
Lightweight Concurrency in GHC

KC Sivaramakrishnan
Tim Harris
Simon Marlow
Simon Peyton Jones

1

GHC: Concurrency and Parallelism

forkIO

Bound
threads

Par Monad

MVars

STM

Safe foreign
calls

Asynchronous
exceptions

2

Concurrency landscape in GHC

Capability 0 Capability N

Haskell Code

LWT
Scheduler

OS Thread pool

MVar STM

RTS (C Code)

Black
Holes

Safe
FFI

and more…

preemptive,
round-robin
scheduler +

work-sharing

Idea
Haskell Code

MVar+ STM+

OS Thread pool

Concurrency Substrate

RTS (C
Code)

LWT
Scheduler+

Black
Holes

Safe
FFI

Capability 0 Capability N

4

Capability 0 Capability N

Haskell Code

LWT
Scheduler

OS Thread pool

MVar STM

RTS (C Code)

Black
Holes

Safe
FFI

and more…

Capability 0 Capability N Capability 0 Capability N

Contributions

Haskell Code

LWT
Scheduler

OS Thread pool

MVar STM

RTS (C Code)

Haskell Code

MVar+ STM+

OS Thread pool

Concurrency Substrate

Black
Holes

Safe
FFI Black

Holes
Safe
FFI and more…

What should
this be?

How to unify
these?

Where do these
live in the new

design?

5

LWT
Scheduler+

RTS (C
Code)

Concurrency Substrate

• One-shot continuations
(SCont) and primitive
transactional memory
(PTM)

• PTM is a bare-bones TM
– Better composability than

CAS

---------------- PTM ----------------

data PTM a

data PVar a

instance Monad PTM

atomically :: PTM a -> IO a

newPVar :: a -> PTM (PVar a)

readPVar :: PVar a -> PTM a

writePVar :: PVar a -> a -> PTM ()

---------------- SCont --------------

data SCont -- Stack Continuations

newSCont :: IO () -> IO SCont

switch :: (SCont -> PTM SCont) -> IO ()

getCurrentSCont :: PTM SCont

switchTo :: SCont -> PTM ()

6

Switch

switch :: (SCont -> PTM SCont) -> IO ()

7

Current
SCont

SCont to
switch to

PTM!

• Primitive scheduler actions

– SCont {scheduleSContAction :: SCont -> PTM (),
 yieldControlAction :: PTM ()}

– Expected from every user-level thread
8

Abstract Scheduler Interface

Haskell Code

MVar+ STM+

Concurrency Substrate

Black
Holes

Safe
FFI

How to unify
these?

LWT
Scheduler+

Primitive Scheduler Actions (1)

9

scheduleSContAction :: SCont -> PTM ()

scheduleSContAction sc = do

 sched :: PVar [SCont] <- -- get sched

 contents :: [SCont] <- readPVar sched

 writePVar $ contents ++ [sc]

yieldControlAction :: PTM ()

yieldControlAction = do

 sched :: PVar [SCont] <- -- get sched

 contents :: [SCont] <- readPVar sched

 case contents of

 x:tail -> do {

 writePVar $ contents tail;

 switchTo x -- DOES NOT RETURN

 }

 otherwise -> …

Primitive Scheduler Actions (2)

10

scheduleSContAction :: SCont -> PTM ()

scheduleSContAction sc = do

 sched :: PVar [SCont] <- -- get sched

 contents :: [SCont] <- readPVar sched

 writePVar $ contents ++ [sc]

yieldControlAction :: PTM ()

yieldControlAction = do

 sched :: PVar [SCont] <- -- get sched

 contents :: [SCont] <- readPVar sched

 case contents of

 x:tail -> do {

 writePVar $ contents tail;

 switchTo x -- DOES NOT RETURN

 }

 otherwise -> …

getScheduleSContAction

 :: SCont -> PTM (SCont -> PTM())

setScheduleSContAction

 :: SCont -> (SCont -> PTM()) -> PTM()

getYieldControlAction

 :: SCont -> PTM (PTM ())

setScheduleSContAction

 :: SCont -> PTM () -> PTM ()

Substrate
Primitives

Primitive Scheduler Actions (3)

