
Elimina'ng	 Read	 Barriers	 through	
Procras'na'on	 and	 Cleanliness	

KC	 Sivaramakrishnan	
Lukasz	 Ziarek	

Suresh	 Jagannathan	

Big	 Picture	

2	

Lightweight	 user-‐level	 threads	

Scheduler	 1	
t1	 t2	 tn	 Lots	 of	

concurrency!	

Core	 1	 Core	 n	 Core	 2	

Heap	

Big	 Picture	

3	

Expendable	
resource?	

Big	 Picture	

3	

Scheduler	 1	
t1	 t2	 tn	 Lots	 of	

concurrency!	

Heap	

Big	 Picture	

4	

Expendable	
resource?	

Big	 Picture	

4	

Scheduler	 1	

t1	

t2	 tn	 Lots	 of	
concurrency!	

Heap	

Exploit	 program	 concurrency	 	
to	 	

eliminate	 read	 barriers	 from	 thread-‐local	 collectors	

GC	 OperaDon	

Alleviate	 MM	
cost?	

MulDMLton	
•  Goals	
–  Safety,	 Scalability,	 ready	 for	 future	 manycore	 processors	

•  Parallel	 extension	 of	 MLton	 –	 a	 whole-‐program,	
opDmizing	 SML	 compiler	

•  Parallel	 extension	 of	 Concurrent	 ML	
–  Lots	 of	 Concurrency!	
–  Interact	 by	 sending	 messages	 over	 first-‐class	 channels	

5	

C	

send	 (c,	 v)	

v	 ß	 recv	 (c)	

MulDMLton	 GC:	 ConsideraDons	
•  Standard	 ML	 –	 funcDonal	 PL	 with	 side-‐effects	
– Most	 objects	 are	 small	 and	 ephemeral	

•  Independent	 generaDonal	 GC	
–  #	 MutaDons	 <<	 #	 Reads	

•  Keep	 cost	 of	 reads	 to	 be	 low	
•  Minimize	 NUMA	 effects	
•  Run	 on	 non-‐cache	 coherent	 HW	
	

6	

MulDMLton	 GC:	 Design	

7	

Core	

Local	 Heap	

Core	

Local	 Heap	

Core	

Local	 Heap	

Core	

Local	 Heap	

Shared	 Heap	

Thread-‐local	 GC	

•  NUMA	 Awareness	
•  Circumvent	 cache-‐coherence	 issues	

Invariant	 PreservaDon	
•  Read	 and	 write	 barriers	 for	 preserving	
invariants	

8	

Shared	 Heap	

r	

Local	 Heap	

x	

Target	

Source	

ExporDng	
writes	

r	 :=	 x	

Shared	 Heap	

r	

Local	 Heap	

x	

FWD	

TransiDve	
closure	 of	 x	

Mutator	
needs	 read	
barriers!	

Challenge	
•  Object	 reads	 are	 pervasive	
–  RB	 overhead	 ∝	 cost	 (RB)	 *	 frequency	 (RB)	

•  Read	 barrier	 opDmizaDon	
–  Stacks	 and	 Registers	 never	 point	 to	 forwarded	 objects	

9	
Figure 2: Read barrier overhead as a percentage of mutator time.

!"
#$
%&

'(
)

!"
"#
$%&
'

($
&)
*'
+,
-

./
,)
-0
&$
12
'

3$
4
*5
67%
6*

89
",
'-*

&%)
0

:
$)
;*
"<
&/
-

=,
9"*
%9

>$
?-
&$
9*

*%"$)+,-.,/012 @ABCD EAFGH EACFH HAFCF DABFI EA@FI EAFFB EAEJB
34(5'(6"6 JED CEBIE I EJHD JIJ ED DEF I

Figure 3: Effectiveness of read barrier checks: Checks represents
the number of read barrier invocations and forwarded represents the
number of instances when the read barrier encountered a forwarded
object.

ing non-pointer values. If such a type additionally happens to have
value-carrying constructors that reference heap-allocated objects,
the non-pointer value representing the empty constructor will be
stored in the object pointer field. Hence, the read barrier must first
check whether the presumed pointer does in fact point to a heap ob-
ject. Otherwise, the original value is returned (line 2). If the given
pointer points to a forwarded object, the current location of the ob-
ject stored is returned. Otherwise, the original value is returned.

We evaluated a set of 8 benchmarks (described in Section 7.1)
running on a 16 core AMD64, a 48 core Intel SCC and an 864
core Azul Vega 3 machine to measure read barrier overheads.
Figure 2 shows these overheads as a percentage of mutator time.
Our experiments reveal that, on average, the mutator spends 20.1%,
15.3% and 21.3% of time executing read barriers on the AMD64,
SCC and Azul architectures, respectively, for our benchmarks.

Although a Brooks-style unconditional read barrier would have
avoided the cost of the second branch in our read barrier imple-
mentation, it would necessitate having an additional address length
field in the object header for an indirection pointer. Most objects
in our system tend to be small. In our benchmarks, we observed
that 95% of the objects allocated were less than 3 words in size,
including a word-sized header. The addition of an extra word in
the object header for an indirection pointer would lead to substan-
tial memory overheads, which in turn leads to additional garbage
collection costs. Hence, we choose to encode read barriers condi-
tionally rather than unconditionally.

But, does the utility of the read barrier justify its cost? We mea-
sure the number of instances the read barrier is invoked and the
number of instances the barrier finds a forwarded object (see Fig-
ure 3). We see that read barriers find forwarded objects in less than

one thousands of a percent of the number of instances they are in-
voked. Thus, in our system, the cost of read barriers is substantial,
but only rarely do they have to perform the task of forwarding refer-
ences. These results motivate our interest in a memory management
design that eliminates read barriers altogether.

3. GC Design and Implementation
In this section, we describe the design and implementation of the
runtime system and garbage collector.

3.1 Threading system
Our programming model separates program-level concurrency
from the physical parallelism available in the underlying ma-
chine through the use of lightweight, user-level threads. These
lightweight threads are multiplexed over system-level threads. One
system-level thread is created for every core and is pinned to it.
Thus, the runtime system effectively treats a system-level thread
as a virtual processor. Load distribution is through work sharing,
where threads are eagerly spawned on different cores in a round-
robin fashion. Once created on a core, lightweight threads never
migrate to another core.

Lightweight threads are preemptively scheduled on every core.
On a timer interrupt, the threading system is informed that an in-
terrupt has occurred by setting a flag at a known location. At every
garbage collector safe-point, the current thread checks whether the
timer interrupt flag has been set, and if it is, resets the flag and
yields control to another thread.

3.2 Baseline collector (Stop-the-world)
The baseline heap design uses a single, contiguous heap, shared
among all cores. In order to allow local allocation, each core re-
quests a page-sized chunk from the heap. While a single lock pro-
tects the chunk allocation, objects are allocated within chunks by
bumping a core-local heap frontier.

In order to perform garbage collection, all the cores synchro-
nize on a barrier, with one core responsible for collecting the en-
tire heap. The garbage collection algorithm is inspired from San-
som’s [19] collector, which combines Cheney’s two-space copying
collector and Jonker’s single-space sliding compaction collector.
Cheney’s copying collector walks the live objects in the heap just
once per collection, while Jonker’s mark-compact collector per-
forms two walks. But Cheney’s collector can only utilize half of
memory allocated for the heap. Sansom’s collector combines the
best of both worlds. Copying collection is performed when heap
requirements are less than half of the available memory. The run-
time system dynamically switches to mark-compact collection if
the heap utilization increases beyond half of the available space.

Since ML programs tend to have a high rate of allocation,
and most objects are short-lived temporaries, it is beneficial to
perform generational collection. The garbage collector supports
Appel-style generational collection [2] for collecting temporaries.
The generational collector has two generations, and all objects that
survive a generational collection are copied to the older generation.
Generational collection can work with both copying and mark-
compact major collection schemes. The runtime system chooses
to perform generational collection if the ratio of live objects to the
total objects falls below a tunable threshold.

Our choice of a stop-the-world baseline collector was to enable
better understanding of mutator overheads among various local col-
lector designs, as opposed to illustrating absolute performance im-
provement of the local collectors over the baseline. Although a par-
allel collector would have improved overall baseline performance,
we would expect poorer scalability due to frequent global synchro-
nizations [10, 14, 20].

