Retrofitting Concurrency

Lessons from the engine room

“KC” Sivaramakrishnan

11

N
< 3
(o) >
g O
,'770', 4"}"{3\

Images made with Stable Diffusion

In Sep 2022...

In Sep 2022...

Concurrency Parallelism

In Sep 2022...

Concurrency Parallelism

Time

o O >» W >

Overlapped
execution

Effect Handlers

In Sep 2022...

Concurrency

Time

o O >» W >

Overlapped
execution

Effect Handlers

Parallelism

H

Simultaneous
execution

Time

Domains

In this talk...

Multicore OCaml
— » OCaml 5.0

In this talk...

e

Data Races

OCaml 5.0

Backwards

Compatibility P erS for tqunce
' tability

\ Implementation \
\ Complexity /

Journey Takeaways

In the year 2014...

|8 year-old, industrial-strength,
functional programming language

- ' ey

In the year 2014...

|8 year-old, industrial-strength,
functional programming language

Industry Projects
(°
FACEBOOK }) Tarides Bloomberg

N\)
;g(; & ahrefs ESimCorp .
Bl n i ez Q) Jane Street o ﬁ COMPCERT
. MICI’OSOft-lS CZOS @ .

- Y,

- ' ey

J

In the year 2014...

No multicore support!

» &

- ' ey

((
= Swift =GO

Java

Runtime lock

E BEEE
=1

Runtime lock

E BEEE
=1

@ python GIL

Eliminate the runtime lock

Parallelism

Simultaneous
execution

Domains

Eliminate the runtime lock

Parallelism

. pgthon“ GIL Simutaneous

execution

Domains
Sam Gross, Meta, ‘Multithreaded Python without the GIL”

https://docs.google.com/document/d/18CXhDb1ygxg-YXNBJNzfzZsDFosB5e6BfnXLlejd9l0/edit#

Retrofitting Challenges ~> Approach

—4 l'. -. e Millions of lines of legacy software

'.A.x“q -
Sl T Ty
.-.--.' B

-

+ Most code likely to remain sequential even
with multicore

lll IIII-

-II'
9 |l||-....
[N

- - e Cost of refactoring is prohibitive

‘ “l' e
| = ‘ -
L
£

,4 "I o .

Retrofitting Challenges ~> Approach

— e Millions of lines of legacy software

$
;

'.A.x“q -

Sl T Ty

.-.--.' B
-

+ Most code likely to remain sequential even
with multicore

{, 3 ki

o Cost of refactoring is prohibitive

' -“' |IEm a |
1 e U

“Imx_mall

n :‘ g l = ' Do not break existing code!

A

llb. -
20 n BN ;]

Retrofitting Challenges ~> Approach

® |ow latency and predictable performance

4+ Great for ~10ms tolerance

Retrofitting Challenges ~> Approach

® |ow latency and predictable performance

4+ Great for ~10ms tolerance

Optimise for GC latency
before scalability

Retrofttlng Challenges ~> Approach

o OCaml core team is composed of
volunteers

+ Aim to reduce complexity and
maintenance burden

Retrofttlng Challenges ~> Approach

o OCaml core team is composed of
volunteers

+ Aim to reduce complexity and
maintenance burden

No separate sequential
and parallel runtimes

Unlike)k —threaded runtime

Retrofttlng Challenges ~> Approach

o OCaml core team is composed of
volunteers

+ Aim to reduce complexity and
maintenance burden

No separate sequential
and parallel runtimes

=

Existing sequential programs run just as
fast using just as much memory

Unlike)k —threaded runtime

Parallel Allocator & GC

Minor Minor Minor
Heap Heap Heap

Domain 0 Domain | Domain 2

Medieval garbage truck according to Stable Diffusion

Parallel Allocator & GC

Minor
Heap

Domain 0 Domain | Domain 2

Medieval garbage truck according to Stable Diffusion

Parallel Allocator & GC

Domain 0 Domain | Domain 2

Medieval garbage truck according to Stable Diffusion

Access remote objects

Major heap
Minor heaps -

Domain 0 Domain |

Access remote objects

Major heap
Minor heaps -

Promote(y)

-l.et F = |X

Domain 0 Domain |

Access remote objects

0—0

promote(y)

et = i

Domain 0 Domain |

Major heap

Parallel Allocator & GC

Mostly concurrent

Domain 0 Domain | Domain 2

Medieval garbage truck according to Stable Diffusion

Parallel Allocator & GC

Multicore OCaml

Stephen Dolan

Currently, threading is supported in OCaml only
by means of a global lock, allowing at most thread
to run OCaml code at any time. We present ongo-
ing work to design and implement an OCaml runtime
capable of shared-memory parallelism.

1 Introduction

Adding shared-memory parallelism to an existing lan-

Leo White

OCaml ‘|14

Anil Madhavapeddy

all objects reachable from it to be promoted to the
shared heap en masse. Unfortunately this eagerly
promotes many objects that were never really shared:
just because an object is pointed to by a shared object
does not mean another thread is actually going to
attempt to access it.

Our design is similar but lazier, along the lines of
the multicore Haskell work [2], where objects are pro-

mnoted ta the chared hean whenever annther thread

Parallel Allocator & GC

A concurrent, generational garbage collector
for a multithreaded implementation of ML

Damien Doligez Xavier Leroy PO P L ‘ 9 3

Ecole Normale Supérieure and INRIA Rocquencourt*

Abstract the threads that execute the user’s program, with as
little synchronization as possible between the collector

This paper presents the design and implementation of and the mutators (the threads executing the user’s pro-

a “quasl real-time” garbage collector for Concurrent gram).

