
Retrofitting Concurrency
Lessons from the engine room

“KC” Sivaramakrishnan

Images made with Stable Diffusion

In Sep 2022…

OCaml 5.0

In Sep 2022…

OCaml 5.0

Concurrency Parallelism

In Sep 2022…

OCaml 5.0

Overlapped
execution

A

B

A

C

B

Time

Concurrency Parallelism

Effect Handlers

In Sep 2022…

OCaml 5.0

Overlapped
execution

A

B

A

C

B

Time

Simultaneous
execution

A
B

C

Time

Concurrency Parallelism

Effect Handlers Domains

In this talk…

OCaml 5.0OCaml 4.x
Multicore OCaml

Backwards
Compatibility

Data Races

Implementation
Complexity

Performance
Stability

In this talk…

OCaml 5.0OCaml 4.x

Journey Takeaways

In the year 2014…

18 year-old, industrial-strength, pragmatic,
functional programming language

In the year 2014…

18 year-old, industrial-strength, pragmatic,
functional programming language

Industry Projects

In the year 2014…

18 year-old, industrial-strength, pragmatic,
functional programming language

Industry ProjectsNo multicore support!

Runtime lock

OCaml C CC

Runtime lock

OCaml C CC

GIL

Eliminate the runtime lock

OCaml OCaml OCaml

Simultaneous
execution

A
B

C

Time

Parallelism

Domains

Eliminate the runtime lock

OCaml OCaml OCaml

Simultaneous
execution

A
B

C

Time

Parallelism

Domains

GIL

Sam Gross, Meta, “Multithreaded Python without the GIL”

https://docs.google.com/document/d/18CXhDb1ygxg-YXNBJNzfzZsDFosB5e6BfnXLlejd9l0/edit#

Retrofitting Challenges ~> Approach
• Millions of lines of legacy software

✦ Most code likely to remain sequential even
with multicore

• Cost of refactoring is prohibitive

Retrofitting Challenges ~> Approach
• Millions of lines of legacy software

✦ Most code likely to remain sequential even
with multicore

• Cost of refactoring is prohibitive

Do not break existing code!

Retrofitting Challenges ~> Approach
• Low latency and predictable performance

✦ Great for ~10ms tolerance

Retrofitting Challenges ~> Approach
• Low latency and predictable performance

✦ Great for ~10ms tolerance

Optimise for GC latency
before scalability

Retrofitting Challenges ~> Approach
• OCaml core team is composed of

volunteers

✦ Aim to reduce complexity and
maintenance burden

Retrofitting Challenges ~> Approach
• OCaml core team is composed of

volunteers

✦ Aim to reduce complexity and
maintenance burden

No separate sequential
and parallel runtimes

Unlike -threaded runtime

Retrofitting Challenges ~> Approach
• OCaml core team is composed of

volunteers

✦ Aim to reduce complexity and
maintenance burden

No separate sequential
and parallel runtimes

⇒
Existing sequential programs run just as

fast using just as much memory

Unlike -threaded runtime

Parallel Allocator & GC

Major Heap

Minor
Heap

Minor
Heap

Minor
Heap

Domain 0 Domain 1 Domain 2

Medieval garbage truck according to Stable Diffusion

Parallel Allocator & GC

Major Heap

Minor
Heap

Minor
Heap

Minor
Heap

Domain 0 Domain 1 Domain 2

Medieval garbage truck according to Stable Diffusion

Parallel Allocator & GC

Major Heap

Minor
Heap

Minor
Heap

Minor
Heap

Domain 0 Domain 1 Domain 2

Medieval garbage truck according to Stable Diffusion

Access remote objects

Domain 0 Domain 1

X

Y

let r = !x

Major heap

Minor heaps

Access remote objects

Domain 0 Domain 1

X

Y

let r = !x

promote(y)