20.1	 %	
15.3	 %	
21.3	 %	

Mean	 Overhead	
-‐	

Re
ad
	 b
ar
rie

r	 o
ve
rh
ea
d	
(%

)	

Mutator	 and	 Forwarded	 Objects	

10	

#	 RB	 invocaDons	

#	 Encountered	
forwarded	 objects	

<	 0.00001	

Eliminate	 read	 barriers	 altogether	

RB	 EliminaDon	
•  Visibility	 Invariant	
– Mutator	 does	 not	 encounter	 forwarded	 objects	

•  ObservaDon	
– No	 forwarded	 objects	 created	 ⇒	 visibility	
invariant	 ⇒	 No	 read	 barriers	

•  Exploit	 concurrency	 à	 Procras(na(on!	
	

11	

ProcrasDnaDon	
Shared	 Heap	

r1	

Local	 Heap	

x1	

T1	 T2	

r2	

x2	

à	 r1	 :=	 x1	 	 	 	 	 	 	 r2	 :=	 x2	

T	 à	 T	 is	 running	

T	 à	 T	 is	 suspended	

T	 à	 T	 is	 blocked	
12	

ProcrasDnaDon	
Shared	 Heap	

r1	

Local	 Heap	

x1	

r1	 :=	 x1	

T1	 T2	

	 à	 r2	 :=	 x2	 r2	

x2	

Delayed	 write	 list	 à	

Control	
switches	
to	 T2	

T	 à	 T	 is	 running	

T	 à	 T	 is	 suspended	

T	 à	 T	 is	 blocked	
13	

ProcrasDnaDon	
Shared	 Heap	

r1	

Local	 Heap	

x1	

T1	 T2	

r2	

x2	

Delayed	 write	 list	 à	

r1	 :=	 x1	 	 	 	 	 	 	 r2	 :=	 x2	

T	 à	 T	 is	 running	

T	 à	 T	 is	 suspended	

T	 à	 T	 is	 blocked	
14	

ProcrasDnaDon	
Shared	 Heap	

r1	

Local	 Heap	

T1	 T2	

r2	 x2	

Delayed	 write	 list	 à	

r1	 :=	 x1	 	 	 	 	 	 	 r2	 :=	 x2	
x1	

T	 à	 T	 is	 running	

T	 à	 T	 is	 suspended	

T	 à	 T	 is	 blocked	

FWD	

15	

FWD	

ProcrasDnaDon	
Shared	 Heap	

r1	

Local	 Heap	

T1	 T2	

r2	 x2	

Delayed	 write	 list	 à	

x1	

Force	 local	
GC	

T	 à	 T	 is	 running	

T	 à	 T	 is	 suspended	

T	 à	 T	 is	 blocked	
16	

à	 r1	 :=	 x1	 	 	 	 	 	 	 r2	 :=	 x2	

Correctness	
•  Does	 ProcrasDnaDon	 introduce	 deadlocks?	
–  Threads	 can	 be	 procrasDnated	 while	 holding	 a	 lock!	

	

17	

T1	 T2	 T2	
T	 à	 T	 is	 running	

T	 à	 T	 is	 suspended	

T	 à	 T	 is	 blocked	

Correctness	

18	

T1	

•  Is	 ProcrasDnaDon	 safe?	
– Yes.	 Forcing	 a	 local	 GC	 unblocks	 the	 threads.	
– No	 deadlocks	 or	 livelocks!	

T2	
T	 à	 T	 is	 running	

T	 à	 T	 is	 suspended	

T	 à	 T	 is	 blocked	

•  Does	 ProcrasDnaDon	 introduce	 deadlocks?	
–  Threads	 can	 be	 procrasDnated	 while	 holding	 a	 lock!	

	

Correctness	

19	

T1	 T2	

•  Does	 ProcrasDnaDon	 introduce	 deadlocks?	
–  Threads	 can	 be	 procrasDnated	 while	 holding	 a	 lock!	

	
T	 à	 T	 is	 running	

T	 à	 T	 is	 suspended	

T	 à	 T	 is	 blocked	
•  Is	 ProcrasDnaDon	 safe?	
– Yes.	 Forcing	 a	 local	 GC	 unblocks	 the	 threads.	
– No	 deadlocks	 or	 livelocks!	

•  Efficacy	 (ProcrasDnaDon)	 ∝	 #	 Available	 runnable	
threads	 	

Is	 ProcrasDnaDon	 alone	 enough?	

20	

M	

W1	 W1	 W1	

F	

J	

Serial	 (low	 thread	 availability)	

Concurrent	 (high	 thread	 availability)	

•  With	 ProcrasDnaDon,	 half	 of	 local	 major	 GCs	 were	
forced	

Eager	 exporDng	 writes	 while	 preserving	
visibility	 invariant	

Cleanliness	
•  A	 clean	 object	 closure	 can	 be	 liped	 to	 the	
shared	 heap	 without	 breaking	 the	 visibility	
invariant	

21	

r	 :=	 x	
inSharedHeap	 (r)	

inLocalHeap	 (x)	
&&	

isClean	 (x)	

Eager	 write	 (no	 ProcrasDnaDon)	

Cleanliness:	 IntuiDon	

22	

Shared	 Heap	

Local	 Heap	

x	

lip	 (x)	 to	 shared	 	
heap	

Shared	 Heap	

Local	 Heap	

Cleanliness:	 IntuiDon	

23	

x	

FWD	

find	 all	 references	 	
to	 FWD	

Shared	 Heap	

Local	 Heap	

Cleanliness:	 IntuiDon	

24	

x	 Need	 to	 scan	 the	 	
enDre	 local	 heap	

Local	 Heap	

h	

Shared	 Heap	

Cleanliness:	 Simpler	 quesDon	

25	

x	

FWD	

Do	 all	 references	 	
originate	 from	 	
heap	 region	 h?	

sizeof	 (h)	 <<	 sizeof	 (local	 heap)	

Local	 Heap	

h	

Shared	 Heap	

Cleanliness:	 Simpler	 quesDon	

26	

x	 Only	 scan	 the	
heap	 region	 h.	

Heap	
session!	

sizeof	 (h)	 <<	 sizeof	 (local	 heap)	

•  Current	 session	 closed	 &	 new	 session	 opened	
–  Aper	 an	 exporDng	 write,	 a	 user-‐level	 context	 switch,	 a	
local	 GC	

Heap	 Sessions	
•  Source	 of	 an	 exporDng	 write	 is	 open	
–  Young	
–  rarely	 referenced	 from	 outside	 the	 closure	

27	

Previous	 Session	 Current	
Session	 Free	 Local	 Heap	

SessionStart	 FronDer	

Young	
Objects	

Old	 	
Objects	 Start	

•  Current	 session	 closed	 &	 new	 session	 opened	
–  Aper	 an	 exporDng	 write,	 a	 user-‐level	 context	 switch,	 a	
local	 GC	

–  SessionStart	 is	 moved	 to	 FronDer	

Heap	 Sessions	
•  Source	 of	 an	 exporDng	 write	 is	 open	
–  Young	
–  rarely	 referenced	 from	 outside	 the	 closure	

28	
•  Average	 current	 session	 size	 <	 4KB	

Previous	 Session	 Free	 Local	 Heap	

FronDer	 &	 SessionStart	 Start	

Cleanliness:	 Eager	 exporDng	 writes	

29	

•  A	 clean	 object	 closure	
–  is	 fully	 contained	 within	 the	 current	 session	
–  has	 no	 references	 from	 previous	 session	

Previous	 Session	
Current	
Session	

Free	
Local	 Heap	

X

Y Z

r	 :=	 x	

r	
Shared	 Heap	

Cleanliness:	 Eager	 exporDng	 writes	

30	

•  A	 clean	 object	 closure	
–  is	 fully	 contained	 within	 the	 current	 session	
–  has	 no	 references	 from	 previous	 session	

Previous	 Session	
Current	
Session	

Free	
Local	 Heap	

X

Y Z

r	 :=	 x	

r	
Shared	 Heap	

Walk	
and	 fix	

FWD	

Avoid	 tracing	 current	 session?	
•  Many	 SML	 objects	 are	 tree-‐structured	 (List,	 Tree,	 etc,.)	

–  Specialize	 for	 no	 pointers	 from	 outside	 the	 object	 closure	

•  ∀x’	 ∊	 transiDve	 object	 closure	 (x),	 	
	 	 	 ref_count	 (x)	 =	 0	 &&	 ref_count	 (x’)	 =	 1	

31	

Local	 Heap	

x(0)	

y(1)	

z(1)	

•  Eager	 exporDng	 write	
–  No	 current	 session	 tracing	 needed!	