Caml Light, an implementation of ML with threads. A number of concurrent collectors have been de-

This two-generation svstem combines a fast asvn- o e a1 e ,

Parallel Allocator & GC

Multicore Garbage Collection with Local Heaps

Simon Marlow Simon Peyton Jones
Microsoft Research, Cambridge, U.K. Microsoft Research, Cambridge, U.K.
simonmar@microsoft.com simonpj@microsoft.com
ISMM *| |
Abstract to design collectors in which each processor has a private heap

that can be collected independently without synchronising with
the other processors; there is also a global heap for shared data.
Some of the existing designs are based on static analyses to iden-
tify objects whose references never escape the current thread and

In a parallel, shared-memory, language with a garbage collected
heap, it is desirable for each processor to perform minor garbage
collections independently. Although obvious, it is difficult to make
this idea nav off in nractice. esneciallv in lanouases where muta-

Parallel Allocator

MultiMLton: A multicore-aware runtime for

standard ML
JFP*14

K.C. SIVARAMAKRISHNAN

Purdue University, West Lafayette, IN, USA
(e-mail: chandras@purdue. edu)

LUKASZ ZIAREK |
SUNY Buffalo, NY, USA Intel Single-chip Cloud

(e-mail: 1ziarek@buffalo.edu) COmPU ter (SCC)
SURESH JAGANNATHAN

Purdue University, West Lafayette, IN, USA
(e-mail suresh@cs.purdue.edu)

Abstract

MULTIMLTON is an extension of the MLton compiler and runtime system that targets scalable,
multicore architectures. It provides specific support for ACML, a derivative of Concurrent ML that

Parallel Allocator & GC

Hierarchical Memory Management for Mutable State
Extended Technical Appendix PPoPP ‘18

Adrien Guatto Sam Westrick Ram Raghunathan

Carnegie Mellon University Carnegie Mellon University Carnegie Mellon University
adrien@guatto.org swestric@cs.cmu.edu ram.r@cs.cmu.edu

Umut Acar Matthew Fluet

Carnegie Mellon University Rochester Institute of Technology
umut@cs.cmu.edu mtf@cs.rit.edu

Abstract strongly typed functional languages is their ability to distin-

It is well known that modern functional programming lan- guish between pure and impure c.ode.. Thls aids in wr iting
guages are naturally amenable to parallel programming. correct parallel.pr ograms by making it easier to avoid r a?e

- At V1t 2. __ O L _______ _ LC______*3X_1TV_ _1__1v___ __ *__

MaPLe disentanglement

Parallel Allocator & GC

Entanglement Detection with Near-Zero Cost

¢
SAM WESTRICK, Carnegie Mellon University, USA I C F P 22
JATIN ARORA, Carnegie Mellon University, USA
UMUT A. ACAR, Carnegie Mellon University, USA

Recent research on parallel functional programming has culminated in a provably efficient (in work and space)
parallel memory manager, which has been incorporated into the MPL (MaPLe) compiler for Parallel ML and

1 . B 1 1.0 11, ™ 1 1

Parallel Allocator & GC

Thu 15 Sep 2022 09:00 - 09:50 at M1 - Language Design

A ML 2022

y¢ Efficient and Scalable Parallel Functional Programming Through Disentanglement

Researchers have argued for decades that functional programming simplifies parallel programming, in particular by helping
programmers avoid difficult concurrency bugs arising from destructive in-place updates. However, parallel functional languages have
historically underperformed in comparison to parallel programs written in lower-level languages. The difficulty is that functional programs
have high demand for memory, and this demand only grows with parallelism, causing traditional parallel memory management
techniques to buckle under the increased pressure.

Recent work has made progress on this problem by identifying a broadly applicable memory property called disentanglement. To exploit
disentanglement for improved efficiency and scalability, we show how to partition memory into a tree of heaps, mirroring the dynamic
nesting of parallel tasks. This design allows for task-local allocations and garbage collections to proceed independently and in parallel.
The result is a provably efficient parallel memory manager.

These ideas have been incorporated into the MPL (“maple") compiler for Parallel ML, which offers practical efficiency and scalability for
parallel functional programs. Our empirical evaluations show that, at scale (on 72 processors), MPL outperforms modern
implementations of both functional and imperative languages, including Java and Go. Additionally, we show that MPL is competitive
with low-level, memory-unsafe languages such as C++, in terms of both space and time.

=N Sam Westrick
== » | Carnegie Mellon University
~ . United States

Parallel Allocator & GC

® Excellent scalability on 128-cores

+ Also maintains low latency on large core counts

® Mostly retains sequential latency, throughput and

Minor memory usage characteristics
Heap

Domain 0 Domain | Domain 2

Parallel Allocator & GC

But ...

Domain 0 Domain | Domain 2

Parallel Allocator & GC

But ...

Domain 0 Domain | Domain 2

barrier!

Parallel Allocator & GC

But ...

® Read barrier

+ Only a branch on the OCaml side for reads

+ Read are now GC safe points
eap

+ Breaks the C FFl invariants about when GC may be
performed

Domain 0 Domain | Domain 2

barrier!

Parallel Allocator & GC

But ...

® Read barrier

+ Only a branch on the OCaml side for reads

+ Read are now GC safe points
eap

+ Breaks the C FFl invariants about when GC may be
performed

® No push-button fix!

Domain 0 Domain | Domain 2

+ Lots of packages in the ecosystem broke.

barrier!

Back to the drawing board (~2019)

Stop-the-world
parallel

|

Domain 0 Domain | Domain 2

Back to the drawing board (~2019)

Stop-the-world

parallel

E E B

Domain 0 Domain | Domain 2

Bring | 28-domains to a stop is surprisingly fast

Back to the drawing board (~2019)

Retrofitting Parallelism onto OCaml H

¢
KC SIVARAMAKRISHNAN, IIT Madras, India ICFP 20
STEPHEN DOLAN, OCaml Labs, UK
LEO WHITE, Jane Street, UK
SADIQ JAFFER, Opsian, UK and OCaml Labs, UK
TOM KELLY, OCaml Labs, UK
ANMOL SAHOO, IIT Madras, India
SUDHA PARIMALA, IIT Madras, India

ATUL DHIMAN, IIT Madras, India
ANIL MADHAVAPEDDY, University of Cambridge Computer Laboratory, UK and OCaml Labs, UK

OCaml is an industrial-strength, multi-paradigm programming language, widely used in industry and academia.
OCaml is also one of the few modern managed system programming languages to lack support for shared
memory parallel programming. This paper describes the design, a full-fledged implementation and evaluation

PR TS IS | Y SRR 7 I L NN AJRUIRY) PR [T RIS A T S 2 Y a0 DEUSUNE . SR [

R AN T F

Data Races

e Data Race: When two threads perform
unsynchronised access and at least one is a write.

