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In the year 2014…

18 year-old, industrial-strength, pragmatic, 
functional programming language

Industry ProjectsNo multicore support!
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GIL

Sam Gross, Meta, “Multithreaded Python without the GIL”

https://docs.google.com/document/d/18CXhDb1ygxg-YXNBJNzfzZsDFosB5e6BfnXLlejd9l0/edit#
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Retrofitting Challenges ~> Approach
• Millions of lines of legacy software

✦ Most code likely to remain sequential even 
with multicore

• Cost of refactoring is prohibitive

Do not break existing code!
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Retrofitting Challenges ~> Approach
• Low latency and predictable performance

✦ Great for ~10ms tolerance

Optimise for GC latency 
before scalability
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Retrofitting Challenges ~> Approach
• OCaml core team is composed of 

volunteers

✦ Aim to reduce complexity and 
maintenance burden

No separate sequential 
and parallel runtimes

⇒
Existing sequential programs run just as 

fast using just as much memory

Unlike             -threaded runtime
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Parallel Allocator & GC
• Excellent scalability on 128-cores
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But …

Read 
barrier!

• Read barrier

✦ Only a branch on the OCaml side for reads

✦ Read are now GC safe points

✦ Breaks the C FFI invariants about when GC may be 
performed 

• No push-button fix!

✦ Lots of packages in the ecosystem broke. 
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Mostly concurrent 

Stop-the-world 
parallel 

ICFP ‘20

On average, < 1% performance overhead 
for sequential programs
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Data Races
• Data Race: When two threads perform 

unsynchronised access and at least one is a write.

✦ Non-SC behaviour due to compiler optimisations and relaxed 
hardware.

• Enforcing SC behaviour slows down sequential programs!

✦ 85% on ARM64, 41% on PowerPC

OCaml needed a 
relaxed memory model
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Second-mover Advantage
• Learn from the other language memory models

• DRF-SC + no crash under data races

✦ But scope of race is not limited in time

Advantage: No Multicore OCaml programs in the wild!

• DRF-SC, but catch-fire semantics on 
data races

Well-typed OCaml programs don’t go wrong

• No data races by construction

✦ Unsafe code memory model is ~C++11
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• Simple (comprehensible!) operational memory model

✦ Only atomic and non-atomic locations

✦ No “out of thin air” values

• Interested in extracting final bits of performance ⇒ 

write that module in C, C++ or Rust. 

• Key innovation: Local data race freedom 

✦ Permits compositional reasoning

• Performance impact

✦ Free on x86 and < 1% on ARM

OCaml memory model (~2017)

1.19
PLDI ’18
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Concurrency (~2015)
• Parallelism is a resource; concurrency is a programming abstraction

✦ Language-level threads

AsyncLwt >>=

Synchronous Asynchronous

Normal calls

Special calling 
convention

Eliminate function 
colours with 

native concurrency 
support

 — Bob Nystrom
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Concurrency
• Parallelism is a resource; concurrency is a programming abstraction

✦ M:N scheduling

Overlapped 
execution

A

B

A

C

B

Time

Runtime System

Language

Maintenance 
Burden

C and not 
Haskell

Lack of 
flexibility

JFP ’14



Language &  
Runtime System

Library Scheduler

Blackholing  
(lazy evaluation)

Concurrency



Language &  
Runtime System

Library Scheduler

Blackholing  
(lazy evaluation)

Hard to undo 
adding a feature 

into the RTS

Concurrency



Concurrency
• Parallelism is a resource; concurrency is a programming abstraction

✦ Language-level threads
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call/1cc 

Chez Scheme

How to continue?

PLDI ‘96

PLDI ‘11

MultiMLton

 — Oleg Kiselyov

Structured 
delimited 

continuations
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• Effect handler ~= Resumable exceptions + computation 
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Ease of comprehension

• Effect handler ~= Resumable exceptions + computation 
may be resumed later

• Easier than shift/reset, control/prompt

✦ No prompts or answer-type polymorphism

Effect handlers : shift/reset   ::   while : goto

effect E : string                                                                    
                                                                                     
let comp () =                                                                        
  print_string (perform E)                                                         
                                                                                   
let main () =                                                                              
  try comp ()  
  with effect E k ->                                                                                                                                   
    continue k “Handled"                                                                 

exception E 
                                                                                     
let comp () =                                                                        
  print_string (raise E)                                                         
                                                                                   
let main () =                                                                              
  try comp ()  
  with E ->                                                                                                                                   
    print_string “Raised”                                                                 

Exception Effect handler

delimited 
continuation



OCaml ‘15

How to continue?