Major heap

Minor heaps

Access remote objects

Domain 0 Domain 1

X Y

promote(y)

y

Major heap

Minor heaps

let r = !x

Parallel Allocator & GC

Major Heap

Minor
Heap

Minor
Heap

Minor
Heap

Domain 0 Domain 1 Domain 2

Mostly concurrent

concurrent

Medieval garbage truck according to Stable Diffusion

Parallel Allocator & GC

Major Heap

Minor
Heap

Minor
Heap

Minor
Heap

Domain 0 Domain 1 Domain 2

Mostly concurrent

concurrent
OCaml ‘14

Parallel Allocator & GC

POPL ‘93
Major Heap

Minor
Heap

Minor
Heap

Parallel Allocator & GC

ISMM ‘11

Major Heap

Minor
Heap

Minor
Heap

Parallel Allocator & GC
POPL ‘93

JFP ‘14

Intel Single-chip Cloud
Computer (SCC)

Major Heap

Minor
Heap

Minor
Heap

Parallel Allocator & GC

PPoPP ‘18
H1

H2 H3

H4 H5

disentanglementMaPLe

Parallel Allocator & GC

JFP ‘14PPoPP ‘18

ICFP ‘22

JFP ‘14

Parallel Allocator & GC
POPL ‘93

ISMM ‘11
JFP ‘14

PPoPP ‘18

Parallel Allocator & GC
• Excellent scalability on 128-cores

✦ Also maintains low latency on large core counts

• Mostly retains sequential latency, throughput and
memory usage characteristics

Major Heap

Minor
Heap

Minor
Heap

Minor
Heap

Domain 0 Domain 1 Domain 2

Parallel Allocator & GC
Major Heap

Minor
Heap

Minor
Heap

Minor
Heap

Domain 0 Domain 1 Domain 2

But …

Parallel Allocator & GC
Major Heap

Minor
Heap

Minor
Heap

Minor
Heap

Domain 0 Domain 1 Domain 2

But …

Read
barrier!

Parallel Allocator & GC
Major Heap

Minor
Heap

Minor
Heap

Minor
Heap

Domain 0 Domain 1 Domain 2

But …

Read
barrier!

• Read barrier

✦ Only a branch on the OCaml side for reads

✦ Read are now GC safe points

✦ Breaks the C FFI invariants about when GC may be
performed

Parallel Allocator & GC
Major Heap

Minor
Heap

Minor
Heap

Minor
Heap

Domain 0 Domain 1 Domain 2

But …

Read
barrier!

• Read barrier

✦ Only a branch on the OCaml side for reads

✦ Read are now GC safe points

✦ Breaks the C FFI invariants about when GC may be
performed

• No push-button fix!

✦ Lots of packages in the ecosystem broke.

Back to the drawing board (~2019)

Major Heap

Minor
Heap

Minor
Heap

Minor
Heap

Domain 0 Domain 1 Domain 2

Mostly concurrent

Stop-the-world
parallel

Back to the drawing board (~2019)

Major Heap

Minor
Heap

Minor
Heap

Minor
Heap

Domain 0 Domain 1 Domain 2

Mostly concurrent

Stop-the-world
parallel

Bring 128-domains to a stop is surprisingly fast

Back to the drawing board (~2019)

Major Heap

Minor
Heap

Minor
Heap

Minor
Heap

Domain 0 Domain 1 Domain 2

Mostly concurrent

Stop-the-world
parallel

ICFP ‘20

On average, < 1% performance overhead
for sequential programs

Data Races
• Data Race: When two threads perform

unsynchronised access and at least one is a write.

✦ Non-SC behaviour due to compiler optimisations and relaxed
hardware.

Data Races
• Data Race: When two threads perform

unsynchronised access and at least one is a write.

✦ Non-SC behaviour due to compiler optimisations and relaxed
hardware.

• Enforcing SC behaviour slows down sequential programs!

✦ 85% on ARM64, 41% on PowerPC

Data Races
• Data Race: When two threads perform

unsynchronised access and at least one is a write.