11

scheduleSContAction :: SCont -> PTM ()

scheduleSContAction sc = do

 sched :: PVar [SCont] <- -- get sched

 contents :: [SCont] <- readPVar sched

 writePVar $ contents ++ [sc]

yieldControlAction :: PTM ()

yieldControlAction = do

 sched :: PVar [SCont] <- -- get sched

 contents :: [SCont] <- readPVar sched

 case contents of

 x:tail -> do {

 writePVar $ contents tail;

 switchTo x -- DOES NOT RETURN

 }

 otherwise -> …

getScheduleSContAction

 :: SCont -> PTM (SCont -> PTM())

setScheduleSContAction

 :: SCont -> (SCont -> PTM()) -> PTM()

getSSA = getScheduleSContAction

setSSA = setScheduleScontAction

getYieldControlAction

 :: SCont -> PTM (PTM ())

setScheduleSContAction

 :: SCont -> PTM () -> PTM ()

getYCA = getYieldControlAction

setYCA = setYieldControlAction

Substrate
Primitives

Helper
functions

Building Concurrency Primitives (1)

12

yield :: IO ()

yield = atomically $ do

 s :: SCont <- getCurrentSCont

 -- Add current SCont to scheduler

 ssa :: (SCont -> PTM ()) <- getSSA s

 enque :: PTM () <- ssa s

 enque

 -- Switch to next scont from scheduler

 switchToNext :: PTM () <- getYCA s

 switchToNext

Building Concurrency Primitives (2)

13

forkIO :: IO () -> IO SCont

forkIO f = do

 ns <- newSCont f

 atomically $ do {

 s :: SCont <- getCurrentSCont;

 -- Initialize new sconts scheduler actions

 ssa :: (SCont -> PTM ()) <- getSSA s;

 setSSA ns ssa;

 yca :: PTM () <- getYCA s;

 setYCA ns yca;

 -- Add to new scont current scheduler

 enqueAct :: PTM () <- ssa ns;

 enqueAct

 }

 return ns

Building MVars

14

An MVar is either empty or
full and has a single hole

newtype MVar a = MVar (PVar (ST a))

data ST a = Full a [(a, PTM())]

 | Empty [(PVar a, PTM())]

takeMVar :: MVar a -> IO a

takeMVar (MVar ref) = do

 hole <- atomically $ newPVar undefined

 atomically $ do

 st <- readPVar ref

 case st of

 Empty ts -> do

 s <- getCurrentSCont

 ssa :: (SCont -> PTM ()) <- getSSA s

 wakeup :: PTM () <- ssa s

 writePVar ref $ v

 where v = Empty $ ts++[(hole, wakeup)]

 switchToNext <- getYCA s

 switchToNext

 Full x ((x', wakeup :: PTM ()):ts) -> do

 writePVar hole x

 writePVar ref $ Full x' ts

 wakeup

 otherwise -> …

 atomically $ readPVar hole

Building MVars

15

An MVar is either empty or
full and has a single hole

Result will be here

newtype MVar a = MVar (PVar (ST a))

data ST a = Full a [(a, PTM())]

 | Empty [(PVar a, PTM())]

takeMVar :: MVar a -> IO a

takeMVar (MVar ref) = do

 hole <- atomically $ newPVar undefined

 atomically $ do

 st <- readPVar ref

 case st of

 Empty ts -> do

 s <- getCurrentSCont

 ssa :: (SCont -> PTM ()) <- getSSA s

 wakeup :: PTM () <- ssa s

 writePVar ref $ v

 where v = Empty $ ts++[(hole, wakeup)]

 switchToNext <- getYCA s

 switchToNext

 Full x ((x', wakeup :: PTM ()):ts) -> do

 writePVar hole x

 writePVar ref $ Full x' ts

 wakeup

 otherwise -> …

 atomically $ readPVar hole

Building MVars

16

An MVar is either empty or
full and has a single hole

Result will be here

If the mvar is empty
(1) Append hole & wakeup

info to mvar list (getSSA!)
(2) Yield control to scheduler

(getYCA!)

newtype MVar a = MVar (PVar (ST a))

data ST a = Full a [(a, PTM())]

 | Empty [(PVar a, PTM())]

takeMVar :: MVar a -> IO a

takeMVar (MVar ref) = do

 hole <- atomically $ newPVar undefined

 atomically $ do

 st <- readPVar ref

 case st of

 Empty ts -> do

 s <- getCurrentSCont

 ssa :: (SCont -> PTM ()) <- getSSA s

 wakeup :: PTM () <- ssa s

 writePVar ref $ v

 where v = Empty $ ts++[(hole, wakeup)]

 switchToNext <- getYCA s

 switchToNext

 Full x ((x', wakeup :: PTM ()):ts) -> do

 writePVar hole x

 writePVar ref $ Full x' ts

 wakeup

 otherwise -> …

 atomically $ readPVar hole

Building MVars

17

An MVar is either empty or
full and has a single hole

Result will be here

Wake up a pending writer, if
any. wakeup is a PTM ()!