+ Non-SC behaviour due to compiler optimisations and relaxed
hardware.

Data Races

e Data Race: When two threads perform
unsynchronised access and at least one is a write.

+ Non-SC behaviour due to compiler optimisations and relaxed
hardware.

® Enforcing SC behaviour slows down sequential programs!

+ 85% on ARM64, 419% on PowerPC

Data Races

e Data Race: When two threads perform
unsynchronised access and at least one is a write.

+ Non-SC behaviour due to compiler optimisations and relaxed
hardware.

® Enforcing SC behaviour slows down sequential programs!

+ 85% on ARM64, 419% on PowerPC

OCaml needed a
relaxed memory model

Second-mover Advantage

® | earn from the other language memory models

Second-mover Advantage

® | earn from the other language memory models

Swift ¢ DPRF-SC,but catch-fire semantics on

E data races

Well-typed OCaml programs don’t go wrong

Second-mover Advantage

® | earn from the other language memory models

Swift ¢ DPRF-SC,but catch-fire semantics on
data races

Well-typed OCaml programs don’t go wrong

), ® DRF-SC + no crash under data races

Java“ + But scope of race is not limited in time

Second-mover Advantage

® | earn from the other language memory models

Swift ¢ DPRF-SC,but catch-fire semantics on
data races

Well-typed OCaml programs don’t go wrong

® DRF-SC + no crash under data races

+ But scope of race is not limited in time

®* No data races by construction

+ Unsafe code memory model is ~C++1 |

Second-mover Advantage

® | earn from the other language memory models

Swift ¢ DPRF-SC,but catch-fire semantics on

data races
e Well-typed OCaml programs don’t go wrong

® DRF-SC + no crash under data races

+ But scope of race is not limited in time

®* No data races by construction

+ Unsafe code memory model is ~C++1 |

Advantage: No Multicore OCaml programs in the wild!

OCaml memory model (~2017)

e Simple (comprehensible!) operational memory model
+ Only atomic and non-atomic locations
+ DRF-SC
+ No “out of thin air” values

+ Squeeze at most perf = write that module in C, C++ or

Rust.

OCaml memory model (~2017)

e Simple (comprehensible!) operational memory model
+ Only atomic and non-atomic locations
+ DRF-SC —:Go 1 19
+ No “out of thin air” values

+ Squeeze at most perf = write that module in C, C++ or

Rust.

OCaml memory model (~2017)

e Simple (comprehensible!) operational memory model

+ Only atomic and non-atomic locations

4+ DRF-SC —:Go 1 19 ‘N

+ No “out of thin air” values

+ Squeeze at most perf = write that module in C, C++ or

Rust.

OCaml memory model (~2017)

e Simple (comprehensible!) operational memory model

+ Only atomic and non-atomic locations

+ onesc =GO 119

+ No “out of thin air” values

+ Squeeze at most perf = write that module in C, C++ or

Rust.

e Key innovation: Local data race freedom

+ Permits compositional reasoning

OCaml memory model (~2017)

e Simple (comprehensible!) operational memory model

+ Only atomic and non-atomic locations

+ No “out of thin air” values

+ Squeeze at most perf = write that module in C, C++ or

Rust.

e Key innovation: Local data race freedom

+ Permits compositional reasoning

® Performance impact

4+ Free on x86 and < 1% on ARM

OCaml memory model (~2017)

Bounding Data Races in Space and Time
(Extended version, with appendices) PLDI 18

Stephen Dolan KC Sivaramakrishnan Anil Madhavapeddy
University of Cambridge, UK University of Cambridge, UK University of Cambridge, UK

Abstract

We propose a new semantics for shared-memory parallel
programs that gives strong guarantees even in the presence
of data races. Our local data race freedom property guar-
antees that all data-race-free portions of programs exhibit

The primary reasoning tools provided to programmers by
these models are the data-race-freedom (DRF) theorems. Pro-
grammers are required to mark as atomic all variables used
for synchronisation between threads, and to avoid data races,
which are concurrent accesses (except concurrent reads) to

Concurrency (~2015)

o Parallelism is a resource; concurrency is a programming abstraction

+ Language-level threads

Time

Overlapped
execution

Concurrency (~2015)

o Parallelism is a resource; concurrency is a programming abstraction

+ Language-level threads

Time

Overlapped
execution

Concurrency (~2015)

e Parallelism is a resource; concurrency is a programming abstraction

+ Language-level threads

A Time
A
C Normal calls
=
Synchronous Asynchronous
Overlapped
execution

Special calling
convention

What Color is Your Function?

— Bob Nystrom

I don’t know about you, but nothing gets me going in the morning quite like a
good old fashioned programming language rant. It stirs the blood to see
someone skewer one of those “blub” languages the plebians use, muddling
through their day with it between furtive visits to StackOverflow.

(Meanwhile, you and I, only use the most enlightened of languages. Chisel-sharp
tools designed for the manicured hands of expert craftspersons such as
ourselves.)