✦ Non-SC behaviour due to compiler optimisations and relaxed
hardware.

• Enforcing SC behaviour slows down sequential programs!

✦ 85% on ARM64, 41% on PowerPC

OCaml needed a
relaxed memory model

Second-mover Advantage
• Learn from the other language memory models

Second-mover Advantage
• Learn from the other language memory models

• DRF-SC, but catch-fire semantics on
data races

Well-typed OCaml programs don’t go wrong

Second-mover Advantage
• Learn from the other language memory models

• DRF-SC + no crash under data races

✦ But scope of race is not limited in time

• DRF-SC, but catch-fire semantics on
data races

Well-typed OCaml programs don’t go wrong

Second-mover Advantage
• Learn from the other language memory models

• DRF-SC + no crash under data races

✦ But scope of race is not limited in time

• DRF-SC, but catch-fire semantics on
data races

Well-typed OCaml programs don’t go wrong

• No data races by construction

✦ Unsafe code memory model is ~C++11

Second-mover Advantage
• Learn from the other language memory models

• DRF-SC + no crash under data races

✦ But scope of race is not limited in time

Advantage: No Multicore OCaml programs in the wild!

• DRF-SC, but catch-fire semantics on
data races

Well-typed OCaml programs don’t go wrong

• No data races by construction

✦ Unsafe code memory model is ~C++11

OCaml memory model (~2017)
• Simple (comprehensible!) operational memory model

✦ Only atomic and non-atomic locations

✦ DRF-SC

✦ No “out of thin air” values

✦ Squeeze at most perf ⇒ write that module in C, C++ or

Rust.

OCaml memory model (~2017)
• Simple (comprehensible!) operational memory model

✦ Only atomic and non-atomic locations

✦ DRF-SC

✦ No “out of thin air” values

✦ Squeeze at most perf ⇒ write that module in C, C++ or

Rust.

1.19

OCaml memory model (~2017)
• Simple (comprehensible!) operational memory model

✦ Only atomic and non-atomic locations

✦ DRF-SC

✦ No “out of thin air” values

✦ Squeeze at most perf ⇒ write that module in C, C++ or

Rust.

1.19

OCaml memory model (~2017)
• Simple (comprehensible!) operational memory model

✦ Only atomic and non-atomic locations

✦ DRF-SC

✦ No “out of thin air” values

✦ Squeeze at most perf ⇒ write that module in C, C++ or

Rust.

• Key innovation: Local data race freedom

✦ Permits compositional reasoning

1.19

OCaml memory model (~2017)
• Simple (comprehensible!) operational memory model

✦ Only atomic and non-atomic locations

✦ DRF-SC

✦ No “out of thin air” values

✦ Squeeze at most perf ⇒ write that module in C, C++ or

Rust.

• Key innovation: Local data race freedom

✦ Permits compositional reasoning

• Performance impact

✦ Free on x86 and < 1% on ARM

1.19

• Simple (comprehensible!) operational memory model

✦ Only atomic and non-atomic locations

✦ No “out of thin air” values

• Interested in extracting final bits of performance ⇒

write that module in C, C++ or Rust.

• Key innovation: Local data race freedom

✦ Permits compositional reasoning

• Performance impact

✦ Free on x86 and < 1% on ARM

OCaml memory model (~2017)

1.19
PLDI ’18

Concurrency (~2015)
• Parallelism is a resource; concurrency is a programming abstraction

✦ Language-level threads

Overlapped
execution

A

B

A

C

B

Time

Concurrency (~2015)
• Parallelism is a resource; concurrency is a programming abstraction

✦ Language-level threads

Overlapped
execution

A

B

A

C

B

Time

AsyncLwt >>=

Concurrency (~2015)
• Parallelism is a resource; concurrency is a programming abstraction

