinfo.last_heartbeat_time <- time;
 cinfo.last_heartbeat_status <- status

Mutations

more functionalless functional

Mutations — Minor GC
• Old objects might point to young objects

• Must know those pointers for minor GC

✦ (Naively) scan the major GC for such pointers

• Intercept mutations with write barrier
(* Before r := x *)
let write_barrier (r, x) =
 if is_major r && is_minor x then
 remembered_set.add r

• Remembered set

✦ Set of major heap addresses that point to minor heap

✦ Used as root for minor collection

✦ Cleared after minor collection.

minor heap

major heap

BB

Mutations — Major GC
• Mutations are problematic if both conditions hold

1. Exists Black —> White

2. All Grey —> White* —> White paths are deleted

A

B

CA

• Insertion/Dijkstra/Incremental barrier prevents 1A C

B

CA

B

• Deletion/Yuasa/snapshot-at-beginning prevents 2
(* Before r := x *)
let write_barrier (r, x) =
 if is_major r && is_minor x then
 remembered_set.add r
 else if is_major r && is_major x then
 mark(!r)

Parallelism — Minor GC
• Domain.spawn : (unit -> unit) -> unit

• Invariant: Minor heap objects are only accessed by owning domain

• Doligez-Leroy POPL’93

✦ No pointers between minor heaps

✦ No pointers from major to minor heaps

• Before r := x, if is_major(r) && is_minor(x), then promote(x).

• Too much promotion. Ex: work-stealing queue

major heap

domain n

minor heap(s)

domain 0 …

fast bump pointer
allocation

collect
independently?

Parallelism — Minor GC
major heap

domain n

minor heap(s)

• Weaker invariant

✦ No pointers between minor heaps

✦ Objects in foreign minor heap are not accessed directly

• Read barrier. If the value loaded is

✦ integers, object in shared heap or own minor heap => continue

✦ object in foreign minor heap => Read fault (Interrupt + promote)

domain 0 …

Efficient read barrier check
• Given x, is x an integer1 or in shared heap2 or own minor heap3

• Careful VM mapping + bit-twiddling

• Example: 16-bit address space, 0xPQRS

✦ Minor area: 0x4200 — 0x42ff
✦ Domain 0 : 0x4220 — 0x422f
✦ Domain 1 : 0x4250 — 0x425f
✦ Domain 2 : 0x42a0 — 0x42af
✦ Reserved : 0x4300 — 0x43ff

• Integer lsb(S) = 0x1, Minor PQ = 0x42, R determines domain

• Compare with template y, where y lies within minor heap

✦ allocation pointer!

✦ On amd64, allocation pointer is in r15 register

0x4200 0x42ff

0

0x4220 0x422f

1

0x4250 0x425f

2

0x42a0 0x42af

Reserved
0x4300 0x43ff

Efficient read barrier check
%rax holds x (value of interest)
xor %r15, %rax
sub 0x0010, %rax
test 0xff01, %rax
ZF set => foreign minor

lsb(%rax) = 1
xor %r15, %rax
lsb(%rax) = 1
sub 0x0010, %rax
lsb(%rax) = 1
test 0xff01, %rax
ZF not set

PQ(%r15) != PQ(%rax)
xor %r15, %rax
PQ(%rax) > 1
sub 0x0010, %rax
PQ(%rax) is non-zero
test 0xff01, %rax
ZF not set

Integer Shared heap

Efficient read barrier check
%rax holds x (value of interest)
xor %r15, %rax
sub 0x0010, %rax
test 0xff01, %rax
ZF set => foreign minor

PQR(%r15) = PQR(%rax)
xor %r15, %rax
PQR(%rax) is zero
sub 0x0010, %rax
PQ(%rax) is non-zero
test 0xff01, %rax
ZF not set

Own minor heap

PQ(%r15) = PQ(%rax)
R(%r15) != R(%rax)
lsb(%r15) = lsb(%rax) = 0
xor %r15, %rax
R(%rax) is non-zero
PQ(%rax) = lsb(%rax) = 0
sub 0x0010, %rax
PQ(%rax) = lsb(%rax) = 0
test 0xff01, %rax
ZF set