Eliminate function
colours with
native concurrency
support

Concurrency

® Parallelism is a resource; concurrency is a programming abstraction

+ Language-level threads

A Time
B
A
C
B Language & Runtime
v System
Overlapped

execution

Concurrency

® Parallelism is a resource; concurrency is a programming abstraction

+ Language-level threads
Time

Language & Runtime —
’ System =

o O >» W >

Overlapped
execution

Concurrency

® Parallelism is a resource; concurrency is a programming abstraction

+ Language-level threads
Time

Library

o O >» W >

Language & Runtime - _—
' System)X‘ m

Overlapped Maintenance C and not
execution Burden Haskell

Lack of

flexibility

Concurrency

Composable Scheduler Activations for Haskell

KC SIVARAMAKRISHNAN TIM HARRISx
University of Cambridge Oracle Labs
SIMON MARLOWx SIMON PEYTON JONES
Facebook UK Ltd. Microsoft Research, Cambridge
Abstract

The runtime for a modern, concurrent, garbage collected language like Java or Haskell is like an

operating system: sophisticated, complex, performant, but alas very hard to change. If more of the
runtime svstem were in the high level lanonage. 1t would be far more modular and malleable. In

JFP’ 14

Concurrency

Scheduler

Language & Blackholing
Runtime System [(EVAREEIIETe])),

Concurrency

Scheduler

Language & Blackholing
Runtime System [(EVAREEIIETe])),

Concurrency

® Parallelism is a resource; concurrency is a programming abstraction

+ Language-level threads

First-class continuations!
Language & Runtime —
' System =

Overlapped
execution

Time

o O >» W >

How to continue!

Representing Control in the Presence of

One-Shot Continuations* PLDl ‘96
Carl Bruggeman Oscar Waddell R. Kent Dybvig

Indiana University Computer Science Department
Lindley Hall 215

Bloomington, Indiana 47405
{bruggema,owaddell,dyb} Qcs.indiana.edu

Abstract multi-shot continuations. We present performance measure-

ments that demonstrate that one-shot continuations are in-
Traditional first-class continuation mechanisms allow a cap- deed more efficient than multi-shot continuations for certain
tured continuation to be invoked multiple times. Many con- applications. such as thread svstems.

call/Icc

Chez Scheme

How to continue!

Composable Asynchronous Events

PLDI I |

Lukasz Ziarek, KC Sivaramakrishnan, Suresh Jagannathan

Purdue University
{Iziarek, chandras, suresh}@cs.purdue.edu

Abstract

Although asynchronous communication is an important feature
of many concurrent systems, building composable abstractions
that leverage asynchrony is challenging. This is because an asyn-
chronous operation necessarily involves two distinct threads of
control — the thread that initiates the operation. and the thread

kind of strong encapsulation, especially in the presence of commu-
nication that spans abstraction boundaries. Consequently, changing
the implementation of a concurrency abstraction by adding, modi-
fying, or removing behaviors often requires pervasive change to the
users of the abstraction. Modularity is thus compromised.

This is particularly true for asynchronous behavior generated in-

How to continue!

An argument against call/cc
— Oleg Kiselyov

We argue against call/cc as a core language feature, as the distinguished control operation to implement
natively relegating all others to libraries. The primitive call/cc i1s a bad abstraction -- in various meanings
of "bad' shown below, -- and its capture of the continuation of the whole program is not practically useful.
The only reward for the hard work to capture the whole continuation efficiently is more hard work to get
around the capture of the whole continuation. Both the users and the implementors are better served with a
set of well-chosen control primitives of various degrees of generality with well thought-out interactions.

e Introduction Need delimited
e |t was said before

e Memory leaks
e call/ccimplements shift? A good question

continuations

e Unavoidable performance hit

How to continue!

Structured
delimited
continuations

Eff is a functional programming language based on algebraic|effect handlers.|This

means that Eff provides handlers of not only exceptions, but of any computational

effect, allowing you to redirect output, wrap state modifications in transactions,
schedule asynchronous threads, and much much more...

EFF 3=TRYITOUT [JLEARNMORE ()CONTRIBUTE

TRY IT OUT IN YOUR BROWSER!

or install it on your computer

Ease of comprehension

exception E effect E : string

let comp () = let comp () =
print_string (raise E) print_string (perform E)

let main () = let main () = delimiteq
try comp () try comp () continuation
with E —> with effect E kK —>

print_string “Raised” continue k “Handled"
Exception Effect handler

o Effect handler ~= Resumable exceptions + computation
may be resumed later

ase of comprehension

exception E effect E : string

let comp () = let comp () =
print_string (raise E) print_string (perform E)

let main () = let main () = deI.imite.d
try comp () try comp () continuation
with E —> with effect E kK —>

print_string “Raised” continue k “Handled"
Exception Effect handler

o Effect handler ~= Resumable exceptions + computation
may be resumed later

® [asier than shift/reset, control/prompt

+ No prompts or answer-type polymorphism

Ease of comprehension

exception E effect E : string

let comp () = let comp () =
print_string (raise E) print_string (perform E)

let main () = let main () = deI.imite.d
try comp () try comp () continuation
with E —> with effect E kK —>

print_string “Raised” continue k “Handled"
Exception Effect handler

o Effect handler ~= Resumable exceptions + computation
may be resumed later

® [asier than shift/reset, control/prompt

+ No prompts or answer-type polymorphism

Effect handlers : shift/reset 22 while ¢ goto

How to continue!

Effective Concurrency through Algebraic Effects

Stephen Dolan!, Leo White?, KC Sivaramakrishnan', Jeremy Yallop', and Anil Madhavapeddy'

'University of Cambridge
“Jane Street Capital OCaml‘I5

Algebraic effects and handlers provide a modular ab-
straction for expressing effectful computation, allowing
the programmer to separate the expression of an effectful
computation from its implementation. We present an ex-
tension to OCaml for programming with linear algebraic
effects. and demonstrate its use in expressing concurrency

The basic tenet of programming with algebraic effects
1s that performing an effectful computation is separate
from 1ts interpretation [1, 5]. In particular, the interpreta-
tion 1s dynamically chosen based on the context in which
an effect 1s performed. In our example, spawning a new
thread and vielding control to another are effectful ac-

One-shot delimited continuations

exposed through effect handlers

Ease of comprehension ~> Impact

facebook

Ease of comprehension ~> Impact

Docs Tutorial Blog Community

o What is the prior art for Hooks?