	

No	 refs	
from	

outside	

–  ref_count	 does	 not	 consider	 pointers	 from	 stack	 or	 registers	

Reference	 Count	

32	

Current	 Session	

X(0)	

Current	 Session	

X(1)	

Current	 Session	

X(LM)	

Current	 Session	

X(G)	

Prev
Sess	

Zero	 One	 LocalMany	 Global	

•  Purpose	
–  Track	 pointers	 from	 previous	 session	 to	 current	 session	
–  IdenDfy	 tree-‐structured	 object	

•  Does	 not	 track	 pointers	 from	 stack	 and	 registers	
–  Reference	 count	 only	 triggered	 during	 object	 iniDalizaDon	
and	 mutaDon	

Bringing	 it	 all	 together	
•  ∀x’	 ∊	 transiDve	 object	 closure	 (x),	 	

	 	 	 if	 max	 (ref_count	 (x’))	
– One	 &	 ref_count	 (x)	 =	 0	 ⇒	 tree-‐structured	 (Clean)	
⇒	 Session	 tracing	 not	 needed	

– LocalMany	 ⇒	 Clean	 ⇒	 Trace	 current	 session	
– Global	 ⇒	 1+	 pointer	 from	 previous	 session	 ⇒	
ProcrasGnate	

33	

Example	 1:	 Tree-‐structured	 Object	

34	

Previous	
Session	 Current	 Session	

x(0)	

y(1)	

z(1)	
T1	 Local	 Heap	

Shared	 heap	

r	 :=	 x	

r	

current	 	
stack	

Shared	 heap	

Example	 1:	 Tree-‐structured	 Object	

35	

Previous	
Session	 Current	 Session	

x	

y	

z	

T1	 current	 	
stack	 Local	 Heap	

r	 :=	 x	

FWD	

r	

Walk	
current	
stack	

Shared	 heap	

Example	 1:	 Tree-‐structured	 Object	

36	

Previous	
Session	 Current	 Session	

x	

y	

z	

T1	 current	 	
stack	 Local	 Heap	

r	 :=	 x	

r	

No	 need	 to	
walk	 current	
session!	

Shared	 heap	

Example	 1:	 Tree-‐structured	 Object	

37	

Previous	
Session	 Current	 Session	

x	

y	

z	

T1	 Local	 Heap	

r	 :=	 x	

r	

T2	 Next	
stack	

FWD	 current	 	
stack	

Shared	 heap	

Example	 1:	 Tree-‐structured	 Object	

38	

Previous	
Session	 Current	 Session	

x	

y	

z	

T1	 previous	
stack	 Local	 Heap	

r	 :=	 x	

r	

T2	 current	
stack	

Context	 Switch	

Walk	
target	
stack	

Example	 2:	 Object	 Graph	

39	

Previous	
Session	 Current	 Session	

x(0)	

y
(LM)	

z(1)	
current	 	
stack	 Local	 Heap	

Shared	 heap	

r	 :=	 x	

r	

a	

Shared	 heap	

Example	 2:	 Object	 Graph	

40	

Previous	
Session	 Current	 Session	

x	

y	

z	

current	 	
stack	 Local	 Heap	

r	 :=	 x	

r	

a	

FWD	

FWD	

Walk	
current	
stack	

Walk	
current	
session	

Shared	 heap	

Example	 2:	 Object	 Graph	

41	

Previous	
Session	 Current	 Session	

x	

y	

z	

current	 	
stack	 Local	 Heap	

r	 :=	 x	

r	

a	

Walk	
current	
stack	

Walk	
current	
session	 	

Example	 3:	 Global	 Reference	

42	

Previous	
Session	 Current	 Session	

x(0)	

y(1)	

z(G)	
T1	 current	 	

stack	 Local	 Heap	

Shared	 heap	

r	 :=	 x	

r	

a	

Example	 3:	 Global	 Reference	

43	

Previous	
Session	 Current	 Session	

x(0)	

y(1)	

z(G)	
T1	 current	 	

stack	 Local	 Heap	

Shared	 heap	

r	 :=	 x	

r	

a	

ProcrasDnate	

Immutable	 Objects	
•  Specialize	 exporDng	 writes	
•  If	 immutable	 object	 in	 previous	 session	
– Copy	 to	 shared	 heap	

•  Immutable	 objects	 in	 SML	 do	 not	 have	 idenGty	

– Original	 object	 unmodified	

•  Avoid	 space	 leaks	
– Treat	 large	 immutable	 objects	 as	 mutable	

44	

Cleanliness:	 Summary	
•  Cleanliness	 allows	 eager	 exporDng	 writes	
while	 preserving	 visibility	 invariant	

•  With	 ProcrasDnaDon	 +	 Cleanliness,	 <1%	 of	
local	 GCs	 were	 forced	

45	

EvaluaDon	

46	

•  Variants	
–  RB-‐	 :	 TLC	 with	 ProcrasDnaDon	 and	 Cleanliness	 	
–  RB+	 :	 TLC	 with	 read	 barriers	

•  Sansom’s	 dual-‐mode	 GC	
–  Cheney’s	 2-‐space	 copying	 collecDon	 ßà	 Jonker’s	 sliding	
mark-‐compacDng	

–  GeneraDonal,	 2	 generaDons,	 No	 aging	
•  Target	 Architectures:	 	
–  16-‐core	 AMD	 Opteron	 server	 (NUMA)	
–  48-‐core	 Intel	 SCC	 (non-‐cache	 coherent)	
–  864-‐core	 Azul	 Vega3	

Results	
•  Speedup:	 At	 3X	 min	 heap	 size,	 RB-‐	 faster	 than	
RB+	
– AMD	 (16-‐cores)	 32%	 (2X	 faster	 than	 STW	
collector)	

– SCC	 (48-‐cores)	 20%	
– AZUL	 (864-‐cores)	 30%	

•  Concurrency	
– During	 exporDng	 write,	 8	 runnable	 user-‐level	
threads/core!	

47	

Cleanliness	 Impact	
•  RB-‐	 MU-‐	 :	 RB-‐	 GC	 ignoring	 mutability	 for	 Cleanliness	
•  RB-‐	 CL-‐	 :	 RB-‐	 GC	 ignoring	 Cleanliness	 (Only	 ProcrasGnaGon)	

48	

Avg.	 slowdown	
-‐	

11.4%	
28.2%	
31.7%	

Conclusion	
•  Eliminate	 the	 need	 for	 read	 barriers	 by	
preserving	 the	 visibility	 invariant	
– Procras'na'on:	 Exploit	 concurrency	 for	 delaying	
exporDng	 writes	

– Cleanliness:	 Exploit	 generaDonal	 property	 for	
eagerly	 perform	 exporDng	 writes	

•  AddiDonal	 niceDes	
– Completely	 dynamic	 à	 Portable	
– Does	 not	 impose	 any	 restricDon	 on	 the	 GC	
strategy	

49	

QuesDons?	

hxp://mulDmlton.cs.purdue.edu	

50	

Results	
•  On	 AMD,	 16	 Cores,	 3X	 minimum	 heap	 size	
•  Mutator	 'me:	 	
– STW	 GC	 spends	 the	 least	 amount	 of	 Dme	 in	 the	
mutator	
•  No	 read/write	 barriers	

– Compared	 to	 STW	 GC,	 the	 mutator	 Dme	 of	
•  RB-‐	 18%	 more,	 RB+	 39%	 more	

•  GC	 'me:	 	
– RB-‐	 spends	 the	 least	 amount	 Dme	 doing	 GC	
– RB-‐	 within	 5%	 of	 RB+	

51	

Performance	 on	 AMD	 (16-‐cores)	

(a) Total time (b) Mutator time (c) GC time (d) GC overhead

Figure 11: Performance comparison of Stop-the-world (STW), Boehm-Demers-Weiser conservative garbage collector (BDW), local collector

with read barriers (RB+), and local collector without read barriers (RB-): Geometric mean for 8 benchmarks running on AMD64 with 16

cores.

(a) Total time (b) Mutator time (c) Garbage collection time (d) Garbage collection overhead

Figure 12: Performance comparison of local collector with read barriers (RB+) and local collector without read barriers (RB-): Geometric

mean for 8 benchmarks running on Azul with 846 cores.

(a) Total time (b) Mutator time (c) Garbage collection time (d) Garbage collection overhead

Figure 13: Performance comparison of local collector with read barriers (RB+) and local collector without read barriers (RB-): Geometric

mean for 8 benchmarks running on SCC with 48 cores.

explains why the total running time of RB- approaches RB+ as the

heap size is decreased in Figure 11a. With decreasing heap size, the

programs spend a larger portion of the time performing GCs, while

the mutator time remains consistent. Hence, there is diminishing

returns from using RB- as heap size decreases.

