Retrofitting a Concurrent GC
onto OCaml

KC Sivaramakrishnan

University of
Cambridge

OCaml Labs

OCaml

industrial-strength, pragmatic, functional programming language

® Functional core with imperative and Hindley-Milner Type Inference
object-oriented features

: : Powerful module system
® Native (x86, ARM, ...), JavaScript, JVM

Facebook: EASON

Microsoft: Project Everest @ Jane Street

¥ The Coq Proof Assistant m

No multicore support!

Multicore OCaml|

Native support for concurrency and parallelism in OCaml

Lead from OCaml Labs, University of Cambridge

» Collaborators Stephen Dolan (OCaml Labs), Leo White (Jane Street)
Expected to hit mainline in late 2019

In this talk,

» Overview of Multicore GC, with a few deep dives

Multicore OCaml GC: Desiderata

N NG

® Code backwards compatibility % , 1\

» "

v R Nt

+ Do not break existing code
3

y, - -
A% \
S

e Performance backwards compatibility s
"= The Desiderata
+ Do not slow down existing programs of Happ' S

e Minimise pause times

A collection of philosophical poems

+ Latency is more important than throughput e

Thust , 3 Schutz

® Performance predictability and stability

4+ Slow and stable better than fast but
unpredictable

e Minimize knobs

+ 90% of programs should run at 90% peak
performance by default

Qutline

e Difficult to appreciate GC choices in isolation

® Begin with a GC for a sequential purely functional language

4+ Gradually add mutations, parallelism and concurrency

Sequential purely functional

(cJ——(E]
D

S -

registers stack heap mark stack

e Stop-the-world mark and sweep

® Tri-color marking

+ States:White (Unmarked), Grey (Marking), Black (Marked)
* White —> Grey (mark stack) —> Black

® Mark stack is empty => done marking

+ Tri-color invariant: No black object points to a white object

e Sweeping : walk the heap and free white objects

Sequential purely functional

S -

registers stack heap mark stack

¢ Pros
+ Simple
+ Can perform the GC incrementally
+ ..l-mutator-|-mark-|-mutator-I|-mark-I|-mutator-|-sweep-I..
e Cons

+ Need to maintain free-list of objects => allocations overheads + fragmentation

Generational GC

® Generational Hypothesis

+ Young objects are much more likely to die than old objects

major heap
m v
registers stack f minor heap
frontier

® Minor heap collected by copying collection

+ Survivors promoted to major heap

+ Only touches live objects (typically, < 10% of total)
e Roots are registers and stack

+ purely functional => no pointers from major to minor

Mutations

e OCaml does not prohibit mutations
+ Mutable references, Arrays...
® Encourages it with syntactic support!

client_info
addr: Unix.1inet_addr
port: int
user: string
credentials: string
last_heartbeat _time: Time.t
last_heartbeat_status: string

handle_heartbeat cinfo time status
cinfo. last_heartbeat_time time
cinfo. last_heartbeat_status status

+ Mutations are pervasive in real-world code

Mutations

. Load mutable field B Assignment

| Initialising store

B Load immutable field

(94) uonnNguisiq Sse20y AloWws\

more functional

less functional

Mutations — Minor GC

Old objects might point to young objects

Must know those pointers for minor GC

+ (Naively) scan the major GC for such pointers

Intercept mutations with write barrier

(* Before r := x *)
write_barrier (r, x
1s_major r 1s_minor X

remembered_set.add r
Remembered set

+ Set of major heap addresses that point to minor heap
+ Used as root for minor collection

4+ Cleared after minor collection.

major heap

v

minor heap

Mutations — Major GC

e Mutations are problematic if both conditions hold

A C

|. Exists Black —> White

a 2. All Grey —> White™ —> White paths are deleted

® |[nsertion/Dijkstra/lncremental barrier prevents |

e Deletion/Yuasa/snapshot-at-beginning prevents 2

(* Before r := x *)
write_barrier (r, X
1s_major r 1s_minor X
remembered_set.add r
is_major r 1s_major X
mark(!r

Parallelism — Minor GC

e Domain.spawn : (unit -> unit) -> unit
major heap

fast bump pointer
allocation

minor heap(s)

| collect
independently?

® |nvariant: Minor heap objects are only accessed by owning domain

domain 0 ... domainn

® Doligez-Leroy POPL'93

+ No pointers between minor heaps

+ No pointers from major to minor heaps
® Before r := x, if is_major(r) && is_minor(x), then promote(x).

® Joo much promotion. Ex: work-stealing queue

Parallelism — Minor GC

major heap

minor heap(s)

domain 0 .- domain n

® Weaker invariant

+ No pointers between minor heaps

+ Objects in foreign minor heap are not accessed directly
e Read barrier. If the value loaded is

+ integers, object in shared heap or own minor heap => continue

+ object in foreign minor heap => Read fault (Interrupt + promote)

‘W Efficient read barrier check

e Given x, is x an integer! or in shared heap? or own minor heap3
e CarefulVM mapping + bit-twiddling

e Example: | 6-bit address space, @xPQRS
0x4220 Ox422f 0x4220 Ox42af

+ Minor area: 0x4200 — Ox42ff
+ Domain 1 : Ox4250 - Ox425f
+ Domain 2 : Ox42a00 - Ox42af 0x4200 0x4250 Ox425¢ Ox42ff
+ Reserved . ®X43®® — ®X43'F'F Reserved
0x4300 Ox43ff

® Integer Isb(S) = 0x1, Minor PQ = 0x42, R determines domain

e Compare with template y, where y lies within minor heap
+ allocation pointer!