Hooks synthesize ideas from several different sources:

quEbOOk e Our old experiments with functional APIs in the react-future repository.

e React community’s experiments with render prop APIs, including Ryan Florence's Reactions C«

Dominic Gannaway's adopt keyword proposal as a sugar syntax for render props.

State variables and state cells in DisplayScript.

Reducer components in ReasonReact.

e Subscriptions in Rx.

o Algebraic effects in Multicore OCaml.

Sebastian Markbage came up with the original design for Hooks, later refined by Andrew

Clark, Sophie Alpert, Dominic Gannaway, and other members of the React team.

Retrofitting Effect Handlers

Koka Effekt Language

A Functional Language with Effect Types and Handlers

IS0 kg rier oot |

A research language with effect handlers

and lightweight effect polymorphism .

EFF 3=TRYyITour [JLEARNMORE ()CONTRIBUTE

Eff is a functional programming language based on
algebraic effect handlers. This means that Eff
provides handlers of not only exceptions, but of any

e Don’t break existing code = No effect system

+ No syntax and just functions

Retrofitting Effect Handlers

Koka Effekt Language

A Functional Language with Effect Types and Handlers .
A research language with effect handlers

IS0 kg rier oot |

and lightweight effect polymorphism .

EFF 3=TRYyITour [JLEARNMORE ()CONTRIBUTE

Eff is a functional programming language based on
algebraic effect handlers. This means that Eff
provides handlers of not only exceptions, but of any

e Don’t break existing code = No effect system

+ No syntax and just functions

® Focus on preserving
+ Performance of legacy code (< 1% impact)

+ Compatibility of tools — gdb, perf

Retrofitting Effect Handlers

Retrofitting Effect Handlers onto OCaml
PLDI 21

KC Sivaramakrishnan Stephen Dolan Leo White
[IT Madras OCaml Labs Jane Street
Chennai, India Cambridge, UK London, UK
kcsrk@cse.iitm.ac.in stephen.dolan@cl.cam.ac.uk leo@lpw25.net
Tom Kelly Sadiq Jaffer Anil Madhavapeddy
OCaml Labs Opsian and OCaml Labs University of Cambridge and OCaml Labs
Cambridge, UK Cambridge, UK Cambridge, UK
tom.kelly@cantab.net sadig@toao.com avsm2@cl.cam.ac.uk
Abstract 1 Introduction
Effect handlers have been gathering momentum as a mech- Effect handlers [45] provide a modular foundation for user-

anism for modular programming with user-defined effects. defined effects. The key idea is to separate the definition of

11 11 r 1 1 N 1 . «1 nr «~ 1 . 1 1

Eio — Direct-style effect-based concurrency

s (-
N) B~
| |

e
o
1

O
(@)
1

serviced(million requests/second)
o o
18 00)
| |

=
N
]

—@— rust _hyper
httpaf eio
—&— nethttp go

b

I I | I

0.2 0.4 0.6 0.8 1.0 1.2 1.4
load(million requests/second)

HTTP server performance using 24 cores

1.4 - —®
2 1.2-
O
O
&
= 1.0+
0
5
o 0.8 -
Y
C
= 0.6 -
£ -
T 0.4 -
é —8— rust _hyper
Q 0.2 - httpaf eio
—a&— nethttp go
0.0 | | I I 1 I
0 10 20 30 40 50
CPU Cores

HTTP server scaling maintaining a constant load of

1.5 million requests per second

w Concurrency (~2022)

® Parallelism is a resource; concurrency is a programming abstraction

+ Language-level threads

Open)]DK Loom - Fibers, Continuations and Tail-Calls for the JVM

' 'C”;:f::ib”ugtmg PLEASE NOTE! Go to the Wiki for additional and up-to-date information.
3‘;‘3’;,53;';2 Cuide The goal of this Project is to explore and incubate Java VM features and APIs built
Vulnerabilities on top of them for the implementation of lightweight user-mode threads (fibers),
Overlapped JSKIGA/EAtB“"dS delimited continuations (of some form), and related features, such as explicit tail-
. ailing lists
execution Wiki -IRC call.
Bylaws - Census This Project is sponsored by the HotSpot Group.

Legal

w Concurrency (~2022)

® Parallelism is a resource; concurrency is a programming abstraction

+ Language-level threads

ODQHIDK Loom - Fibers, Continuations and Tail-Calls for the JVM

g‘jﬁf::g‘ugtmg PLEASE NOTE! Go to the Wiki for additional and up-to-date information.
3‘;3’;?;’;‘;2 Cuide The goal of this Project is to explore and incubate Java VM features and APIs built
Vulnerabilities on top of them for the implementation of lightweight user-mode threads (fibers),
Overlapped J;K,I.GA/IE_AtBU"dS delimited continuations (of some form), and related features, such as explicit tail-
. ailing lists
execution Wiki -IRC call.
Eg;aaﬂvs census This Project is sponsored by the HotSpot Group.

[WebAssembly / design ' Public

<> Code (*) Issues 191 19 Pull requests 10 LJ) Discussions

Typed continuations to model stacks #1359
rossberg opened this issue on 29 Jul 2020 - 68 comments

w Concurrency (~2022)

® Parallelism is a resource; concurrency is a programming abstraction

+ Language-level threads

Open]DK Loom - Fibers, Continuations and Tail-Calls for the JVM

v 'C”()Srt]f::‘g‘ugtmg PLEASE NOTE! Go to the Wiki for additional and up-to-date information.
32?,;52;22 Cuide The goal of this Project is to explore and incubate Java VM features and APIs built
Vulnerabilities on top of them for the implementation of lightweight user-mode threads (fibers),

Overlapped J;'fl.GA/IE_AtB“"dS delimited continuations (of some form), and related features, such as explicit tail-
. ailing lists
execution Wiki -IRC call.
Bylaws - Censu . . .
Leqal 0 This Project is sponsored by the HotSpot Group.
R e B CHE Native, first-class, delimited continuations

