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Concurrency landscape in GHC 
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Concurrency Substrate 

• One-shot continuations 
(SCont) and primitive 
transactional memory 
(PTM) 

• PTM is a bare-bones TM 
– Better composability than 

CAS 

---------------- PTM ---------------- 

 

data PTM a 

data PVar a 

instance Monad PTM 

 

atomically :: PTM a -> IO a 

newPVar    :: a -> PTM (PVar a) 

readPVar   :: PVar a -> PTM a 

writePVar  :: PVar a -> a -> PTM () 

 

---------------- SCont -------------- 

 

data SCont -- Stack Continuations 

newSCont :: IO () -> IO SCont 

switch   :: (SCont -> PTM SCont) -> IO () 

getCurrentSCont :: PTM SCont 

switchTo :: SCont -> PTM () 
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Switch 

switch :: (SCont -> PTM SCont) -> IO () 
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• Primitive scheduler actions 

– SCont {scheduleSContAction :: SCont -> PTM (),   
            yieldControlAction     :: PTM ()} 

– Expected from every user-level thread 
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Primitive Scheduler Actions (1) 

9 

scheduleSContAction :: SCont -> PTM () 

scheduleSContAction sc = do 

  sched :: PVar [SCont] <- -- get sched 

  contents :: [SCont] <- readPVar sched 

  writePVar $ contents ++ [sc] 

yieldControlAction :: PTM () 

yieldControlAction = do 

  sched :: PVar [SCont] <- -- get sched 

  contents :: [SCont] <- readPVar sched 

  case contents of 

    x:tail -> do { 

      writePVar $ contents tail; 

      switchTo x -- DOES NOT RETURN 

    } 

    otherwise -> … 

   



Primitive Scheduler Actions (2) 
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scheduleSContAction :: SCont -> PTM () 

scheduleSContAction sc = do 

  sched :: PVar [SCont] <- -- get sched 

  contents :: [SCont] <- readPVar sched 

  writePVar $ contents ++ [sc] 

yieldControlAction :: PTM () 

yieldControlAction = do 

  sched :: PVar [SCont] <- -- get sched 

  contents :: [SCont] <- readPVar sched 

  case contents of 

    x:tail -> do { 

      writePVar $ contents tail; 

      switchTo x -- DOES NOT RETURN 

    } 

    otherwise -> … 

   

getScheduleSContAction  

  :: SCont -> PTM (SCont -> PTM()) 

setScheduleSContAction 

  :: SCont -> (SCont -> PTM()) -> PTM() 

 

getYieldControlAction  

  :: SCont -> PTM (PTM ()) 

setScheduleSContAction 

  :: SCont -> PTM () -> PTM () 

 

Substrate 
Primitives 



Primitive Scheduler Actions (3) 
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scheduleSContAction :: SCont -> PTM () 

scheduleSContAction sc = do 

  sched :: PVar [SCont] <- -- get sched 

  contents :: [SCont] <- readPVar sched 

  writePVar $ contents ++ [sc] 

yieldControlAction :: PTM () 

yieldControlAction = do 

  sched :: PVar [SCont] <- -- get sched 

  contents :: [SCont] <- readPVar sched 

  case contents of 

    x:tail -> do { 

      writePVar $ contents tail; 

      switchTo x -- DOES NOT RETURN 

    } 

    otherwise -> … 

   

getScheduleSContAction  

  :: SCont -> PTM (SCont -> PTM()) 

setScheduleSContAction 

  :: SCont -> (SCont -> PTM()) -> PTM() 

 

getSSA = getScheduleSContAction 

setSSA = setScheduleScontAction 

 

getYieldControlAction  

  :: SCont -> PTM (PTM ()) 

setScheduleSContAction 

  :: SCont -> PTM () -> PTM () 

 

getYCA = getYieldControlAction 

setYCA = setYieldControlAction 

Substrate 
Primitives 

Helper 
functions 



Building Concurrency Primitives (1) 
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yield :: IO () 

yield = atomically $ do 

  s :: SCont <- getCurrentSCont 

  -- Add current SCont to scheduler 

  ssa :: (SCont -> PTM ()) <- getSSA s 

  enque :: PTM () <- ssa s 

  enque 

  -- Switch to next scont from scheduler 

  switchToNext :: PTM () <- getYCA s 

  switchToNext 



Building Concurrency Primitives (2) 
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forkIO :: IO () -> IO SCont 

forkIO f = do 

  ns <- newSCont f 

  atomically $ do { 

    s :: SCont <- getCurrentSCont; 

    -- Initialize new sconts scheduler actions 

    ssa :: (SCont -> PTM ()) <- getSSA s; 

    setSSA ns ssa; 

    yca :: PTM () <- getYCA s; 

    setYCA ns yca; 

    -- Add to new scont current scheduler 

    enqueAct :: PTM () <- ssa ns; 

    enqueAct 

  } 

  return ns 



Building MVars 
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An MVar is either empty or 
full and has a single hole 

newtype MVar a = MVar (PVar (ST a)) 

data ST a = Full a [(a, PTM())] 

          | Empty [(PVar a, PTM())] 