Next, we analyze the performance on Azul (see Figure 12). We

only consider performance of our local collectors since our AMD

results show that the other collectors (STW and BDW) simply do

not have favorable scalability characteristics. At 3X the minimum

heap size, RB- is 30% faster than RB+.

SCC performance results are presented in Figure 13. At 3X the

minimum heap size, RB- is 20% faster than RB+. From the total

time graphs, we can see that the programs tend to run much slower

as we decrease the heap sizes on SCC. Compared to the fastest

running times, the slowest running time for RB- is 2.01X, 2.05X,

and 3.74X slower on AMD, Azul, and SCC respectively. This is

due to the increased number of shared heap collections, which are

more expensive than other architectures as a result of the absence

of caching. This is noticeable by a more rapid increase in garbage

collection overhead percentages (Figure 13d).

7.3 Impact of cleanliness
Cleanliness information allows the runtime system to avoid pre-

empting threads on a write barrier when the source of an exporting

write is clean. In order to study the impact of cleanliness, we re-

moved the reference counting code and cleanliness check from the

write barrier; thus, every exporting write results in a thread preemp-

tion and stall. The results presented here were taken on the AMD

machine with programs running on 16 cores with the benchmark

configurations given in Figure 10. The results will be similar on

SCC and Azul.

At	 3X	 min	
heap	 size:	
-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐	
RB+	 	 32%	 	
STW 	 106%	
BDW	 584%	

52	

(a) Total time (b) Mutator time (c) GC time (d) GC overhead

Figure 11: Performance comparison of Stop-the-world (STW), Boehm-Demers-Weiser conservative garbage collector (BDW), local collector

with read barriers (RB+), and local collector without read barriers (RB-): Geometric mean for 8 benchmarks running on AMD64 with 16

cores.

(a) Total time (b) Mutator time (c) Garbage collection time (d) Garbage collection overhead

Figure 12: Performance comparison of local collector with read barriers (RB+) and local collector without read barriers (RB-): Geometric

mean for 8 benchmarks running on Azul with 846 cores.

(a) Total time (b) Mutator time (c) Garbage collection time (d) Garbage collection overhead

Figure 13: Performance comparison of local collector with read barriers (RB+) and local collector without read barriers (RB-): Geometric

mean for 8 benchmarks running on SCC with 48 cores.

explains why the total running time of RB- approaches RB+ as the

heap size is decreased in Figure 11a. With decreasing heap size, the

programs spend a larger portion of the time performing GCs, while

the mutator time remains consistent. Hence, there is diminishing

returns from using RB- as heap size decreases.

Next, we analyze the performance on Azul (see Figure 12). We

only consider performance of our local collectors since our AMD

results show that the other collectors (STW and BDW) simply do

not have favorable scalability characteristics. At 3X the minimum

heap size, RB- is 30% faster than RB+.

SCC performance results are presented in Figure 13. At 3X the

minimum heap size, RB- is 20% faster than RB+. From the total

time graphs, we can see that the programs tend to run much slower

as we decrease the heap sizes on SCC. Compared to the fastest

running times, the slowest running time for RB- is 2.01X, 2.05X,

and 3.74X slower on AMD, Azul, and SCC respectively. This is

due to the increased number of shared heap collections, which are

more expensive than other architectures as a result of the absence

of caching. This is noticeable by a more rapid increase in garbage

collection overhead percentages (Figure 13d).

7.3 Impact of cleanliness
Cleanliness information allows the runtime system to avoid pre-

empting threads on a write barrier when the source of an exporting

write is clean. In order to study the impact of cleanliness, we re-

moved the reference counting code and cleanliness check from the

write barrier; thus, every exporting write results in a thread preemp-

tion and stall. The results presented here were taken on the AMD

machine with programs running on 16 cores with the benchmark

configurations given in Figure 10. The results will be similar on

SCC and Azul.

(a) Total time (b) Mutator time (c) GC time (d) GC overhead

Figure 11: Performance comparison of Stop-the-world (STW), Boehm-Demers-Weiser conservative garbage collector (BDW), local collector

with read barriers (RB+), and local collector without read barriers (RB-): Geometric mean for 8 benchmarks running on AMD64 with 16

cores.

(a) Total time (b) Mutator time (c) Garbage collection time (d) Garbage collection overhead

Figure 12: Performance comparison of local collector with read barriers (RB+) and local collector without read barriers (RB-): Geometric

mean for 8 benchmarks running on Azul with 846 cores.

(a) Total time (b) Mutator time (c) Garbage collection time (d) Garbage collection overhead

Figure 13: Performance comparison of local collector with read barriers (RB+) and local collector without read barriers (RB-): Geometric

mean for 8 benchmarks running on SCC with 48 cores.

explains why the total running time of RB- approaches RB+ as the

heap size is decreased in Figure 11a. With decreasing heap size, the

programs spend a larger portion of the time performing GCs, while

the mutator time remains consistent. Hence, there is diminishing

returns from using RB- as heap size decreases.

Next, we analyze the performance on Azul (see Figure 12). We

only consider performance of our local collectors since our AMD

results show that the other collectors (STW and BDW) simply do

not have favorable scalability characteristics. At 3X the minimum

heap size, RB- is 30% faster than RB+.

SCC performance results are presented in Figure 13. At 3X the

minimum heap size, RB- is 20% faster than RB+. From the total

time graphs, we can see that the programs tend to run much slower

as we decrease the heap sizes on SCC. Compared to the fastest

running times, the slowest running time for RB- is 2.01X, 2.05X,

and 3.74X slower on AMD, Azul, and SCC respectively. This is

due to the increased number of shared heap collections, which are

more expensive than other architectures as a result of the absence

of caching. This is noticeable by a more rapid increase in garbage

collection overhead percentages (Figure 13d).

7.3 Impact of cleanliness
Cleanliness information allows the runtime system to avoid pre-

empting threads on a write barrier when the source of an exporting

write is clean. In order to study the impact of cleanliness, we re-

moved the reference counting code and cleanliness check from the

write barrier; thus, every exporting write results in a thread preemp-

tion and stall. The results presented here were taken on the AMD

machine with programs running on 16 cores with the benchmark

configurations given in Figure 10. The results will be similar on

SCC and Azul.

MulDMLton	 -‐	 SCC	 implementaDon	

Programming Models for the Intel SCC Many-core Processor Chair for Operating Systems

W
or

ks
ho

p
AP

M
M

 2
01

1
as

 P
ar

t o
f t

he
 H

PC
S

20
11

4

• Strictly No Cache Coherency
Cluster-on-Chip Architecture

• Private off-die DRAM Regions (one per Core)
Caches enabled! One Linux instance per Core!

• Shared / Global off-die DRAM Region
Caches disabled per default! e.g. for global shared data

• Shared on-die MPB Regions
Cached in L1, L2 Bypass / Fast L1 Invalidation for MPB-Data

Shared off-die DRAM

CPU0L1$L2$Private DRAM CPU47L1$L2$Private DRAM

Message Passing Buffer (8KB/core)

Shared-Memory Models of the SCC

Non-‐Cached	 -‐-‐	
Shared	 heap	

Cached	 -‐-‐	
Local	 heap	

53	

Total	 Dme:	 SCC	 and	 AZUL	

54	

(a) Total time (b) Mutator time (c) GC time (d) GC overhead

Figure 11: Performance comparison of Stop-the-world (STW), Boehm-Demers-Weiser conservative garbage collector (BDW), local collector

with read barriers (RB+), and local collector without read barriers (RB-): Geometric mean for 8 benchmarks running on AMD64 with 16

cores.

(a) Total time (b) Mutator time (c) Garbage collection time (d) Garbage collection overhead

Figure 12: Performance comparison of local collector with read barriers (RB+) and local collector without read barriers (RB-): Geometric

mean for 8 benchmarks running on Azul with 846 cores.

(a) Total time (b) Mutator time (c) Garbage collection time (d) Garbage collection overhead

Figure 13: Performance comparison of local collector with read barriers (RB+) and local collector without read barriers (RB-): Geometric

mean for 8 benchmarks running on SCC with 48 cores.

explains why the total running time of RB- approaches RB+ as the

heap size is decreased in Figure 11a. With decreasing heap size, the

programs spend a larger portion of the time performing GCs, while

the mutator time remains consistent. Hence, there is diminishing

returns from using RB- as heap size decreases.

Next, we analyze the performance on Azul (see Figure 12). We

only consider performance of our local collectors since our AMD

results show that the other collectors (STW and BDW) simply do

not have favorable scalability characteristics. At 3X the minimum

heap size, RB- is 30% faster than RB+.