$o Merged Alexis King requested to merge lexi.lambda/ghc:first-clas.. into master
5 months ago

m 4 unresolved threads ~ v | [

Overview 64 Commits 1 Pipelines 24 Changes 56

<> Code (*) Issues 191 19 Pull requests 10 LJ) Discussions

~2 days ago &

Typed continuations to model stacks #1359

rossberg opened this issue on 29 Jul 2020 - 68 comments This MR implements GHC proposal 313: Delimited continuation primops by adding native
support for delimited continuations to the GHC RTS.

lakeaways

Care for Users

® T[ransition to the new version should be a no-op or push-
button solution

+ Most code likely to remain sequential

Care for Users

:\l * Transition to the new version should be a no-op or push-
8 © Dbutton solution

+ Most code likely to remain sequential

e Build tools to ease the transition

number
4.14 5.0+alpha-repo of
revdeps
[Oinstall.2.18 | 1
BetterErrors.0.0.1 K 7
TCSLib.0.3 | 1
absolute.0.1 0
acgtk.1.5.3 @ 0
advi.2.0.0 | 0
aez.0.3 X 0
ahrocksdb.0.2.2 0
o003 @ 0]
alt-ergo-free220 | R 1
amgp-client-async.2.2.2 @ 0
amgqp-client-lwt.2.2.2 | 0
ancient.0.9.1 @ 0
apron.v0.9.13 @ 17

OPAM Health Check: http://check.ocamllabs.io/

Benchmarking

Rigorously, Continuously on programs

e OCaml users don’t just run synthetic benchmarks

Benchmarking

Rigorously, Continuously on programs

e OCaml users don’t just run synthetic benchmarks

® Sandmark — Real-world programs picked from wild

i P i Y.\ ' + Menhir (parser-generator)

— .

+ Alt-ergo (solver)

+ Irmin (database)

... and their large set of OPAM dependencies

Benchmarking

Rigorously, Continuously on programs

Program P: OCaml 4.14 = /9s OCaml 5.0 = /8s

Are the speedups / slowdowns statistically significant?

e e Tt v ‘.‘?“".‘.'a‘:\
[:-,.-;.—;;"::::::‘.':'{;’-"-“_',_T
A

™ ' 3 K
‘) . - »
: > 5 \ s 5
: e
)
. 2
FARR N
O ',\\‘
N .
/ =3 . \ L -
= \
v [N - N
. 3 2 - > f » .
T - . X — ‘.
. 4 .
" y) “- ’ .
b P P
‘- " M) N
-~ ‘o -
-

— :

Benchmarking

Rigorously, Continuously on programs

Program P: OCaml 4.14=19s OCaml 5.0 = /8s

Are the speedups / slowdowns statistically significant?

e Modern OS, arch, micro-arch effects become significant
at small scales

.. _.-. “——..-..

*m i WW/‘(

i" N

+ 207% speedup by inserting fences

Benchmarking

Rigorously, Continuously on programs

Program P: OCaml 4.14=19s OCaml 5.0 = /8s

Are the speedups / slowdowns statistically significant?

e Modern OS, arch, micro-arch effects become significant
at small scales

.. _.-. “——..-..

*m i WW/‘(

i" N

+ 207% speedup by inserting fences

e June the machine to remove noise

Benchmarking

Rigorously, Continuously on programs

Program P: OCaml 4.14=19s OCaml 5.0 = /8s

Are the speedups / slowdowns statistically significant?

e Modern OS, arch, micro-arch effects become significant
at small scales

.. _.-. “——..-..

*m i WW/‘(

i" N

+ 207% speedup by inserting fences

e June the machine to remove noise

o Useful to measure instructions retired along with real time

Benchmarking

A ICFP 2019 (series) / OCaml 2019 (series) / #A OCaml| 2019 /

Benchmarking the OCaml compiler: our
experience

Track OCaml ‘19

OCaml 2019

When
Fri 23 Aug 2019 14:20 - 14:45 at Pine - Tools Chair(s): Thomas Gazagnaire

Abstract

Our proposed presentation would describe what we did to build continuous benchmarking websites that take
a controlled experiment approach to running the operf-micro and sandmark benchmarking suites against
tracked git branches of the OCaml compiler. Our goal was to produce tools to allow for the efficient
upstreaming of multicore related functionality into the OCaml compiler.

The presentation will cover the available OCaml benchmarking suites; how other compiler communities handle
performance benchmark; how we put together our experimental setup to collect controlled data; the
interesting experience that should be shared from the project; interesting future work and extensions that
could be pursued in the future.

Tuning the machine for benchmarking

https://github.com/ocaml-bench/ocaml_bench_scripts#notes-on-hardware-and-os-settings-for-linux-benchmarking

Benchmarking

STABILIZER: Statistically Sound Performance Evaluation

Charlie Curtsinger Emery D. Berger ASPLOS ‘|3

Department of Computer Science
University of Massachusetts Amherst
Ambherst, MA 01003

{charlie,emery}@cs.umass.edu

Abstract 1. Introduction

Researchers and software developers require effective performance The task of performance evaluation forms a key part of both sys-

https://github.com/ocaml-bench/ocaml_bench_scripts#notes-on-hardware-and-os-settings-for-linux-benchmarking

Benchmarking

programs

Rigorously, Continuously on

ICE

e Continuous benchmarking as a serv
+ sandmark.tarides.com

@ sandmark.tarides.com

cC

*
|
“

Normalized Time

;

- e

1.000 4

$295 WU

0.9754

_ 5.1.0+trunk+sequential 20220905 aae6e65

F (96°T) "UIGINP-UOSUIAD|

F (PT°Zy) "SpnoapPnuy

(8¥°€9) xunewwesb

('€) 000009 | XNPaL SCAUIWIRYD
(9°2) "ZdwodA

(6L°2) W

(1€°T) 000 000 T "Buluwey

(16°6£) "€apnoapnuy

(96°9) pZOT uonendnNw XLew
(Zr°2) Aymy-obia-ye

($9°0) vosi-ajdwes dwnpA uosfoh
(16°2) 000 0Z 1eAw | Buu peany
(8°€) 9Z'PPq

(6T°€) "a%

(28°2) 882 vZS v9'ssaIdwodap 153
(£8°L1) Aym AL obsa-yie

F (81°0%) 0000T 00001 wyLobe™ Aseuonnions
I (Ev'9) 0007000 SZ'9®I58)

