
Elimina'ng	
 Read	
 Barriers	
 through	

Procras'na'on	
 and	
 Cleanliness	

KC	
 Sivaramakrishnan	

Lukasz	
 Ziarek	

Suresh	
 Jagannathan	

Big	
 Picture	

2	

Lightweight	
 user-­‐level	
 threads	

Scheduler	
 1	

t1	
 t2	
 tn	
 Lots	
 of	

concurrency!	

Core	
 1	
 Core	
 n	
 Core	
 2	

Heap	

Big	
 Picture	

3	

Expendable	

resource?	

Big	
 Picture	

3	

Scheduler	
 1	

t1	
 t2	
 tn	
 Lots	
 of	

concurrency!	

Heap	

Big	
 Picture	

4	

Expendable	

resource?	

Big	
 Picture	

4	

Scheduler	
 1	

t1	

t2	
 tn	
 Lots	
 of	

concurrency!	

Heap	

Exploit	
 program	
 concurrency	
 	

to	
 	

eliminate	
 read	
 barriers	
 from	
 thread-­‐local	
 collectors	

GC	
 OperaDon	

Alleviate	
 MM	

cost?	

MulDMLton	

•  Goals	

–  Safety,	
 Scalability,	
 ready	
 for	
 future	
 manycore	
 processors	

•  Parallel	
 extension	
 of	
 MLton	
 –	
 a	
 whole-­‐program,	

opDmizing	
 SML	
 compiler	

•  Parallel	
 extension	
 of	
 Concurrent	
 ML	

–  Lots	
 of	
 Concurrency!	

–  Interact	
 by	
 sending	
 messages	
 over	
 first-­‐class	
 channels	

5	

C	

send	
 (c,	
 v)	

v	
 ß	
 recv	
 (c)	

MulDMLton	
 GC:	
 ConsideraDons	

•  Standard	
 ML	
 –	
 funcDonal	
 PL	
 with	
 side-­‐effects	

– Most	
 objects	
 are	
 small	
 and	
 ephemeral	

•  Independent	
 generaDonal	
 GC	

–  #	
 MutaDons	
 <<	
 #	
 Reads	

•  Keep	
 cost	
 of	
 reads	
 to	
 be	
 low	

•  Minimize	
 NUMA	
 effects	

•  Run	
 on	
 non-­‐cache	
 coherent	
 HW	

	

6	

MulDMLton	
 GC:	
 Design	

7	

Core	

Local	
 Heap	

Core	

Local	
 Heap	

Core	

Local	
 Heap	

Core	

Local	
 Heap	

Shared	
 Heap	

Thread-­‐local	
 GC	

•  NUMA	
 Awareness	

•  Circumvent	
 cache-­‐coherence	
 issues	

Invariant	
 PreservaDon	

•  Read	
 and	
 write	
 barriers	
 for	
 preserving	

invariants	

8	

Shared	
 Heap	

r	

Local	
 Heap	

x	

Target	

Source	

ExporDng	

writes	

r	
 :=	
 x	

Shared	
 Heap	

r	

Local	
 Heap	

x	

FWD	

TransiDve	

closure	
 of	
 x	

Mutator	

needs	
 read	

barriers!	

Challenge	

•  Object	
 reads	
 are	
 pervasive	

–  RB	
 overhead	
 ∝	
 cost	
 (RB)	
 *	
 frequency	
 (RB)	

•  Read	
 barrier	
 opDmizaDon	

–  Stacks	
 and	
 Registers	
 never	
 point	
 to	
 forwarded	
 objects	

9	

Figure 2: Read barrier overhead as a percentage of mutator time.