MVar is scheduler agnostic!

If the mvar is empty
(1) Append hole & wakeup

info to mvar list (getSSA!)
(2) Yield control to scheduler

(getYCA!)

newtype MVar a = MVar (PVar (ST a))

data ST a = Full a [(a, PTM())]

 | Empty [(PVar a, PTM())]

takeMVar :: MVar a -> IO a

takeMVar (MVar ref) = do

 hole <- atomically $ newPVar undefined

 atomically $ do

 st <- readPVar ref

 case st of

 Empty ts -> do

 s <- getCurrentSCont

 ssa :: (SCont -> PTM ()) <- getSSA s

 wakeup :: PTM () <- ssa s

 writePVar ref $ v

 where v = Empty $ ts++[(hole, wakeup)]

 switchToNext <- getYCA s

 switchToNext

 Full x ((x', wakeup :: PTM ()):ts) -> do

 writePVar hole x

 writePVar ref $ Full x' ts

 wakeup

 otherwise -> …

 atomically $ readPVar hole

Interaction of C RTS and User-level scheduler

• Many “Events” that necessitate actions on the scheduler
become apparent only in the C part of the RTS

18

Haskell Code

MVar+ STM+

Concurrency Substrate

LWT
Scheduler+

Safe
FFI

Black
Hole

Asynchronous
exceptions

Finalizers

Interaction of C RTS and User-level scheduler

• Many “Events” that necessitate actions on the scheduler
become apparent only in the C part of the RTS

19

Haskell Code

MVar+ STM+

Concurrency Substrate

LWT
Scheduler+

Safe
FFI

Black
Hole

Asynchronous
exceptions

Capability X

UT

Pending upcall
queue :: [PTM ()]

Upcall Thread

Finalizers

Re-use primitive
scheduler actions!

Blackholes

20

T1 T2 T3

Capability 0 Capability 1

T

T

T

 Running

 Suspended

 Blocked

Thunk

evaluating..

Blackholes

21

T1 T2 T3

Capability 0 Capability 1

T

T

T

 Running

 Suspended

 Blocked

BH

thunk
“blackholed”

Blackholes

22

T1 T2 T3

Capability 0 Capability 1

T

T

T

 Running

 Suspended

 Blocked

BH

enters
blackhole

Blackholes

23

T1 T2 T3

Capability 0 Capability 1

T

T

T

 Running

 Suspended

 Blocked

BH

Blackholes

24

T1 T2 T3

Capability 0 Capability 1

T

T

T

 Running

 Suspended

 Blocked

BH
Yield control

action

Blackholes

25

T1 T2 T3

Capability 0 Capability 1

T

T

T

 Running

 Suspended

 Blocked

V
Schedule SCont

action

finishes
evaluation

Blackholes : The Problem

26

T2

BH

T

T

T

 Running

 Suspended

 Blocked

T1

Capability 0

Switch $ \T1 -> do

 --

 --

 return T2

Blackholes : The Problem

27

T2

BH

T

T

T

 Running

 Suspended

 Blocked

T1

Capability 0

Switch $ \T1 -> do

 --

 --

 return T2

enters
blackhole

• In order to make progress, we need to resume to T2

• But, in order to resume to T2, we need to resume T2
(Deadlocked!)
– Can be resolved through runtime system tricks (Work in Progress!)

Conclusions
• Status

– Mostly implemented (SConts, PTM, Simple schedulers, MVars, Safe
FFI, bound threads, asynchronous exceptions, finalizers, etc.)

– 2X to 3X slower on micro benchmarks (programs only doing
synchronization work)

• To-do
– Re-implement Control.Concurrent with LWC

– Formal operational semantics

– Building real-world programs

• Open questions
– Hierarchical schedulers, Thread priority, load balancing, Fairness, etc.

– STM on top of PTM

– PTM on top of SpecTM

– Integration with par/seq, evaluation strategies, etc.

– and more…
28