(Z'2) 000 o1'1d ez

(£9'622) Aled0ouyuaw

F (1Z°'T0€) Qno'syd ueuuab apignd

F ($0°1) "uoisodwodap-3nosd

[(99°92) 000 91 '9i0uq|epuewWw

F (Z'ST) "Zxnpasxabas

(Z9°9€) ZT xnpaJyomjuuey

r (L0°6) 000Z'1108

F (28'6) sessed-bsaiyuaw

F (z8'8) "ddzb-yixa)

(88°€) Jakejninw-aneu

(£8°S) 000 000 0S*4Apoqu

Benchmarks (baseline = 5.1.0+trunk +sequential 20220906 bb375e4)

(8£°9) p1'suaanbu

(ST°9) 0007000 SZ'EwISe)
(20°9) 005§ ZuLoueNdAdS
(ZT'1) "'yuaqeusawax-puesnp
(£8°0L) JaAsSAs nyuaw
(LZ'8) 1Z'ssaankfieuq
(10°2) Z1S Neyssem phoy
(£0°2) 000000% LOs¥Nb
(61" L 1) JwoLwoos ybiiunw

(26°01) 9SZ'au Jo aweb

(19°1) ‘vonisodwodap-ib

(8T°0TH) QnO°3e DISURWIAZS 3121gNd

F ($1°2) 000 0T ssubiprd

F (96°1) 00001 'sd> aduanbas

(vL°8) 000 0Z'weans) buu peasy
(L6'T) xa ou gy

F (90°€) $Z0T uoIsodwodap M

F (LS'BE) 00Z' W 1533

Top heap words

http://sandmark.tarides.com

Invest in tooling

Reuse existing tools; if not build them!

Invest in tooling

Reuse existing tools; if not build them!

® rr = gdb + record-and-replay debugging

Invest in tooling

Reuse existing tools; if not build them!
® rr = gdb + record-and-replay debugging
e OCaml 5 + ThreadSanitizer

+ Detect data races dynamically

Invest in tooling

Tracing

program.eventiog - readscope
File View Move Help

L e A OB 8

Key I Traces Bookmarks Timeline

I running 0.47s 0.475s 0.48s 0.485s 0.49s 0.495s 0.5s
I CC I I I
| create thread Activity

| seq GCreq
par GCreq
migrate thread

| thread wakeup
I shutdown

user message SELL

perf counter

perf tracepoint e 1. why such a long major slice?

_all createspark
N I
2l dudspark

all overflowed spark HEC 2

all runspark — ____ e —— -—
all fizzled spark S~ —_—— ' — —_—— —_

| all GCcedspark 2. total lack of load balancing here 3. why do another major GC cycle so soon?

TIT

Time Heap GC Sparkstats Sparksizes Processinfo ‘Rawevents’

0.471972s HEC 0: Mark stack empty

0.471972s HEC 0: finished GC

0.471973s HEC 0: GC cycle completed

0.472145s HEC 1:running thread 1

0.472145s HEC 2: running thread 2

0.472194s HEC 0: running thread 0

0.473328s HEC 1: stopping thread 1 (thread yielding)
0.473328s HEC 1: running thread 1

0.473328s HEC 1:stopping thread 1 (heap overflow)
0.473328s HEC 1:starting GC

0.473373s HEC 0: stopping thread 0 (heap overflow)
0.473373s HEC 0: starting GC

0.474383s HEC 1: finished GC

0.474386s HEC 1: Minor heap empty

0.474386s HEC 1:starting GC

0.474533s HEC 2: stopping thread 2 (heap overflow)
0.474534s HEC 2: starting GC

0.474619s HEC 0: finished GC

0.474620s HEC 0: Minor heap empty

0.474621s HEC 0: starting GC

0.474792s HEC 1: finished GC

0.474792s HEC 1:running thread 1

0.475047s HEC 0: finished GC

0.475047s HEC 0: running thread 0

0.476071s HEC 1:stopping thread 1 (thread yielding)
0.476072s HEC 1:running thread 1

N 476072 HF(C 1' skannina Fhread 1 (hean nverfl ow)

b

proaram.eventloa (10934 events, 2.512s)

I T ——————————————WwWwwee

GHC’s ThreadScope

1. why such a long major slice?

é . .5r©0 |

_-——
R ——

2. total lack of load balancing here 3. why do another major GC cycle so soon?

— ———————mm—

Invest in tooling

Tracing

[Perfetto

Navigation

) rd t
| 4)
7

A Process ()

stw_leader
Current Trace

minor_local_roots Ry ET)
Thread 0

mmmmw

menhir_sysver.trace (76 MB)

Runtime Events: CTF-based tracing

Invest in tooling

A OCaml Users and Developers Workshop 2022

Fri 16 Sep 2022 11:00 - 11:20 at M1 - Session 2 Chair(s): Oleg Kiselyov

Continuous Monitoring of OCaml Applications using Runtime Events

The upcoming 5.0 release of OCaml includes a new runtime tracing system designed for
continuous monitoring of OCaml applications called Runtime Events. It enables very low overhead,
programmatic access to performance data emitted by the OCaml runtime and garbage collector. This

talk focuses on the implementation of Runtime Events and the user experience of writing applications
exploiting this new feature. pr—

Sadiq Jaffer

University of Cambridge and Tarides
United Kingdom

Patrick Ferris

Tarides

al_roots major_sweep

2
r

Convincing caml-devel

e Quite a challenge maintaining a separate fork for 7+
years!

+ Multiple rebases to keep it up-to-date with
mainline

+ In hindsight, smaller PRs are better

Convincing caml-devel

e Quite a challenge maintaining a separate fork for 7+
years!