!"
#$
%&

'(
)

!"
"#
$%&
'

($
&)
*'
+,
-

./
,)
-0
&$
12
'

3$
4
*5
67%
6*

89
",
'-*

&%)
0

:
$)
;*
"<
&/
-

=,
9"*
%9

>$
?-
&$
9*

*%"$)+,-.,/012 @ABCD EAFGH EACFH HAFCF DABFI EA@FI EAFFB EAEJB
34(5'(6"6 JED CEBIE I EJHD JIJ ED DEF I

Figure 3: Effectiveness of read barrier checks: Checks represents
the number of read barrier invocations and forwarded represents the
number of instances when the read barrier encountered a forwarded
object.

ing non-pointer values. If such a type additionally happens to have
value-carrying constructors that reference heap-allocated objects,
the non-pointer value representing the empty constructor will be
stored in the object pointer field. Hence, the read barrier must first
check whether the presumed pointer does in fact point to a heap ob-
ject. Otherwise, the original value is returned (line 2). If the given
pointer points to a forwarded object, the current location of the ob-
ject stored is returned. Otherwise, the original value is returned.

We evaluated a set of 8 benchmarks (described in Section 7.1)
running on a 16 core AMD64, a 48 core Intel SCC and an 864
core Azul Vega 3 machine to measure read barrier overheads.
Figure 2 shows these overheads as a percentage of mutator time.
Our experiments reveal that, on average, the mutator spends 20.1%,
15.3% and 21.3% of time executing read barriers on the AMD64,
SCC and Azul architectures, respectively, for our benchmarks.

Although a Brooks-style unconditional read barrier would have
avoided the cost of the second branch in our read barrier imple-
mentation, it would necessitate having an additional address length
field in the object header for an indirection pointer. Most objects
in our system tend to be small. In our benchmarks, we observed
that 95% of the objects allocated were less than 3 words in size,
including a word-sized header. The addition of an extra word in
the object header for an indirection pointer would lead to substan-
tial memory overheads, which in turn leads to additional garbage
collection costs. Hence, we choose to encode read barriers condi-
tionally rather than unconditionally.

But, does the utility of the read barrier justify its cost? We mea-
sure the number of instances the read barrier is invoked and the
number of instances the barrier finds a forwarded object (see Fig-
ure 3). We see that read barriers find forwarded objects in less than

one thousands of a percent of the number of instances they are in-
voked. Thus, in our system, the cost of read barriers is substantial,
but only rarely do they have to perform the task of forwarding refer-
ences. These results motivate our interest in a memory management
design that eliminates read barriers altogether.

3. GC Design and Implementation
In this section, we describe the design and implementation of the
runtime system and garbage collector.

3.1 Threading system
Our programming model separates program-level concurrency
from the physical parallelism available in the underlying ma-
chine through the use of lightweight, user-level threads. These
lightweight threads are multiplexed over system-level threads. One
system-level thread is created for every core and is pinned to it.
Thus, the runtime system effectively treats a system-level thread
as a virtual processor. Load distribution is through work sharing,
where threads are eagerly spawned on different cores in a round-
robin fashion. Once created on a core, lightweight threads never
migrate to another core.

Lightweight threads are preemptively scheduled on every core.
On a timer interrupt, the threading system is informed that an in-
terrupt has occurred by setting a flag at a known location. At every
garbage collector safe-point, the current thread checks whether the
timer interrupt flag has been set, and if it is, resets the flag and
yields control to another thread.

3.2 Baseline collector (Stop-the-world)
The baseline heap design uses a single, contiguous heap, shared
among all cores. In order to allow local allocation, each core re-
quests a page-sized chunk from the heap. While a single lock pro-
tects the chunk allocation, objects are allocated within chunks by
bumping a core-local heap frontier.

In order to perform garbage collection, all the cores synchro-
nize on a barrier, with one core responsible for collecting the en-
tire heap. The garbage collection algorithm is inspired from San-
som’s [19] collector, which combines Cheney’s two-space copying
collector and Jonker’s single-space sliding compaction collector.
Cheney’s copying collector walks the live objects in the heap just
once per collection, while Jonker’s mark-compact collector per-
forms two walks. But Cheney’s collector can only utilize half of
memory allocated for the heap. Sansom’s collector combines the
best of both worlds. Copying collection is performed when heap
requirements are less than half of the available memory. The run-
time system dynamically switches to mark-compact collection if
the heap utilization increases beyond half of the available space.