SCC performance results are presented in Figure 13. At 3X the

minimum heap size, RB- is 20% faster than RB+. From the total

time graphs, we can see that the programs tend to run much slower

as we decrease the heap sizes on SCC. Compared to the fastest

running times, the slowest running time for RB- is 2.01X, 2.05X,

and 3.74X slower on AMD, Azul, and SCC respectively. This is

due to the increased number of shared heap collections, which are

more expensive than other architectures as a result of the absence

of caching. This is noticeable by a more rapid increase in garbage

collection overhead percentages (Figure 13d).

7.3 Impact of cleanliness
Cleanliness information allows the runtime system to avoid pre-

empting threads on a write barrier when the source of an exporting

write is clean. In order to study the impact of cleanliness, we re-

moved the reference counting code and cleanliness check from the

write barrier; thus, every exporting write results in a thread preemp-

tion and stall. The results presented here were taken on the AMD

machine with programs running on 16 cores with the benchmark

configurations given in Figure 10. The results will be similar on

SCC and Azul.

(a) Total time (b) Mutator time (c) GC time (d) GC overhead

Figure 11: Performance comparison of Stop-the-world (STW), Boehm-Demers-Weiser conservative garbage collector (BDW), local collector

with read barriers (RB+), and local collector without read barriers (RB-): Geometric mean for 8 benchmarks running on AMD64 with 16

cores.

(a) Total time (b) Mutator time (c) Garbage collection time (d) Garbage collection overhead

Figure 12: Performance comparison of local collector with read barriers (RB+) and local collector without read barriers (RB-): Geometric

mean for 8 benchmarks running on Azul with 846 cores.

(a) Total time (b) Mutator time (c) Garbage collection time (d) Garbage collection overhead

Figure 13: Performance comparison of local collector with read barriers (RB+) and local collector without read barriers (RB-): Geometric

mean for 8 benchmarks running on SCC with 48 cores.

explains why the total running time of RB- approaches RB+ as the

heap size is decreased in Figure 11a. With decreasing heap size, the

programs spend a larger portion of the time performing GCs, while

the mutator time remains consistent. Hence, there is diminishing

returns from using RB- as heap size decreases.

Next, we analyze the performance on Azul (see Figure 12). We

only consider performance of our local collectors since our AMD

results show that the other collectors (STW and BDW) simply do

not have favorable scalability characteristics. At 3X the minimum

heap size, RB- is 30% faster than RB+.

SCC performance results are presented in Figure 13. At 3X the

minimum heap size, RB- is 20% faster than RB+. From the total

time graphs, we can see that the programs tend to run much slower

as we decrease the heap sizes on SCC. Compared to the fastest

running times, the slowest running time for RB- is 2.01X, 2.05X,

and 3.74X slower on AMD, Azul, and SCC respectively. This is

due to the increased number of shared heap collections, which are

more expensive than other architectures as a result of the absence

of caching. This is noticeable by a more rapid increase in garbage

collection overhead percentages (Figure 13d).

7.3 Impact of cleanliness
Cleanliness information allows the runtime system to avoid pre-

empting threads on a write barrier when the source of an exporting

write is clean. In order to study the impact of cleanliness, we re-

moved the reference counting code and cleanliness check from the

write barrier; thus, every exporting write results in a thread preemp-

tion and stall. The results presented here were taken on the AMD

machine with programs running on 16 cores with the benchmark

configurations given in Figure 10. The results will be similar on

SCC and Azul.

SCC	 (48-‐cores)	 AZUL	 (864-‐Cores)	

20%	 30%	

Non-‐cache	 coherent	 Scalable,	 cache-‐coherent	

Cleanliness	 Impact	 (1)	

!"
#$
%&

'(
)

!"
"#
$%&
'

($
&)
*'
+,
-

./
,)
-0
&$
12
'

0$
3
*4
56%
5*

78
",
'-*

&%)
9

:
$)
;*
"<
&/
-

=,
8"*
%8

>$
?-
&$
8*

*!+ @AB@ CDEBF @EC BADF@ FEA@F @BF @ED BEFB
*!+,-.+ @AB@ CGHFB@F @HF IBEECB EGBFB FGH CBBGHF BICB
*!+,/0+ @FCFBF DI@EDAF@ EG@IA EADICFB FIGFBH@@ FECH@ H@FBCH D@@HA

Figure 14: Number of preemptions on write barrier.

!"
#$
%&

'(
)

!"
"#
$%&
'

($
&)
*'
+,
-

./
,)
-0
&$
12
'

0$
3
*4
56%
5*

78
",
'-*

&%)
9

:
$)
;*
"<
&/
-

=,
8"*
%8

>$
?-
&$
8*

!"
#$
%&

'(
)

!"
"#
$%&
'

($
&)
*'
+,
-

./
,)
-0
&$
12
'

0$
3
*4
56%
5*

78
",
'-*

&%)
9

:
$)
;*
"<
&/
-

=,
8"*
%8

>$
?-
&$
8*

*!+ @A@B @ACD @ EAFG @ CAGE @ CADH
*!+,-.+ @A@B CIAH @A@E IAGD @A@H HABJ IAED CADH
*!+,/0+ EBAFF C@@ @ACB IIADF HCAJG BJAHH CIAE HGABJ

Figure 15: Forced GCs as a percentage of the total number of major
GCs.

Figure 14 shows the number of preemptions on write barrier for
different local collector configurations. RB- row represents the lo-
cal collector designs with all of the features enabled; RB- MU- row
shows a cleanliness optimization that does not take an object’s mu-
tability into consideration in determining cleanliness (using only
recorded reference counts instead), and row RB- CL- row repre-
sents preemptions incurred when the collector does not use any
cleanliness information at all. Without cleanliness, on average, the
programs perform substantially more preemptions when encoun-
tering a write barrier.

Recall that if all of the threads belonging to a core get preempted
on a write barrier, a local major GC is forced, which lifts all of
the sources of exporting writes, fixes the references to forwarding
pointers and unblocks the stalled threads. Hence, an increase in the
number of preemptions leads to an increase in the number of local
collections.

Figure 15 shows the percentage of local major GCs that were
forced compared to the total number of local major GCs. Row RB-
CL- shows the percentage of forced GCs if cleanliness information
is not used. On average, 49% of local major collection performed
is due to forced GCs if cleanliness information is not used, whereas
it is less than 1% otherwise. On benchmarks like BarnesHut,
GameOfLife and Mandelbrot, where all of the threads tend to
operate on a shared global data structure, there are a large number
of exporting writes. On such benchmarks almost all local GCs are
forced in the absence of cleanliness. This adversely affects the
running time of programs.

Figure 16 shows the running time of programs without using
cleanliness. On average, programs tend to run 28.2% slower if
cleanliness information is ignored. The results show that cleanli-
ness analysis therefore plays a significant role in our GC design.

7.4 Impact of immutability
If the source of an exporting write is immutable, we can make a
copy of the object in the shared heap and assign a reference to the
new shared heap object to the target. Hence, we can ignore the
reference count of such objects. Not all languages may have the
ability to distinguish between mutable and immutable objects in
the compiler or in the runtime system. Hence, we study the impact
of our local collector design with mutability information in mind.
To do this, we ignore the test for mutability in the cleanliness check

Figure 16: Impact of utilizing object mutability information and
cleanliness analysis on the performance of RB- GC.

!"#$%&'&&()*%&(+'
,-./
01/.
230,
0244
,20/
/5,2
0,34
00,2

!"
#$
%&

'(
)

!6
67
8(9
&

:8
9*
'&
;<
=

>)
<*
=#
98
?;
&

@8
A
'B
CD(
C'

EF
6<
&='

9(*
#

G
8*
H'
6I
9)
=

J<
F6'
(F

K8
L=
98
F'

*+,-+$."'# 1$2 02$4 /$3 ,2$, 05$3 4$1 02$2 /$,
/012+3"3345#+
346"+789:"3;

,-./ 01/. 230, 0244 ,20/ /5,2 0,34 00,2

Figure 17: Impact of heap session: % LM clean represents the
fraction of instances when a clean object closure has at least one
object with LOCAL MANY references.

(Line 4 in Figure 6) and modify the object lifting code in Figure 8
to treat all objects as mutable.

RB- MU- row in Figure 14 and Figure 15 show the number of
write barrier preemptions and the percentage of forced GCs, re-
spectively, if all objects were treated as mutable. For some pro-
grams such as AllPairs, CountGraphs, or Kclustering, ob-
ject mutability does not play a significant factor. For benchmarks
where it does, distinguishing between mutable and immutable ob-
jects helps avoid inducing preemptions on a write barrier since a
copy of the immutable object can be created in the shared heap
without the need to repair existing references to the local heap copy.