+ Multiple rebases to keep it up-to-date with
mainline

+ In hindsight, smaller PRs are better

® Peer-reviewed papers adds credibility to the effort

Convincing caml-devel

e Quite a challenge maintaining a separate fork for 7+
years!

+ Multiple rebases to keep it up-to-date with
mainline

+ In hindsight, smaller PRs are better

® Peer-reviewed papers adds credibility to the effort

e (Open-source and actively-maintained always

+ Lots of (academic) users from early days

Convincing caml-devel

e Quite a challenge maintaining a separate fork for 7+
years!

+ Multiple rebases to keep it up-to-date with
mainline

+ In hindsight, smaller PRs are better

® Peer-reviewed papers adds credibility to the effort

e (Open-source and actively-maintained always

+ Lots of (academic) users from early days

e Continuous benchmarking, OPAM health check

Growing the language

OCaml| 5 F---cmmmmemmaepia

OCaml 4

time

Growing the language

OCaml 5 — F--emmmmmmmee e

OCaml 4

time

Growing the language

OCaml 5 ~ F-----mmmmmmeeaeaes s

OCaml 4

time

Growing the language

OCaml 5 = |p-----=ssmmmemmeaae s

A few Lots of
researchers Engineers

OCaml 4

time

Growing the language

OCaml 5 = |p-----=ssmmmemmeaae s

A few Lots of
researchers Engineers

time

Growing the language

OCaml 5 = Fremrermmmccmcenene s

A few Lots of
researchers Engineers

time

OCaml :
Independent .
Ta I'Id es Contributors E

() IT MADRAS

ology Madra

Where do we go from here!

OCaml 5.0

OCaml 5.0

Effect

OCaml 5.0
System

Where do we go from here?

Backwards compatibility,
polymorphism, modularity &
OC Effect enerativel

aml 5.0 9 y
System

.]aVaSCriPt)

OCaml 5.0 ffec
System

Where do we go from here!

OCaml 5.0

Effect handlers via generalised continuations

¢
DANIEL HILLERSTROM JFP 20

Laboratory for Foundations of Computer Science, The University of Edinburgh,
Edinburgh EH8 9YL, UK
(e-mail: daniel .hillerstrom@ed.ac.uk)

SAM LINDLEY
Laboratory for Foundations of Computer Science, The University of Edinburgh,
Edinburgh EH8 9YL, UK
j a VG S C r i Pt Department of Computing, Imperial College London, London SW7 2BU, UK

(e-mail: sam.lindley@ed.ac.uk)

target ROBERT ATKEY

Mathematically Structured Programming Group, University of Strathclyde,
Glasgow G1 1XQ, UK
(e-mail: robert.atkey@strath.ac.uk)

Abstract

Effect
Plotkin and Pretnar’s effect handlers offer a versatile abstraction for modular programming with
SySte m user-defined effects. This paper focuses on foundations for implementing effect handlers, for the
three different kinds of effect handlers that have been proposed in the literature: deep, shallow

e N L . L 2L T2 M. 2525, .1 A 1 11 _ . A, 11 P 13, . Y B . Ry I a1

Where do we go from here!

OCaml 5.0

-

- -
R A PISNRPER 2 —SS

A OCaml Users and Developers Workshop 2022

Fri 16 Sep 2022 11:20 - 11:40 at M1 - Session 2 Chair(s): Oleg Kiselyov

7 Stack allocation for OCaml

Allocating values on a stack instead of the garbage collected heap can improve
performance by improving cache locality and avoiding GC pauses. However, it requires
that the values do not escape the lifetime of their associated stack frame. We describe
an extension to OCaml that allows values to be allocated on a stack and ensures
through the type system that they do not escape their stack frame.

Stephen Dolan Leo White
Jane Street Jane Street

JavaScript
target

Effect
System

Where do we go from here!

OCaml 5.0

—
N

-
X i {30

A OCaml Users and Developers Workshop 2022

Fri 16 Sep 2022 11:20 - 11:40 at M1 - Session 2 Chair(s): Oleg Kiselyov

7 Stack allocation for OCaml

Allocating values on a stack instead of the garbage collected heap can improve
performance by improving cache locality and avoiding GC pauses. However, it requires
that the values do not escape the lifetime of their associated stack frame. We describe
an extension to OCaml that allows values to be allocated on a stack and ensures
through the type system that they do not escape their stack frame.

Stephen Dolan Leo White
Jane Street Jane Street

JavaScript
target

Effect
System

Lexically scoped

. typed effect handlers

*--..._ Untyped effects __..---~

L]
il R . - -
- r s s EEsmE=

Where do we go from here!

Control memory
layout
Unboxed P
Types

Flambda2 Aggressive

compiler
optimisations

JavaScript
target -~

,"/

Modal
0da Avoid heap
Types allocations

Rust/C-like performance (on demand), with GC as default,
and the ergonomics and safety of classic ML

Parallelism

Effect

OCaml 5.0
System

A ML 2022

Thu 15 Sep 2022 11:40 - 12:00 at Stih - Implementation of Functional Languages Chair(s): Sam Lindley

4
Unboxed types for OCaml

OCaml’s uniform representation enables parametric polymorphism but it comes at a performance cost.
For example, the representation of a pair of 32bit integers on a 64bit machine requires 10 words of
memory and 2 indirections to get to the actual integers. Unboxed types give the programmer more
control of the memory layout of their data, at the cost of the convenience and re-use of parametric
polymorphism. We propose a talk to describe our work on adding unboxed types to OCaml, as
Parallelism illustrated by our existing RFC1 and it’s associated description of the unification algorithm?2.

Richard A. Eisenberg
Jane Street gressive

United States
Stephen Dolan

ompiler
Jane Street misations

Leo White
Jane Street

OCaml 5.0

rith GC as default,
and the ergonomics and safety of classic ML

Enjoy OCaml 5!

Top Secret