Since ML programs tend to have a high rate of allocation,
and most objects are short-lived temporaries, it is beneficial to
perform generational collection. The garbage collector supports
Appel-style generational collection [2] for collecting temporaries.
The generational collector has two generations, and all objects that
survive a generational collection are copied to the older generation.
Generational collection can work with both copying and mark-
compact major collection schemes. The runtime system chooses
to perform generational collection if the ratio of live objects to the
total objects falls below a tunable threshold.

Our choice of a stop-the-world baseline collector was to enable
better understanding of mutator overheads among various local col-
lector designs, as opposed to illustrating absolute performance im-
provement of the local collectors over the baseline. Although a par-
allel collector would have improved overall baseline performance,
we would expect poorer scalability due to frequent global synchro-
nizations [10, 14, 20].

20.1	
 %	

15.3	
 %	

21.3	
 %	

Mean	
 Overhead	

-­‐	

Re
ad
	
 b
ar
rie

r	
 o
ve
rh
ea
d	

(%

)	

Mutator	
 and	
 Forwarded	
 Objects	

10	

#	
 RB	
 invocaDons	

#	
 Encountered	

forwarded	
 objects	

<	
 0.00001	

Eliminate	
 read	
 barriers	
 altogether	

RB	
 EliminaDon	

•  Visibility	
 Invariant	

– Mutator	
 does	
 not	
 encounter	
 forwarded	
 objects	

•  ObservaDon	

– No	
 forwarded	
 objects	
 created	
 ⇒	
 visibility	

invariant	
 ⇒	
 No	
 read	
 barriers	

•  Exploit	
 concurrency	
 à	
 Procras(na(on!	

	

11	

ProcrasDnaDon	

Shared	
 Heap	

r1	

Local	
 Heap	

x1	

T1	
 T2	

r2	

x2	

à	
 r1	
 :=	
 x1	
 	
 	
 	
 	
 	
 	
 r2	
 :=	
 x2	

T	
 à	
 T	
 is	
 running	

T	
 à	
 T	
 is	
 suspended	

T	
 à	
 T	
 is	
 blocked	

12	

ProcrasDnaDon	

Shared	
 Heap	

r1	

Local	
 Heap	

x1	

r1	
 :=	
 x1	

T1	
 T2	

	
 à	
 r2	
 :=	
 x2	
 r2	

x2	

Delayed	
 write	
 list	
 à	

Control	

switches	

to	
 T2	

T	
 à	
 T	
 is	
 running	

T	
 à	
 T	
 is	
 suspended	

T	
 à	
 T	
 is	
 blocked	

13	

ProcrasDnaDon	

Shared	
 Heap	

r1	

Local	
 Heap	

x1	

T1	
 T2	

r2	

x2	

Delayed	
 write	
 list	
 à	

r1	
 :=	
 x1	
 	
 	
 	
 	
 	
 	
 r2	
 :=	
 x2	

T	
 à	
 T	
 is	
 running	

T	
 à	
 T	
 is	
 suspended	

T	
 à	
 T	
 is	
 blocked	

14	

ProcrasDnaDon	

Shared	
 Heap	

r1	

Local	
 Heap	

T1	
 T2	

r2	
 x2	

Delayed	
 write	
 list	
 à	

r1	
 :=	
 x1	
 	
 	
 	
 	
 	
 	
 r2	
 :=	
 x2	

x1	

T	
 à	
 T	
 is	
 running	

T	
 à	
 T	
 is	
 suspended	

T	
 à	
 T	
 is	
 blocked	

FWD	

15	

FWD	

ProcrasDnaDon	

Shared	
 Heap	

r1	

Local	
 Heap	

T1	
 T2	

r2	
 x2	

Delayed	
 write	
 list	
 à	

x1	

Force	
 local	

GC	

T	
 à	
 T	
 is	
 running	

T	
 à	
 T	
 is	
 suspended	

T	
 à	
 T	
 is	
 blocked	

16	

à	
 r1	
 :=	
 x1	
 	
 	
 	
 	
 	
 	
 r2	
 :=	
 x2	

Correctness	

•  Does	
 ProcrasDnaDon	
 introduce	
 deadlocks?	