✦ Language-level threads

Overlapped
execution

A

B

A

C

B

Time

AsyncLwt >>=

Synchronous Asynchronous

Normal calls

Special calling
convention

Concurrency (~2015)
• Parallelism is a resource; concurrency is a programming abstraction

✦ Language-level threads

AsyncLwt >>=

Synchronous Asynchronous

Normal calls

Special calling
convention

Eliminate function
colours with

native concurrency
support

 — Bob Nystrom

Overlapped
execution

A

B

A

C

B

Time

Concurrency
• Parallelism is a resource; concurrency is a programming abstraction

✦ Language-level threads

Overlapped
execution

A

B

A

C

B

Time

Language & Runtime
System

Library

Concurrency
• Parallelism is a resource; concurrency is a programming abstraction

✦ Language-level threads

Overlapped
execution

A

B

A

C

B

Time

Language & Runtime
System

Library

Concurrency
• Parallelism is a resource; concurrency is a programming abstraction

✦ Language-level threads

Overlapped
execution

A

B

A

C

B

Time

Language & Runtime
System

Library

Maintenance
Burden

C and not
Haskell

Lack of
flexibility

Concurrency
• Parallelism is a resource; concurrency is a programming abstraction

✦ M:N scheduling

Overlapped
execution

A

B

A

C

B

Time

Runtime System

Language

Maintenance
Burden

C and not
Haskell

Lack of
flexibility

JFP ’14

Language &
Runtime System

Library Scheduler

Blackholing
(lazy evaluation)

Concurrency

Language &
Runtime System

Library Scheduler

Blackholing
(lazy evaluation)

Hard to undo
adding a feature

into the RTS

Concurrency

Concurrency
• Parallelism is a resource; concurrency is a programming abstraction

✦ Language-level threads

Overlapped
execution

A

B

A

C

B

Time

Language & Runtime
System

Library First-class continuations!

How to continue?

PLDI ‘96
call/1cc

Chez Scheme

call/1cc

Chez Scheme

How to continue?

PLDI ‘96

PLDI ‘11

MultiMLton

call/1cc

Chez Scheme

How to continue?

PLDI ‘96

PLDI ‘11

MultiMLton

 — Oleg Kiselyov

Need delimited
continuations

call/1cc

Chez Scheme

How to continue?

PLDI ‘96

PLDI ‘11

MultiMLton

 — Oleg Kiselyov

Structured
delimited

continuations

Ease of comprehension

• Effect handler ~= Resumable exceptions + computation
may be resumed later

effect E : string

let comp () =
 print_string (perform E)

let main () =
 try comp ()
 with effect E k ->
 continue k “Handled"

exception E

let comp () =
 print_string (raise E)

let main () =
 try comp ()
 with E ->
 print_string “Raised”

Exception Effect handler

delimited
continuation

Ease of comprehension

• Effect handler ~= Resumable exceptions + computation
may be resumed later

• Easier than shift/reset, control/prompt

✦ No prompts or answer-type polymorphism

effect E : string

let comp () =
 print_string (perform E)

let main () =
 try comp ()
 with effect E k ->
 continue k “Handled"

exception E

let comp () =
 print_string (raise E)

let main () =
 try comp ()
 with E ->
 print_string “Raised”

Exception Effect handler

delimited
continuation

Ease of comprehension

• Effect handler ~= Resumable exceptions + computation
may be resumed later

• Easier than shift/reset, control/prompt

✦ No prompts or answer-type polymorphism

Effect handlers : shift/reset :: while : goto

effect E : string

let comp () =
 print_string (perform E)

let main () =
 try comp ()
 with effect E k ->
 continue k “Handled"

exception E

let comp () =
 print_string (raise E)

let main () =
 try comp ()
 with E ->
 print_string “Raised”

Exception Effect handler

delimited
continuation

OCaml ‘15

How to continue?