 

takeMVar :: MVar a -> IO a 

takeMVar (MVar ref) = do 

  hole <- atomically $ newPVar undefined 

  atomically $ do 

    st <- readPVar ref 

    case st of 

      Empty ts -> do 

        s <- getCurrentSCont 

        ssa :: (SCont -> PTM ()) <- getSSA s 

        wakeup :: PTM () <- ssa s 

        writePVar ref $ v 

          where v = Empty $ ts++[(hole, wakeup)] 

        switchToNext <- getYCA s 

        switchToNext 

      Full x ((x', wakeup :: PTM ()):ts) -> do 

        writePVar hole x 

        writePVar ref $ Full x' ts 

        wakeup 

      otherwise -> … 

  atomically $ readPVar hole 



Building MVars 
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An MVar is either empty or 
full and has a single hole 

Result will be here 

newtype MVar a = MVar (PVar (ST a)) 

data ST a = Full a [(a, PTM())] 

          | Empty [(PVar a, PTM())] 

 

takeMVar :: MVar a -> IO a 

takeMVar (MVar ref) = do 

  hole <- atomically $ newPVar undefined 

  atomically $ do 

    st <- readPVar ref 

    case st of 

      Empty ts -> do 
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        wakeup :: PTM () <- ssa s 

        writePVar ref $ v 

          where v = Empty $ ts++[(hole, wakeup)] 

        switchToNext <- getYCA s 

        switchToNext 

      Full x ((x', wakeup :: PTM ()):ts) -> do 

        writePVar hole x 

        writePVar ref $ Full x' ts 

        wakeup 

      otherwise -> … 

  atomically $ readPVar hole 



Building MVars 

16 

An MVar is either empty or 
full and has a single hole 

Result will be here 

If the mvar is empty 
(1) Append hole & wakeup 

info to mvar list (getSSA!) 
(2) Yield control to scheduler 

(getYCA!) 

newtype MVar a = MVar (PVar (ST a)) 

data ST a = Full a [(a, PTM())] 

          | Empty [(PVar a, PTM())] 

 

takeMVar :: MVar a -> IO a 

takeMVar (MVar ref) = do 

  hole <- atomically $ newPVar undefined 

  atomically $ do 

    st <- readPVar ref 

    case st of 

      Empty ts -> do 

        s <- getCurrentSCont 

        ssa :: (SCont -> PTM ()) <- getSSA s 

        wakeup :: PTM () <- ssa s 

        writePVar ref $ v 

          where v = Empty $ ts++[(hole, wakeup)] 

        switchToNext <- getYCA s 

        switchToNext 

      Full x ((x', wakeup :: PTM ()):ts) -> do 

        writePVar hole x 

        writePVar ref $ Full x' ts 

        wakeup 

      otherwise -> … 

  atomically $ readPVar hole 



Building MVars 
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An MVar is either empty or 
full and has a single hole 

Result will be here 

Wake up a pending writer, if 
any. wakeup is a PTM ()! 

MVar is scheduler agnostic! 

If the mvar is empty 
(1) Append hole & wakeup 

info to mvar list (getSSA!) 
(2) Yield control to scheduler 

(getYCA!) 

newtype MVar a = MVar (PVar (ST a)) 

data ST a = Full a [(a, PTM())] 

          | Empty [(PVar a, PTM())] 

 

takeMVar :: MVar a -> IO a 

takeMVar (MVar ref) = do 

  hole <- atomically $ newPVar undefined 

  atomically $ do 

    st <- readPVar ref 

    case st of 

      Empty ts -> do 

        s <- getCurrentSCont 

        ssa :: (SCont -> PTM ()) <- getSSA s 

        wakeup :: PTM () <- ssa s 

        writePVar ref $ v 

          where v = Empty $ ts++[(hole, wakeup)] 

        switchToNext <- getYCA s 

        switchToNext 

      Full x ((x', wakeup :: PTM ()):ts) -> do 

        writePVar hole x 

        writePVar ref $ Full x' ts 

        wakeup 

      otherwise -> … 

  atomically $ readPVar hole 



Interaction of C RTS and User-level scheduler 

• Many “Events” that necessitate actions on the scheduler 
become apparent only in the C part of the RTS 
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Interaction of C RTS and User-level scheduler 

• Many “Events” that necessitate actions on the scheduler 
become apparent only in the C part of the RTS 
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Blackholes 
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Blackholes 
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Blackholes 
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Blackholes 
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Blackholes 
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Blackholes : The Problem 
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Blackholes : The Problem 
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• In order to make progress, we need to resume to T2 

• But, in order to resume to T2, we need to resume T2 
(Deadlocked!) 
– Can be resolved through runtime system tricks (Work in Progress!) 



Conclusions 
• Status 

– Mostly implemented (SConts, PTM, Simple schedulers, MVars, Safe 
FFI, bound threads, asynchronous exceptions, finalizers, etc.) 

– 2X to 3X slower on micro benchmarks (programs only doing 
synchronization work) 

• To-do 
– Re-implement Control.Concurrent with LWC 

– Formal operational semantics 

– Building real-world programs 

• Open questions 
– Hierarchical schedulers, Thread priority, load balancing, Fairness, etc. 

– STM on top of PTM 

– PTM on top of SpecTM 

– Integration with par/seq, evaluation strategies, etc. 

– and more… 
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