–  Threads	
 can	
 be	
 procrasDnated	
 while	
 holding	
 a	
 lock!	

	

17	

T1	
 T2	
 T2	

T	
 à	
 T	
 is	
 running	

T	
 à	
 T	
 is	
 suspended	

T	
 à	
 T	
 is	
 blocked	

Correctness	

18	

T1	

•  Is	
 ProcrasDnaDon	
 safe?	

– Yes.	
 Forcing	
 a	
 local	
 GC	
 unblocks	
 the	
 threads.	

– No	
 deadlocks	
 or	
 livelocks!	

T2	

T	
 à	
 T	
 is	
 running	

T	
 à	
 T	
 is	
 suspended	

T	
 à	
 T	
 is	
 blocked	

•  Does	
 ProcrasDnaDon	
 introduce	
 deadlocks?	

–  Threads	
 can	
 be	
 procrasDnated	
 while	
 holding	
 a	
 lock!	

	

Correctness	

19	

T1	
 T2	

•  Does	
 ProcrasDnaDon	
 introduce	
 deadlocks?	

–  Threads	
 can	
 be	
 procrasDnated	
 while	
 holding	
 a	
 lock!	

	

T	
 à	
 T	
 is	
 running	

T	
 à	
 T	
 is	
 suspended	

T	
 à	
 T	
 is	
 blocked	

•  Is	
 ProcrasDnaDon	
 safe?	

– Yes.	
 Forcing	
 a	
 local	
 GC	
 unblocks	
 the	
 threads.	

– No	
 deadlocks	
 or	
 livelocks!	

•  Efficacy	
 (ProcrasDnaDon)	
 ∝	
 #	
 Available	
 runnable	

threads	
 	

Is	
 ProcrasDnaDon	
 alone	
 enough?	

20	

M	

W1	
 W1	
 W1	

F	

J	

Serial	
 (low	
 thread	
 availability)	

Concurrent	
 (high	
 thread	
 availability)	

•  With	
 ProcrasDnaDon,	
 half	
 of	
 local	
 major	
 GCs	
 were	

forced	

Eager	
 exporDng	
 writes	
 while	
 preserving	

visibility	
 invariant	

Cleanliness	

•  A	
 clean	
 object	
 closure	
 can	
 be	
 liped	
 to	
 the	

shared	
 heap	
 without	
 breaking	
 the	
 visibility	

invariant	

21	

r	
 :=	
 x	

inSharedHeap	
 (r)	

inLocalHeap	
 (x)	

&&	

isClean	
 (x)	

Eager	
 write	
 (no	
 ProcrasDnaDon)	

Cleanliness:	
 IntuiDon	

22	

Shared	
 Heap	

Local	
 Heap	

x	

lip	
 (x)	
 to	
 shared	
 	

heap	

Shared	
 Heap	

Local	
 Heap	

Cleanliness:	
 IntuiDon	

23	

x	

FWD	

find	
 all	
 references	
 	

to	
 FWD	

Shared	
 Heap	

Local	
 Heap	

Cleanliness:	
 IntuiDon	

24	

x	
 Need	
 to	
 scan	
 the	
 	

enDre	
 local	
 heap	

Local	
 Heap	

h	

Shared	
 Heap	

Cleanliness:	
 Simpler	
 quesDon	

25	

x	

FWD	

Do	
 all	
 references	
 	

originate	
 from	
 	

heap	
 region	
 h?	

sizeof	
 (h)	
 <<	
 sizeof	
 (local	
 heap)	

Local	
 Heap	

h	

Shared	
 Heap	

Cleanliness:	
 Simpler	
 quesDon	

26	

x	
 Only	
 scan	
 the	

heap	
 region	
 h.	