+ On amdé4, allocation pointer is in 'L5 register

‘W Efficient read barrier check

%rax holds x (value of 1nterest)
xor %rl5, %rax

sub @x0010, %rax

test OxffO1l, %rax

LF set => foreign minor

Integer Shared heap
1sb(%rax) = 1 # PQ(%rl5) !'= PQ(%rax)
xor %rl5, %rax xor %rl5, %rax
1sb(%rax) =1 # PQ(%rax) > 1
sub 0x0010, %rax sub 0x0010, %rax
1sb(%rax) =1 # PQ(%rax) is non-zero
test Oxff@l, %rax test Oxff@l, %rax

LF not set # ZF not set

‘W Efficient read barrier check

%rax holds x (value of 1nterest)
xor %rl5, %rax

sub @x0010, %rax

test OxffO1l, %rax

LF set => foreign minor

Own minor heap Foreign minor heap
PQR(%r15) = PQR(%rax) # PQ(%rl5) = PQ(%rax)
xor %rl5, %rax # R(%rl5) '= R(%rax)
PQR(%rax) is zero # 1sb(%rl5) = 1sb(%rax) = 0
sub @x0010, %rax xor %rl5, %rax
PQ(%rax) 1s non-zero # R(%rax) 1s non-zero
test OxffO1l, %rax # PQ(%rax) = lsb(%rax) = 0
/F not set sub 0x0010, %rax

PQ(%rax) = lsb(%rax) = 0
test Oxff@l, %rax
/F set

Read fault

Parallelism — Major GC

o OCaml’s GC is incremental

Mutator GC Mutator GC

® Multicore OCaml’s GC needs to be concurrent (and incremental)

+ Parallel collectors have high latency budget

Domain 0 Mutator GC Mutator GC

Domain | Mutator GC Mutator GC

Domain 2 Mutator GC Mutator GC

Parallelism — Major GC

® Design based onVCGC from Inferno project (ISMM’98)

+ Allows mutator, marker, sweeper threads to concurrently
® |n Multicore OCaml,

+ Domains alternate between mutator and gc thread

+ Marking; w—» Sweeping: EECEILEL[: Free

+ Marking is racy but idempotent

® Marking & Sweeping done = stop-the-world

D D D ©S

oD

Concurrency

e Fibers: vm-threads, linear delimited continuations
e Stack segments managed on the heap

major heap

«<»

minor heap Linear fiber heap
(domain x) (domain x)

® FEvery fiber has a unique reference from a continuation object
+ Fibers freed when continuations are swept

e No write barriers on fiber stack operations (push & pop)

Concurrency — Minor GC

® Fibers may point to minor heap objects

+ which fibers to scan among 1000s? (no write barriers on fiber stacks)

® Fresh continuation object for every fiber suspension

+ Continuation in minor heap => fiber suspended in current minor cycle

major heap

minor heap Linear fiber heap
(domain x) (domain x)

Concurrency — Minor GC

® Fibers may point to minor heap objects

+ which fibers to scan among 1000s? (no write barriers on fiber stacks)

® Fresh continuation object for every fiber suspension

+ Continuation in minor heap => fiber suspended in current minor cycle

major heap

o

minor heap Linear fiber heap
(domain x) (domain x)

Concurrency — Minor GC

® Fibers may point to minor heap objects

+ which fibers to scan among 1000s? (no write barriers on fiber stacks)

® Fresh continuation object for every fiber suspension

+ Continuation in minor heap => fiber suspended in current minor cycle

major heap

N\

minor heap Linear fiber heap
(domain x) (domain x)

‘W Concurrency — Major GC

® (Multicore) OCaml uses deletion barrier

+ Fiber stack pop is a deletion (but no write barrier)

e Before switching to unmarked fiber, complete marking the fiber

® Marking is racy

+ For fibers, race between mutator (context switch) and gc (marking) unsafe

Fibers BVl Gl Marking

Performance

Serial performance

+ Multicore benchmarking Cl: http://ocamllabs.io/multicore/

Parallel Benchmarks
+ Multicore http server, model-checker, mathematical kernels...
+ Intel Core i9 (x86_64), 8 domains (parallel threads)
Latency is our primary concern

+ Minor GC pause times (trunk & multicore) = ~1-2 ms

+ Avg. 50th percentile pause times = ~4 ms (|-2 ms on trunk)

+ Avg. 95th percentile pause times = ~7 ms (3-4 ms on trunk)

Throughput is easier => add more domains

http://ocamllabs.io/multicore/

Summary

e Multicore OCaml GC

+ Optimise for latency first, throughput next

+ Independent minor GCs + concurrent mark-and-sweep
® Various other research directions in Multicore OCaml project

+ Concurrency through Algebraic Effects and Handlers [TFP’17]
+ OCaml Memory Model [PLDI’18]

+ Reagents: STM + channel communication + Hardware transactions
(Intel TSX) [OCaml’| 6]

Questions!

https://github.com/ocamllabs/ocaml-multicore

http://kesrk.info

https://github.com/ocamllabs/ocaml-multicore
http://kcsrk.info