Foreign minor heap

Read fault

Parallelism — Major GC
• OCaml’s GC is incremental

• Multicore OCaml’s GC needs to be concurrent (and incremental)

✦ Parallel collectors have high latency budget

Mutator GC Mutator GC

Mutator GC Mutator GC

Mutator GC Mutator GC

Mutator GC Mutator GC

Domain 0

Domain 1

Domain 2

Parallelism — Major GC
• Design based on VCGC from Inferno project (ISMM’98)

✦ Allows mutator, marker, sweeper threads to concurrently

• In Multicore OCaml,

✦ States

✦ Domains alternate between mutator and gc thread

✦ Marking: Sweeping:

✦ Marking is racy but idempotent

• Marking & Sweeping done ⇒ stop-the-world

Garbage FreeUnmarked Marked

Garbage FreeUnmarked Marked

Garbage FreeUnmarked Marked

Garbage FreeUnmarked Marked

Concurrency
• Fibers: vm-threads, linear delimited continuations

• Stack segments managed on the heap

• Every fiber has a unique reference from a continuation object

✦ Fibers freed when continuations are swept

• No write barriers on fiber stack operations (push & pop)

minor heap
(domain x)

major heap

Linear fiber heap
(domain x)

Cont fiber

Concurrency — Minor GC
• Fibers may point to minor heap objects

✦ which fibers to scan among 1000s? (no write barriers on fiber stacks)

• Fresh continuation object for every fiber suspension

✦ Continuation in minor heap => fiber suspended in current minor cycle

minor heap
(domain x)

major heap

Linear fiber heap
(domain x)

Cont fiber

Concurrency — Minor GC
• Fibers may point to minor heap objects

✦ which fibers to scan among 1000s? (no write barriers on fiber stacks)

• Fresh continuation object for every fiber suspension

✦ Continuation in minor heap => fiber suspended in current minor cycle

minor heap
(domain x)

major heap

Linear fiber heap
(domain x)

Cont

fiber

Concurrency — Minor GC
• Fibers may point to minor heap objects

✦ which fibers to scan among 1000s? (no write barriers on fiber stacks)

• Fresh continuation object for every fiber suspension

✦ Continuation in minor heap => fiber suspended in current minor cycle

minor heap
(domain x)

major heap

Linear fiber heap
(domain x)

Cont

fiber

• (Multicore) OCaml uses deletion barrier

✦ Fiber stack pop is a deletion (but no write barrier)

• Before switching to unmarked fiber, complete marking the fiber

• Marking is racy

✦ For fibers, race between mutator (context switch) and gc (marking) unsafe

Concurrency — Major GC

Unmarked MarkedMarkingFibers

time

FiberGC

GC
skip

FiberMutator

GC
skip

FiberGC

Mutator

Performance
• Serial performance

✦ Multicore benchmarking CI: http://ocamllabs.io/multicore/

• Parallel Benchmarks

✦ Multicore http server, model-checker, mathematical kernels…

✦ Intel Core i9 (x86_64), 8 domains (parallel threads)

• Latency is our primary concern

✦ Minor GC pause times (trunk & multicore) = ~1-2 ms

✦ Avg. 50th percentile pause times = ~4 ms (1-2 ms on trunk)

✦ Avg. 95th percentile pause times = ~7 ms (3-4 ms on trunk)

• Throughput is easier => add more domains

http://ocamllabs.io/multicore/

Summary
• Multicore OCaml GC

✦ Optimise for latency first, throughput next

✦ Independent minor GCs + concurrent mark-and-sweep

• Various other research directions in Multicore OCaml project

✦ Concurrency through Algebraic Effects and Handlers [TFP’17]

✦ OCaml Memory Model [PLDI’18]

✦ Reagents: STM + channel communication + Hardware transactions
(Intel TSX) [OCaml’16]

Questions?
https://github.com/ocamllabs/ocaml-multicore

http://kcsrk.info

https://github.com/ocamllabs/ocaml-multicore
http://kcsrk.info