Heap	

session!	

sizeof	
 (h)	
 <<	
 sizeof	
 (local	
 heap)	

•  Current	
 session	
 closed	
 &	
 new	
 session	
 opened	

–  Aper	
 an	
 exporDng	
 write,	
 a	
 user-­‐level	
 context	
 switch,	
 a	

local	
 GC	

Heap	
 Sessions	

•  Source	
 of	
 an	
 exporDng	
 write	
 is	
 open	

–  Young	

–  rarely	
 referenced	
 from	
 outside	
 the	
 closure	

27	

Previous	
 Session	
 Current	

Session	
 Free	
 Local	
 Heap	

SessionStart	
 FronDer	

Young	

Objects	

Old	
 	

Objects	
 Start	

•  Current	
 session	
 closed	
 &	
 new	
 session	
 opened	

–  Aper	
 an	
 exporDng	
 write,	
 a	
 user-­‐level	
 context	
 switch,	
 a	

local	
 GC	

–  SessionStart	
 is	
 moved	
 to	
 FronDer	

Heap	
 Sessions	

•  Source	
 of	
 an	
 exporDng	
 write	
 is	
 open	

–  Young	

–  rarely	
 referenced	
 from	
 outside	
 the	
 closure	

28	

•  Average	
 current	
 session	
 size	
 <	
 4KB	

Previous	
 Session	
 Free	
 Local	
 Heap	

FronDer	
 &	
 SessionStart	
 Start	

Cleanliness:	
 Eager	
 exporDng	
 writes	

29	

•  A	
 clean	
 object	
 closure	

–  is	
 fully	
 contained	
 within	
 the	
 current	
 session	

–  has	
 no	
 references	
 from	
 previous	
 session	

Previous	
 Session	

Current	

Session	

Free	

Local	
 Heap	

X

Y Z

r	
 :=	
 x	

r	

Shared	
 Heap	

Cleanliness:	
 Eager	
 exporDng	
 writes	

30	

•  A	
 clean	
 object	
 closure	

–  is	
 fully	
 contained	
 within	
 the	
 current	
 session	

–  has	
 no	
 references	
 from	
 previous	
 session	

Previous	
 Session	

Current	

Session	

Free	

Local	
 Heap	

X

Y Z

r	
 :=	
 x	

r	

Shared	
 Heap	

Walk	

and	
 fix	

FWD	

Avoid	
 tracing	
 current	
 session?	

•  Many	
 SML	
 objects	
 are	
 tree-­‐structured	
 (List,	
 Tree,	
 etc,.)	

–  Specialize	
 for	
 no	
 pointers	
 from	
 outside	
 the	
 object	
 closure	

•  ∀x’	
 ∊	
 transiDve	
 object	
 closure	
 (x),	
 	

	
 	
 	
 ref_count	
 (x)	
 =	
 0	
 &&	
 ref_count	
 (x’)	
 =	
 1	

31	

Local	
 Heap	

x(0)	

y(1)	

z(1)	

•  Eager	
 exporDng	
 write	

–  No	
 current	
 session	
 tracing	
 needed!	

	

No	
 refs	

from	

outside	

–  ref_count	
 does	
 not	
 consider	
 pointers	
 from	
 stack	
 or	
 registers	

Reference	
 Count	

32	

Current	
 Session	

X(0)	

Current	
 Session	

X(1)	

Current	
 Session	

X(LM)	

Current	
 Session	

X(G)	

Prev
Sess	

Zero	
 One	
 LocalMany	
 Global	

•  Purpose	

–  Track	
 pointers	
 from	
 previous	
 session	
 to	
 current	
 session	

–  IdenDfy	
 tree-­‐structured	
 object	

•  Does	
 not	
 track	
 pointers	
 from	
 stack	
 and	
 registers	

–  Reference	
 count	
 only	
 triggered	
 during	
 object	
 iniDalizaDon	

and	
 mutaDon	

Bringing	
 it	
 all	
 together	

•  ∀x’	
 ∊	
 transiDve	
 object	
 closure	
 (x),	
 	

	
 	
 	
 if	
 max	
 (ref_count	
 (x’))	