Figure 16 shows the performance impact of taking object
mutability into account. BarnesHut, GameOfLife and Nucleic
are slower due to the increased number of forced GCs. Interest-
ingly, AllPairs, CountGraphs, Kclustering and Raytrace are
marginally faster since they avoid manipulating the imSet (Line
14 in Figure 8) and walking immutable objects after the objects
are lifted (Lines 25-27 in Figure 8). On average, we see a 11.4%
performance impact if mutability information is not utilized for
cleanliness.

7.5 Impact of heap session
In order to assess the effectiveness of using heap sessions, we mea-
sured the percentage of instances where the source of an exporting
write is clean with at least one of the objects in the closure has a
LOCAL MANY reference. During such instances, we walk the current
heap session to fix any references to forwarded objects. Without us-
ing heap sessions, we would have preempted the thread in the write
barrier, reducing available concurrency. The results were obtained

55	

Number	 of	 PreempDons	 on	 exporDng	 writes	

Forced	 GCs	 as	 a	 %	 of	 total	 number	 of	 local	 major	 GCs	
	

Benchmark	 CharacterisDcs	

56	

!"# $%% !&'(!"# $%% !&'()*$+ !"# $%% !&'(!"#$%&##
'(()*+,- ./% 01 /020 /# /# 0! // "0# 0/" 1"%#. !1"$0##&
3*,45-678 %%" %2 /1." "2 "2 .%# " 0/" /2"! 1"%#. !1.$%&0
9:748;,*<6- "0&! /!! !!%0 "! "! //%# / /". "0# /#1.! !!2$120
=*>5?@A+@5 "!!0 /"% !"## "/ "/ &01 /1 "0# /2"! ./&" !0/$!&10
BC(7-85,+4; 1#!1 /2. .&"% 1" 1" /"#0 1 "0# /2"! ./&" !01$#.&#
D*4E5(F,:8 1!& !1 ##& " " 1" . /". 0/" ./&" !#%$11&0
G7C(5+C /!12 .% !%#/ /1 /! #2& / #! 1.! /#1.! !%.$#1".
H*I8,*C5 .2& 0! "/11 // /" ##1 ! /". "0# "2!. !%&$#.."

!.0$1#..
!&2$012.
022$02!&
020$!/2/
02#$.#11
02%$/.."
0/&$2/!/
01&$!/&/
0!/$10%%
002$/001
00!$2"&#
0#/$&..

0.2$20%1
0./$0""0
0.!$!01"
#2/$#0"

#/#$22&"
#1!$21/#
#%2$&%/"
.%%$2&#%
..0$.#/1
&11$/!11
&1&$022&
#.1$/!.%0

!,,-./01-2*3/04*
5"6789642.+:/;< =*>+;4/?8

6@048*!,,-./04?*5A69

Figure 10: Benchmark characteristics. %Sh represents the average
fraction of bytes allocated in the shared heap across all the archi-
tectures.

• AllPairs: an implementation of Floyd-Warshall algorithm for
computing all pairs shortest path.

• BarnesHut: an n-body simulation using Barnes-Hut algorithm.
• CountGraphs: computes all symmetries (automorphisms)

within a set of graphs.
• GameOfLife: Conway’s Game of Life simulator
• Kclustering: a k-means clustering algorithm, where each stage

is spawned as a server.
• Mandelbrot: a Mandelbrot set generator.
• Nucleic: Pseudoknot [11] benchmark applied on multiple in-

puts.
• Raytrace: a ray-tracing algorithm to render a scene.

Parameters are appropriately scaled for different architectures
to ensure sufficient work for each of the cores. The benchmarks
running on AMD and SCC were given the same input size. Hence,
we see that the benchmarks allocate the same amount of memory
during their lifetime. But, we increase the number of threads on
the SCC when compared to AMD since there is more hardware
parallelism available. For Azul, we scale both the input size and the
number of threads, and as a result we see a large increase in bytes
allocated when compared to the other platforms. Out of the total
bytes allocated during the program execution, on average 5.4% is
allocated in the shared heap. Thus, most of the objects allocated are
collected locally, without the need for stalling all of the mutators.

We observe that the allocation rate is highly architecture depen-
dent, and is the slowest on the SCC. Allocation rate is particularly
dependent on memory bandwidth, processor speed and cache be-
havior. On the SCC, not only is the processor slow (533MHz) but
the serial memory bandwidth for our experimental setup is only
around 70 MB/s.

7.2 Performance
Next, we analyze the performance of the new local collector design.
In order to establish a baseline for the results presented, we have
ported our runtime system to utilize the Boehm-Demers-Weiser
(BDW) conservative garbage collector [7]. We briefly describe the
port of our runtime system utilizing BDW GC.

Although BDW GC is conservative, it can utilize tracing infor-
mation when provided. Our compiler generates tracing information
for all objects, including the stack. However, we provide the trac-
ing information for all object allocations except the stack. Stack
objects in our runtime system represent all of the reserved space
for a stack, while only a part of the stack is actually used which can
grow and shrink as frames are pushed and popped. Since the BDW
GC does not allow tracing information of objects to be changed af-

ter allocation, we scan stack objects conservatively. BDW uses a
mark-sweep algorithm, and we enable parallel marking and thread-
local allocations.

Figure 11a illustrates space-time trade-offs critical for any
garbage collector evaluation. STW GC is the baseline stop-the-
world collector described in Section 3.2, while RB+ and RB- are
local collectors. RB+ is a local collector with read barriers while
RB- is our new local collector design without read barriers, exploit-
ing procrastination and cleanliness. We compare the normalized
running times of our benchmarks under different garbage collec-
tion schemes as we decrease the heap size. For each run of the
experiment, we decrease the maximum heap size allowed and re-
port the maximum size of the heap utilized. Thus, we leave it to the
collectors to figure out the optimal heap size, within the allowed
space. This is essential for the local collectors, since the allocation
pattern of each core is usually very different and depends on the
structure of the program.

The results presented here were collected on 16 cores. As we
decrease overall heap sizes, we see programs under all of the dif-
ferent GC schemes taking longer to run. But RB- exhibits better
performance characteristics than its counterparts. We observe that
the minimum heap size under which the local collectors would run
is greater than the STW and BDW GCs. In the local collectors,
since the heap is split across all of the cores, there is more frag-
mentation. Also, under the current scheme, each local collector is
greedy and will try to utilize as much heap as it can in order to
reduce the running time (by choosing semi-space collection over
mark-compact), without taking into account the heap requirements
of other local collectors. Currently, when one of the local cores
runs out of memory, we terminate the program. Since we are inter-
ested in throughput on scalable architectures where memory is not
a bottleneck, we have not optimized the collectors for memory uti-
lization. We believe we can modify our collector for memory con-
strained environments by allowing local heaps to shrink on demand
and switch from semi-space to compacting collection, if other local
heaps run out of memory.

The STW and BDW GCs are much slower than the two local
collectors. In order to study the reason behind this slowdown,
we separate the mutator time (Figure 11b) and garbage collection
time (Figure 11c). We see that STW GC is actually faster than
the local collectors in terms of mutator time, since it does not
pay the overhead of executing read or write barriers. But, since
every collection requires stopping all the mutators and a single
collector performs the collection, it executes serially during a GC.
Figure 11d shows that roughly 70% of the execution total time for
our benchmarks under STW is spent performing GCs, negatively
impacting scalability.

Interestingly, we see that programs running under the BDW GC
are much slower when compared to other GCs. This is mainly due
to allocation costs. Although we enabled thread-local allocations,
on 16 cores, approximately 40% of the time was spent on object
allocation. While the cost of object allocation for our other collec-
tors only involves bumping the frontier, allocation in BDW GC is
significantly more costly, involving scanning through a free list, in-
curring substantial overhead. Moreover, BDW GC is tuned for lan-
guages like C/C++ and Java, where the object lifetimes are longer
and allocation rate is lower when compared to functional program-
ming languages.

In Figure 11a, at 3X the minimum heap size, RB+, STW and
BDW GCs are 32%, 106% and 584% slower than the RB- GC. We
observe that there is very little difference between RB+ and RB-
in terms of GC time but the mutator time for RB+ is consistently
higher than RB- due to read barrier costs. The difference in mutator
times is consistent since it is not adversely affected by the increased
number of GCs incurred as a result of smaller heap sizes. This also

Session	 Impact	

!"
#$
%&

'(
)

!"
"#
$%&
'

($
&)
*'
+,
-

./
,)
-0
&$
12
'

0$
3
*4
56%
5*

78
",
'-*

&%)
9

:
$)
;*
"<
&/
-

=,
8"*
%8

>$
?-
&$
8*

*!+ @AB@ CDEBF @EC BADF@ FEA@F @BF @ED BEFB
*!+,-.+ @AB@ CGHFB@F @HF IBEECB EGBFB FGH CBBGHF BICB
*!+,/0+ @FCFBF DI@EDAF@ EG@IA EADICFB FIGFBH@@ FECH@ H@FBCH D@@HA

Figure 14: Number of preemptions on write barrier.