One-shot delimited continuations
exposed through effect handlers

Ease of comprehension ~> Impact

Ease of comprehension ~> Impact

Retrofitting Effect Handlers

• Don’t break existing code ⇒ No effect system

✦ No syntax and just functions

Retrofitting Effect Handlers

• Don’t break existing code ⇒ No effect system

✦ No syntax and just functions

• Focus on preserving

✦ Performance of legacy code (< 1% impact)

✦ Compatibility of tools — gdb, perf

Retrofitting Effect Handlers

• Don’t break existing code ⇒ No effect system

• Focus on preserving

✦ Performance of legacy code (< 1% impact)

✦ Compatibility of tools — gdb, perf

PLDI ‘21

Eio — Direct-style effect-based concurrency

HTTP server performance using 24 cores HTTP server scaling maintaining a constant load of
1.5 million requests per second

Concurrency (~2022)
• Parallelism is a resource; concurrency is a programming abstraction

✦ Language-level threads

Overlapped
execution

A

B

A

C

B

Time

Concurrency (~2022)
• Parallelism is a resource; concurrency is a programming abstraction

✦ Language-level threads

Overlapped
execution

A

B

A

C

B

Time

Concurrency (~2022)
• Parallelism is a resource; concurrency is a programming abstraction

✦ Language-level threads

Overlapped
execution

A

B

A

C

B

Time

~2 days ago 🎉

Takeaways

Care for Users
• Transition to the new version should be a no-op or push-

button solution

✦ Most code likely to remain sequential

Care for Users
• Transition to the new version should be a no-op or push-

button solution

✦ Most code likely to remain sequential

• Build tools to ease the transition

OPAM Health Check: http://check.ocamllabs.io/

Benchmarking
Rigorously, Continuously on Real programs

• OCaml users don’t just run synthetic benchmarks

Benchmarking
Rigorously, Continuously on Real programs

• OCaml users don’t just run synthetic benchmarks

• Sandmark — Real-world programs picked from wild

✦ Coq

✦ Menhir (parser-generator)

✦ Alt-ergo (solver)

✦ Irmin (database)

… and their large set of OPAM dependencies

Benchmarking
Rigorously, Continuously on Real programs

Program P: OCaml 4.14 = 19s OCaml 5.0 = 18s

Are the speedups / slowdowns statistically significant?

Benchmarking
Rigorously, Continuously on Real programs

Program P: OCaml 4.14 = 19s OCaml 5.0 = 18s

Are the speedups / slowdowns statistically significant?

• Modern OS, arch, micro-arch effects become significant
at small scales

✦ 20% speedup by inserting fences

Benchmarking
Rigorously, Continuously on Real programs

Program P: OCaml 4.14 = 19s OCaml 5.0 = 18s

Are the speedups / slowdowns statistically significant?

• Modern OS, arch, micro-arch effects become significant
at small scales

✦ 20% speedup by inserting fences

• Tune the machine to remove noise

Benchmarking
Rigorously, Continuously on Real programs

Program P: OCaml 4.14 = 19s OCaml 5.0 = 18s

Are the speedups / slowdowns statistically significant?

• Modern OS, arch, micro-arch effects become significant
at small scales

✦ 20% speedup by inserting fences

• Tune the machine to remove noise

• Useful to measure instructions retired along with real time

Benchmarking
Rigorously, Continuously on Real programs

• Are the speedups / slowdowns statistically significant?

• OS, arch, micro-arch effects become important at small
scales.

• Useful to measure instructions retired along with real time

OCaml ‘19

Tuning the machine for benchmarking

https://github.com/ocaml-bench/ocaml_bench_scripts#notes-on-hardware-and-os-settings-for-linux-benchmarking

Benchmarking
Rigorously, Continuously on Real programs

• Are the speedups / slowdowns statistically significant?

• OS, arch, micro-arch effects become important at small
scales.