– One	
 &	
 ref_count	
 (x)	
 =	
 0	
 ⇒	
 tree-­‐structured	
 (Clean)	

⇒	
 Session	
 tracing	
 not	
 needed	

– LocalMany	
 ⇒	
 Clean	
 ⇒	
 Trace	
 current	
 session	

– Global	
 ⇒	
 1+	
 pointer	
 from	
 previous	
 session	
 ⇒	

ProcrasGnate	

33	

Example	
 1:	
 Tree-­‐structured	
 Object	

34	

Previous	

Session	
 Current	
 Session	

x(0)	

y(1)	

z(1)	

T1	
 Local	
 Heap	

Shared	
 heap	

r	
 :=	
 x	

r	

current	
 	

stack	

Shared	
 heap	

Example	
 1:	
 Tree-­‐structured	
 Object	

35	

Previous	

Session	
 Current	
 Session	

x	

y	

z	

T1	
 current	
 	

stack	
 Local	
 Heap	

r	
 :=	
 x	

FWD	

r	

Walk	

current	

stack	

Shared	
 heap	

Example	
 1:	
 Tree-­‐structured	
 Object	

36	

Previous	

Session	
 Current	
 Session	

x	

y	

z	

T1	
 current	
 	

stack	
 Local	
 Heap	

r	
 :=	
 x	

r	

No	
 need	
 to	

walk	
 current	

session!	

Shared	
 heap	

Example	
 1:	
 Tree-­‐structured	
 Object	

37	

Previous	

Session	
 Current	
 Session	

x	

y	

z	

T1	
 Local	
 Heap	

r	
 :=	
 x	

r	

T2	
 Next	

stack	

FWD	
 current	
 	

stack	

Shared	
 heap	

Example	
 1:	
 Tree-­‐structured	
 Object	

38	

Previous	

Session	
 Current	
 Session	

x	

y	

z	

T1	
 previous	

stack	
 Local	
 Heap	

r	
 :=	
 x	

r	

T2	
 current	

stack	

Context	
 Switch	

Walk	

target	

stack	

Example	
 2:	
 Object	
 Graph	

39	

Previous	

Session	
 Current	
 Session	

x(0)	

y
(LM)	

z(1)	

current	
 	

stack	
 Local	
 Heap	

Shared	
 heap	

r	
 :=	
 x	

r	

a	

Shared	
 heap	

Example	
 2:	
 Object	
 Graph	

40	

Previous	

Session	
 Current	
 Session	

x	

y	

z	

current	
 	

stack	
 Local	
 Heap	

r	
 :=	
 x	

r	

a	

FWD	

FWD	

Walk	

current	

stack	

Walk	

current	

session	

Shared	
 heap	

Example	
 2:	
 Object	
 Graph	

41	

Previous	

Session	
 Current	
 Session	

x	

y	

z	

current	
 	

stack	
 Local	
 Heap	

r	
 :=	
 x	

r	

a	

Walk	

current	

stack	

Walk	

current	

session	
 	

Example	
 3:	
 Global	
 Reference	

42	

Previous	

Session	
 Current	
 Session	

x(0)	

y(1)	

z(G)	

T1	
 current	
 	

stack	
 Local	
 Heap	

Shared	
 heap	

r	
 :=	
 x	

r	

a	

Example	
 3:	
 Global	
 Reference	

43	

Previous	

Session	
 Current	
 Session	

x(0)	

y(1)	

z(G)	