!"
#$
%&

'(
)

!"
"#
$%&
'

($
&)
*'
+,
-

./
,)
-0
&$
12
'

0$
3
*4
56%
5*

78
",
'-*

&%)
9

:
$)
;*
"<
&/
-

=,
8"*
%8

>$
?-
&$
8*

!"
#$
%&

'(
)

!"
"#
$%&
'

($
&)
*'
+,
-

./
,)
-0
&$
12
'

0$
3
*4
56%
5*

78
",
'-*

&%)
9

:
$)
;*
"<
&/
-

=,
8"*
%8

>$
?-
&$
8*

*!+ @A@B @ACD @ EAFG @ CAGE @ CADH
*!+,-.+ @A@B CIAH @A@E IAGD @A@H HABJ IAED CADH
*!+,/0+ EBAFF C@@ @ACB IIADF HCAJG BJAHH CIAE HGABJ

Figure 15: Forced GCs as a percentage of the total number of major
GCs.

Figure 14 shows the number of preemptions on write barrier for
different local collector configurations. RB- row represents the lo-
cal collector designs with all of the features enabled; RB- MU- row
shows a cleanliness optimization that does not take an object’s mu-
tability into consideration in determining cleanliness (using only
recorded reference counts instead), and row RB- CL- row repre-
sents preemptions incurred when the collector does not use any
cleanliness information at all. Without cleanliness, on average, the
programs perform substantially more preemptions when encoun-
tering a write barrier.

Recall that if all of the threads belonging to a core get preempted
on a write barrier, a local major GC is forced, which lifts all of
the sources of exporting writes, fixes the references to forwarding
pointers and unblocks the stalled threads. Hence, an increase in the
number of preemptions leads to an increase in the number of local
collections.

Figure 15 shows the percentage of local major GCs that were
forced compared to the total number of local major GCs. Row RB-
CL- shows the percentage of forced GCs if cleanliness information
is not used. On average, 49% of local major collection performed
is due to forced GCs if cleanliness information is not used, whereas
it is less than 1% otherwise. On benchmarks like BarnesHut,
GameOfLife and Mandelbrot, where all of the threads tend to
operate on a shared global data structure, there are a large number
of exporting writes. On such benchmarks almost all local GCs are
forced in the absence of cleanliness. This adversely affects the
running time of programs.

Figure 16 shows the running time of programs without using
cleanliness. On average, programs tend to run 28.2% slower if
cleanliness information is ignored. The results show that cleanli-
ness analysis therefore plays a significant role in our GC design.

7.4 Impact of immutability
If the source of an exporting write is immutable, we can make a
copy of the object in the shared heap and assign a reference to the
new shared heap object to the target. Hence, we can ignore the
reference count of such objects. Not all languages may have the
ability to distinguish between mutable and immutable objects in
the compiler or in the runtime system. Hence, we study the impact
of our local collector design with mutability information in mind.
To do this, we ignore the test for mutability in the cleanliness check

Figure 16: Impact of utilizing object mutability information and
cleanliness analysis on the performance of RB- GC.

!"#$%&'&&()*%&(+'
,-./
01/.
230,
0244
,20/
/5,2
0,34
00,2

!"
#$
%&

'(
)

!6
67
8(9
&

:8
9*
'&
;<
=

>)
<*
=#
98
?;
&

@8
A
'B
CD(
C'

EF
6<
&='

9(*
#

G
8*
H'
6I
9)
=

J<
F6'
(F

K8
L=
98
F'

*+,-+$."'# 1$2 02$4 /$3 ,2$, 05$3 4$1 02$2 /$,
/012+3"3345#+
346"+789:"3;

,-./ 01/. 230, 0244 ,20/ /5,2 0,34 00,2

Figure 17: Impact of heap session: % LM clean represents the
fraction of instances when a clean object closure has at least one
object with LOCAL MANY references.

(Line 4 in Figure 6) and modify the object lifting code in Figure 8
to treat all objects as mutable.

RB- MU- row in Figure 14 and Figure 15 show the number of
write barrier preemptions and the percentage of forced GCs, re-
spectively, if all objects were treated as mutable. For some pro-
grams such as AllPairs, CountGraphs, or Kclustering, ob-
ject mutability does not play a significant factor. For benchmarks
where it does, distinguishing between mutable and immutable ob-
jects helps avoid inducing preemptions on a write barrier since a
copy of the immutable object can be created in the shared heap
without the need to repair existing references to the local heap copy.

Figure 16 shows the performance impact of taking object
mutability into account. BarnesHut, GameOfLife and Nucleic
are slower due to the increased number of forced GCs. Interest-
ingly, AllPairs, CountGraphs, Kclustering and Raytrace are
marginally faster since they avoid manipulating the imSet (Line
14 in Figure 8) and walking immutable objects after the objects
are lifted (Lines 25-27 in Figure 8). On average, we see a 11.4%
performance impact if mutability information is not utilized for
cleanliness.

7.5 Impact of heap session
In order to assess the effectiveness of using heap sessions, we mea-
sured the percentage of instances where the source of an exporting
write is clean with at least one of the objects in the closure has a
LOCAL MANY reference. During such instances, we walk the current
heap session to fix any references to forwarded objects. Without us-
ing heap sessions, we would have preempted the thread in the write
barrier, reducing available concurrency. The results were obtained

57	

Read	 Barrier	
CondiDonal	 (Baker	 Style)	 UncondiDonal	 (Brooks	 style)	

From	
From	

To	 To	

58	

Read	 Barrier	
CondiDonal	 (Baker	 Style)	 UncondiDonal	 (Brooks	 style)	

F	

pointer readBarrier (pointer *p) {

 if (*(Header*)(p – HD_OFF) == F)

 return *(pointer*)p;

 return p;

}

pointer readBarrier (pointer *p) {

 return *(pointer*)(p – IND_OFF);

}

F	

Has	 CondiDonal	 Check	 Needs	 extra	 header	 word	

From	
From	

To	 To	

59	

Read	 Barrier	 OpDmizaDons	
•  Stacks	 and	 registers	 never	 point	 to	 forwarding	
pointers	

•  “Eager”	 read	 barriers	 (D.Bacon	 et	 al.	 POPL’93)	
•  Scan	 stack	 aper	 exporDng	 write	
•  ExporDng	 write	 is	 a	 GC	 safe-‐point	
•  Reduces	 RB	 overhead	 by	 ~5%	

60	

Performance	 on	 AZUL	

(a) Total time (b) Mutator time (c) GC time (d) GC overhead

Figure 11: Performance comparison of Stop-the-world (STW), Boehm-Demers-Weiser conservative garbage collector (BDW), local collector

with read barriers (RB+), and local collector without read barriers (RB-): Geometric mean for 8 benchmarks running on AMD64 with 16

cores.

(a) Total time (b) Mutator time (c) Garbage collection time (d) Garbage collection overhead

Figure 12: Performance comparison of local collector with read barriers (RB+) and local collector without read barriers (RB-): Geometric

mean for 8 benchmarks running on Azul with 846 cores.

(a) Total time (b) Mutator time (c) Garbage collection time (d) Garbage collection overhead

Figure 13: Performance comparison of local collector with read barriers (RB+) and local collector without read barriers (RB-): Geometric

mean for 8 benchmarks running on SCC with 48 cores.

explains why the total running time of RB- approaches RB+ as the

heap size is decreased in Figure 11a. With decreasing heap size, the

programs spend a larger portion of the time performing GCs, while

the mutator time remains consistent. Hence, there is diminishing

returns from using RB- as heap size decreases.

Next, we analyze the performance on Azul (see Figure 12). We

only consider performance of our local collectors since our AMD

results show that the other collectors (STW and BDW) simply do

not have favorable scalability characteristics. At 3X the minimum

heap size, RB- is 30% faster than RB+.

SCC performance results are presented in Figure 13. At 3X the

minimum heap size, RB- is 20% faster than RB+. From the total

time graphs, we can see that the programs tend to run much slower

as we decrease the heap sizes on SCC. Compared to the fastest

running times, the slowest running time for RB- is 2.01X, 2.05X,

and 3.74X slower on AMD, Azul, and SCC respectively. This is

due to the increased number of shared heap collections, which are

more expensive than other architectures as a result of the absence

of caching. This is noticeable by a more rapid increase in garbage

collection overhead percentages (Figure 13d).