• Useful to measure instructions retired along with real time

OCaml ‘19

Tuning the machine for benchmarking

ASPLOS ‘13

https://github.com/ocaml-bench/ocaml_bench_scripts#notes-on-hardware-and-os-settings-for-linux-benchmarking

Benchmarking
Rigorously, Continuously on Real programs

• Continuous benchmarking as a service

✦ sandmark.tarides.com

http://sandmark.tarides.com

Invest in tooling
Reuse existing tools; if not build them!

Invest in tooling
Reuse existing tools; if not build them!

• rr = gdb + record-and-replay debugging

Invest in tooling
Reuse existing tools; if not build them!

• rr = gdb + record-and-replay debugging

• OCaml 5 + ThreadSanitizer

✦ Detect data races dynamically

Invest in tooling
Tracing

GHC’s ThreadScope

Invest in tooling
Tracing

GHC’s ThreadScope

Invest in tooling
Tracing

Runtime Events: CTF-based tracing

Invest in tooling
Tracing

Runtime Events: CTF-based tracing

Convincing caml-devel
• Quite a challenge maintaining a separate fork for 7+

years!

✦ Multiple rebases to keep it up-to-date with
mainline

✦ In hindsight, smaller PRs are better

Convincing caml-devel
• Quite a challenge maintaining a separate fork for 7+

years!

✦ Multiple rebases to keep it up-to-date with
mainline

✦ In hindsight, smaller PRs are better

• Peer-reviewed papers adds credibility to the effort

Convincing caml-devel
• Quite a challenge maintaining a separate fork for 7+

years!

✦ Multiple rebases to keep it up-to-date with
mainline

✦ In hindsight, smaller PRs are better

• Peer-reviewed papers adds credibility to the effort

• Open-source and actively-maintained always

✦ Lots of (academic) users from early days

Convincing caml-devel
• Quite a challenge maintaining a separate fork for 7+

years!

✦ Multiple rebases to keep it up-to-date with
mainline

✦ In hindsight, smaller PRs are better

• Peer-reviewed papers adds credibility to the effort

• Open-source and actively-maintained always

✦ Lots of (academic) users from early days

• Continuous benchmarking, OPAM health check

Growing the language

OCaml 4

OCaml 5

time

Growing the language

OCaml 4

OCaml 5

time

Growing the language

OCaml 4

OCaml 5

time

Growing the language

OCaml 4

OCaml 5

A few
researchers

Lots of
Engineers

time

Growing the language

OCaml 4

OCaml 5

A few
researchers

Lots of
Engineers

time

Growing the language

OCaml 4

OCaml 5

A few
researchers

Lots of
Engineers

time

Independent
Contributors

Where do we go from here?

OCaml 5.0

Where do we go from here?

OCaml 5.0

Where do we go from here?

OCaml 5.0
Effect
System

Where do we go from here?

OCaml 5.0
Effect
System

Backwards compatibility,
polymorphism, modularity &

generatively

Where do we go from here?

OCaml 5.0
Effect
System

JavaScript
target

Where do we go from here?

OCaml 5.0
Effect
System

JavaScript
target

JFP ‘20

Where do we go from here?

OCaml 5.0
Effect
System

JavaScript
target Modal

Types

Where do we go from here?

OCaml 5.0
Effect
System

JavaScript
target Modal

Types

+ Lexically scoped
typed effect handlersUntyped effects

Where do we go from here?

OCaml 5.0
Effect
System

JavaScript
target Modal

Types

Unboxed
Types

Flambda2
Parallelism

Control memory
layout

Avoid heap
allocations

Aggressive
compiler

optimisations

Rust/C-like performance (on demand), with GC as default,
and the ergonomics and safety of classic ML

Where do we go from here?

OCaml 5.0
Effect
System

JavaScript
target Stack

allocation

Unboxed
Types

Flambda2
Parallelism

Control memory
layout

Avoid heap
allocations

Agressive
compiler

optimisations

Rust/C-like performance (on demand), with GC as default,
and the ergonomics and safety of classic ML

Enjoy OCaml 5!

Top Secret