T1	
 current	
 	

stack	
 Local	
 Heap	

Shared	
 heap	

r	
 :=	
 x	

r	

a	

ProcrasDnate	

Immutable	
 Objects	

•  Specialize	
 exporDng	
 writes	

•  If	
 immutable	
 object	
 in	
 previous	
 session	

– Copy	
 to	
 shared	
 heap	

•  Immutable	
 objects	
 in	
 SML	
 do	
 not	
 have	
 idenGty	

– Original	
 object	
 unmodified	

•  Avoid	
 space	
 leaks	

– Treat	
 large	
 immutable	
 objects	
 as	
 mutable	

44	

Cleanliness:	
 Summary	

•  Cleanliness	
 allows	
 eager	
 exporDng	
 writes	

while	
 preserving	
 visibility	
 invariant	

•  With	
 ProcrasDnaDon	
 +	
 Cleanliness,	
 <1%	
 of	

local	
 GCs	
 were	
 forced	

45	

EvaluaDon	

46	

•  Variants	

–  RB-­‐	
 :	
 TLC	
 with	
 ProcrasDnaDon	
 and	
 Cleanliness	
 	

–  RB+	
 :	
 TLC	
 with	
 read	
 barriers	

•  Sansom’s	
 dual-­‐mode	
 GC	

–  Cheney’s	
 2-­‐space	
 copying	
 collecDon	
 ßà	
 Jonker’s	
 sliding	

mark-­‐compacDng	

–  GeneraDonal,	
 2	
 generaDons,	
 No	
 aging	

•  Target	
 Architectures:	
 	

–  16-­‐core	
 AMD	
 Opteron	
 server	
 (NUMA)	

–  48-­‐core	
 Intel	
 SCC	
 (non-­‐cache	
 coherent)	

–  864-­‐core	
 Azul	
 Vega3	

Results	

•  Speedup:	
 At	
 3X	
 min	
 heap	
 size,	
 RB-­‐	
 faster	
 than	

RB+	

– AMD	
 (16-­‐cores)	
 32%	
 (2X	
 faster	
 than	
 STW	

collector)	

– SCC	
 (48-­‐cores)	
 20%	

– AZUL	
 (864-­‐cores)	
 30%	

•  Concurrency	

– During	
 exporDng	
 write,	
 8	
 runnable	
 user-­‐level	

threads/core!	

47	

Cleanliness	
 Impact	

•  RB-­‐	
 MU-­‐	
 :	
 RB-­‐	
 GC	
 ignoring	
 mutability	
 for	
 Cleanliness	

•  RB-­‐	
 CL-­‐	
 :	
 RB-­‐	
 GC	
 ignoring	
 Cleanliness	
 (Only	
 ProcrasGnaGon)	

48	

Avg.	
 slowdown	

-­‐	

11.4%	

28.2%	

31.7%	

Conclusion	

•  Eliminate	
 the	
 need	
 for	
 read	
 barriers	
 by	

preserving	
 the	
 visibility	
 invariant	

– Procras'na'on:	
 Exploit	
 concurrency	
 for	
 delaying	

exporDng	
 writes	

– Cleanliness:	
 Exploit	
 generaDonal	
 property	
 for	

eagerly	
 perform	
 exporDng	
 writes	

•  AddiDonal	
 niceDes	

– Completely	
 dynamic	
 à	
 Portable	

– Does	
 not	
 impose	
 any	
 restricDon	
 on	
 the	
 GC	

strategy	

49	

QuesDons?	

hxp://mulDmlton.cs.purdue.edu	

50	

Results	

•  On	
 AMD,	
 16	
 Cores,	
 3X	
 minimum	
 heap	
 size	

•  Mutator	
 'me:	
 	

– STW	
 GC	
 spends	
 the	
 least	
 amount	
 of	
 Dme	
 in	
 the	

mutator	

•  No	
 read/write	
 barriers	

– Compared	
 to	
 STW	
 GC,	
 the	
 mutator	
 Dme	
 of	

•  RB-­‐	
 18%	
 more,	
 RB+	
 39%	
 more	

•  GC	
 'me:	
 	

– RB-­‐	
 spends	
 the	
 least	
 amount	
 Dme	
 doing	
 GC	

– RB-­‐	
 within	
 5%	
 of	
 RB+	

51	

Performance	
 on	
 AMD	
 (16-­‐cores)	

(a) Total time (b) Mutator time (c) GC time (d) GC overhead

Figure 11: Performance comparison of Stop-the-world (STW), Boehm-Demers-Weiser conservative garbage collector (BDW), local collector

with read barriers (RB+), and local collector without read barriers (RB-): Geometric mean for 8 benchmarks running on AMD64 with 16

cores.