7.3 Impact of cleanliness
Cleanliness information allows the runtime system to avoid pre-

empting threads on a write barrier when the source of an exporting

write is clean. In order to study the impact of cleanliness, we re-

moved the reference counting code and cleanliness check from the

write barrier; thus, every exporting write results in a thread preemp-

tion and stall. The results presented here were taken on the AMD

machine with programs running on 16 cores with the benchmark

configurations given in Figure 10. The results will be similar on

SCC and Azul.

(a) Total time (b) Mutator time (c) GC time (d) GC overhead

Figure 11: Performance comparison of Stop-the-world (STW), Boehm-Demers-Weiser conservative garbage collector (BDW), local collector

with read barriers (RB+), and local collector without read barriers (RB-): Geometric mean for 8 benchmarks running on AMD64 with 16

cores.

(a) Total time (b) Mutator time (c) Garbage collection time (d) Garbage collection overhead

Figure 12: Performance comparison of local collector with read barriers (RB+) and local collector without read barriers (RB-): Geometric

mean for 8 benchmarks running on Azul with 846 cores.

(a) Total time (b) Mutator time (c) Garbage collection time (d) Garbage collection overhead

Figure 13: Performance comparison of local collector with read barriers (RB+) and local collector without read barriers (RB-): Geometric

mean for 8 benchmarks running on SCC with 48 cores.

explains why the total running time of RB- approaches RB+ as the

heap size is decreased in Figure 11a. With decreasing heap size, the

programs spend a larger portion of the time performing GCs, while

the mutator time remains consistent. Hence, there is diminishing

returns from using RB- as heap size decreases.

Next, we analyze the performance on Azul (see Figure 12). We

only consider performance of our local collectors since our AMD

results show that the other collectors (STW and BDW) simply do

not have favorable scalability characteristics. At 3X the minimum

heap size, RB- is 30% faster than RB+.

SCC performance results are presented in Figure 13. At 3X the

minimum heap size, RB- is 20% faster than RB+. From the total

time graphs, we can see that the programs tend to run much slower

as we decrease the heap sizes on SCC. Compared to the fastest

running times, the slowest running time for RB- is 2.01X, 2.05X,

and 3.74X slower on AMD, Azul, and SCC respectively. This is

due to the increased number of shared heap collections, which are

more expensive than other architectures as a result of the absence

of caching. This is noticeable by a more rapid increase in garbage

collection overhead percentages (Figure 13d).

7.3 Impact of cleanliness
Cleanliness information allows the runtime system to avoid pre-

empting threads on a write barrier when the source of an exporting

write is clean. In order to study the impact of cleanliness, we re-

moved the reference counting code and cleanliness check from the

write barrier; thus, every exporting write results in a thread preemp-

tion and stall. The results presented here were taken on the AMD

machine with programs running on 16 cores with the benchmark

configurations given in Figure 10. The results will be similar on

SCC and Azul.

At	 3X	 min	
heap	 size:	
-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐	
RB+ 	 30%	

61	

Performance	 on	 SCC	

(a) Total time (b) Mutator time (c) GC time (d) GC overhead

Figure 11: Performance comparison of Stop-the-world (STW), Boehm-Demers-Weiser conservative garbage collector (BDW), local collector

with read barriers (RB+), and local collector without read barriers (RB-): Geometric mean for 8 benchmarks running on AMD64 with 16

cores.

(a) Total time (b) Mutator time (c) Garbage collection time (d) Garbage collection overhead

Figure 12: Performance comparison of local collector with read barriers (RB+) and local collector without read barriers (RB-): Geometric

mean for 8 benchmarks running on Azul with 846 cores.

(a) Total time (b) Mutator time (c) Garbage collection time (d) Garbage collection overhead

Figure 13: Performance comparison of local collector with read barriers (RB+) and local collector without read barriers (RB-): Geometric

mean for 8 benchmarks running on SCC with 48 cores.

explains why the total running time of RB- approaches RB+ as the

heap size is decreased in Figure 11a. With decreasing heap size, the

programs spend a larger portion of the time performing GCs, while

the mutator time remains consistent. Hence, there is diminishing

returns from using RB- as heap size decreases.

Next, we analyze the performance on Azul (see Figure 12). We

only consider performance of our local collectors since our AMD

results show that the other collectors (STW and BDW) simply do

not have favorable scalability characteristics. At 3X the minimum

heap size, RB- is 30% faster than RB+.

SCC performance results are presented in Figure 13. At 3X the

minimum heap size, RB- is 20% faster than RB+. From the total

time graphs, we can see that the programs tend to run much slower

as we decrease the heap sizes on SCC. Compared to the fastest

running times, the slowest running time for RB- is 2.01X, 2.05X,

and 3.74X slower on AMD, Azul, and SCC respectively. This is

due to the increased number of shared heap collections, which are

more expensive than other architectures as a result of the absence

of caching. This is noticeable by a more rapid increase in garbage

collection overhead percentages (Figure 13d).

7.3 Impact of cleanliness
Cleanliness information allows the runtime system to avoid pre-

empting threads on a write barrier when the source of an exporting

write is clean. In order to study the impact of cleanliness, we re-

moved the reference counting code and cleanliness check from the

write barrier; thus, every exporting write results in a thread preemp-

tion and stall. The results presented here were taken on the AMD

machine with programs running on 16 cores with the benchmark

configurations given in Figure 10. The results will be similar on

SCC and Azul.

(a) Total time (b) Mutator time (c) GC time (d) GC overhead

Figure 11: Performance comparison of Stop-the-world (STW), Boehm-Demers-Weiser conservative garbage collector (BDW), local collector

with read barriers (RB+), and local collector without read barriers (RB-): Geometric mean for 8 benchmarks running on AMD64 with 16

cores.

(a) Total time (b) Mutator time (c) Garbage collection time (d) Garbage collection overhead

Figure 12: Performance comparison of local collector with read barriers (RB+) and local collector without read barriers (RB-): Geometric

mean for 8 benchmarks running on Azul with 846 cores.

(a) Total time (b) Mutator time (c) Garbage collection time (d) Garbage collection overhead

Figure 13: Performance comparison of local collector with read barriers (RB+) and local collector without read barriers (RB-): Geometric

mean for 8 benchmarks running on SCC with 48 cores.

explains why the total running time of RB- approaches RB+ as the

heap size is decreased in Figure 11a. With decreasing heap size, the

programs spend a larger portion of the time performing GCs, while

the mutator time remains consistent. Hence, there is diminishing

returns from using RB- as heap size decreases.

Next, we analyze the performance on Azul (see Figure 12). We

only consider performance of our local collectors since our AMD

results show that the other collectors (STW and BDW) simply do

not have favorable scalability characteristics. At 3X the minimum

heap size, RB- is 30% faster than RB+.

SCC performance results are presented in Figure 13. At 3X the

minimum heap size, RB- is 20% faster than RB+. From the total

time graphs, we can see that the programs tend to run much slower

as we decrease the heap sizes on SCC. Compared to the fastest

running times, the slowest running time for RB- is 2.01X, 2.05X,

and 3.74X slower on AMD, Azul, and SCC respectively. This is

due to the increased number of shared heap collections, which are

more expensive than other architectures as a result of the absence

of caching. This is noticeable by a more rapid increase in garbage

collection overhead percentages (Figure 13d).

7.3 Impact of cleanliness
Cleanliness information allows the runtime system to avoid pre-

empting threads on a write barrier when the source of an exporting

write is clean. In order to study the impact of cleanliness, we re-

moved the reference counting code and cleanliness check from the

write barrier; thus, every exporting write results in a thread preemp-

tion and stall. The results presented here were taken on the AMD

machine with programs running on 16 cores with the benchmark

configurations given in Figure 10. The results will be similar on

SCC and Azul.

At	 3X	 min	
heap	 size:	
-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐	
RB+ 	 20%	

62	

Under	 the	 hood	

63	

C	

send	 (c,	 v)	

v	 ß	 recv	 (c)	

Abstract	 Shared	 Heap	

T1	 T2	

C	
T1’s	 local	 heap	 T2’s	 local	 heap	

v	

Before	 CommunicaDon	

Under	 the	 hood	

64	

C	

send	 (c,	 v)	

v	 ß	 recv	 (c)	

Abstract	 Shared	 Heap	

T1	 T2	

C	
T1’s	 local	 heap	 T2’s	 local	 heap	

v	

Aper	 CommunicaDon	