One-shot delimited continuations 
exposed through effect handlers
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Retrofitting Effect Handlers

• Don’t break existing code ⇒ No effect system

• Focus on preserving

✦ Performance of legacy code (< 1% impact)

✦ Compatibility of tools — gdb, perf

PLDI ‘21



Eio — Direct-style effect-based concurrency

HTTP server performance using 24 cores HTTP server scaling maintaining a constant load of  
1.5 million requests per second
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Concurrency (~2022)
• Parallelism is a resource; concurrency is a programming abstraction

✦ Language-level threads

Overlapped 
execution

A

B

A
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B

Time

~2 days ago  🎉
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Care for Users
• Transition to the new version should be a no-op or push-

button solution

✦ Most code likely to remain sequential

• Build tools to ease the transition

OPAM Health Check: http://check.ocamllabs.io/
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Benchmarking
Rigorously, Continuously on Real programs

• OCaml users don’t just run synthetic benchmarks

• Sandmark — Real-world programs picked from wild

✦ Coq

✦ Menhir (parser-generator)

✦ Alt-ergo (solver)

✦ Irmin (database)

… and their large set of OPAM dependencies



Benchmarking
Rigorously, Continuously on Real programs

Program P:    OCaml 4.14 = 19s   OCaml 5.0 = 18s 

Are the speedups / slowdowns statistically significant?



Benchmarking
Rigorously, Continuously on Real programs

Program P:    OCaml 4.14 = 19s   OCaml 5.0 = 18s 

Are the speedups / slowdowns statistically significant?

• Modern OS, arch, micro-arch effects become significant 
at small scales

✦ 20% speedup by inserting fences



Benchmarking
Rigorously, Continuously on Real programs

Program P:    OCaml 4.14 = 19s   OCaml 5.0 = 18s 

Are the speedups / slowdowns statistically significant?

• Modern OS, arch, micro-arch effects become significant 
at small scales

✦ 20% speedup by inserting fences

• Tune the machine to remove noise



Benchmarking
Rigorously, Continuously on Real programs

Program P:    OCaml 4.14 = 19s   OCaml 5.0 = 18s 

Are the speedups / slowdowns statistically significant?

• Modern OS, arch, micro-arch effects become significant 
at small scales

✦ 20% speedup by inserting fences

• Tune the machine to remove noise

• Useful to measure instructions retired along with real time



Benchmarking
Rigorously, Continuously on Real programs

• Are the speedups / slowdowns statistically significant?
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Benchmarking
Rigorously, Continuously on Real programs

• Are the speedups / slowdowns statistically significant?

• OS, arch, micro-arch effects become important at small 
scales.

• Useful to measure instructions retired along with real time

OCaml ‘19

Tuning the machine for benchmarking

ASPLOS ‘13

https://github.com/ocaml-bench/ocaml_bench_scripts#notes-on-hardware-and-os-settings-for-linux-benchmarking


Benchmarking
Rigorously, Continuously on Real programs

• Continuous benchmarking as a service

✦ sandmark.tarides.com

http://sandmark.tarides.com
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Invest in tooling
Reuse existing tools; if not build them!

• rr = gdb + record-and-replay debugging

• OCaml 5 + ThreadSanitizer

✦ Detect data races dynamically
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Invest in tooling
Tracing 

Runtime Events: CTF-based tracing
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Convincing caml-devel
• Quite a challenge maintaining a separate fork for 7+ 

years!

✦ Multiple rebases to keep it up-to-date with 
mainline

✦ In hindsight, smaller PRs are better

• Peer-reviewed papers adds credibility to the effort

• Open-source and actively-maintained always

✦ Lots of (academic) users from early days

• Continuous benchmarking, OPAM health check
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OCaml 4

OCaml 5

A few 
researchers

Lots of 
Engineers

time

Independent
Contributors
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Where do we go from here?

OCaml 5.0
Effect 
System

Backwards compatibility, 
polymorphism, modularity & 

generatively
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typed effect handlersUntyped effects
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Where do we go from here?

OCaml 5.0
Effect 
System

JavaScript 
target Stack 

allocation

Unboxed
Types

Flambda2
Parallelism

Control memory 
layout

Avoid heap 
allocations

Agressive 
compiler 

optimisations

Rust/C-like performance (on demand), with GC as default, 
and the ergonomics and safety of classic ML



Enjoy OCaml 5!



Top Secret