(a) Total time (b) Mutator time (c) Garbage collection time (d) Garbage collection overhead

Figure 12: Performance comparison of local collector with read barriers (RB+) and local collector without read barriers (RB-): Geometric

mean for 8 benchmarks running on Azul with 846 cores.

(a) Total time (b) Mutator time (c) Garbage collection time (d) Garbage collection overhead

Figure 13: Performance comparison of local collector with read barriers (RB+) and local collector without read barriers (RB-): Geometric

mean for 8 benchmarks running on SCC with 48 cores.

explains why the total running time of RB- approaches RB+ as the

heap size is decreased in Figure 11a. With decreasing heap size, the

programs spend a larger portion of the time performing GCs, while

the mutator time remains consistent. Hence, there is diminishing

returns from using RB- as heap size decreases.

Next, we analyze the performance on Azul (see Figure 12). We

only consider performance of our local collectors since our AMD

results show that the other collectors (STW and BDW) simply do

not have favorable scalability characteristics. At 3X the minimum

heap size, RB- is 30% faster than RB+.

SCC performance results are presented in Figure 13. At 3X the

minimum heap size, RB- is 20% faster than RB+. From the total

time graphs, we can see that the programs tend to run much slower

as we decrease the heap sizes on SCC. Compared to the fastest

running times, the slowest running time for RB- is 2.01X, 2.05X,

and 3.74X slower on AMD, Azul, and SCC respectively. This is

due to the increased number of shared heap collections, which are

more expensive than other architectures as a result of the absence

of caching. This is noticeable by a more rapid increase in garbage

collection overhead percentages (Figure 13d).

7.3 Impact of cleanliness
Cleanliness information allows the runtime system to avoid pre-

empting threads on a write barrier when the source of an exporting

write is clean. In order to study the impact of cleanliness, we re-

moved the reference counting code and cleanliness check from the

write barrier; thus, every exporting write results in a thread preemp-

tion and stall. The results presented here were taken on the AMD

machine with programs running on 16 cores with the benchmark

configurations given in Figure 10. The results will be similar on

SCC and Azul.

At	
 3X	
 min	

heap	
 size:	

-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐	

RB+	
 	
 32%	
 	

STW 	
 106%	

BDW	
 584%	

52	

(a) Total time (b) Mutator time (c) GC time (d) GC overhead

Figure 11: Performance comparison of Stop-the-world (STW), Boehm-Demers-Weiser conservative garbage collector (BDW), local collector

with read barriers (RB+), and local collector without read barriers (RB-): Geometric mean for 8 benchmarks running on AMD64 with 16

cores.

(a) Total time (b) Mutator time (c) Garbage collection time (d) Garbage collection overhead

Figure 12: Performance comparison of local collector with read barriers (RB+) and local collector without read barriers (RB-): Geometric

mean for 8 benchmarks running on Azul with 846 cores.

(a) Total time (b) Mutator time (c) Garbage collection time (d) Garbage collection overhead

Figure 13: Performance comparison of local collector with read barriers (RB+) and local collector without read barriers (RB-): Geometric

mean for 8 benchmarks running on SCC with 48 cores.

explains why the total running time of RB- approaches RB+ as the

heap size is decreased in Figure 11a. With decreasing heap size, the

programs spend a larger portion of the time performing GCs, while

the mutator time remains consistent. Hence, there is diminishing

returns from using RB- as heap size decreases.

Next, we analyze the performance on Azul (see Figure 12). We

only consider performance of our local collectors since our AMD

results show that the other collectors (STW and BDW) simply do

not have favorable scalability characteristics. At 3X the minimum

heap size, RB- is 30% faster than RB+.

SCC performance results are presented in Figure 13. At 3X the

minimum heap size, RB- is 20% faster than RB+. From the total

time graphs, we can see that the programs tend to run much slower

as we decrease the heap sizes on SCC. Compared to the fastest

running times, the slowest running time for RB- is 2.01X, 2.05X,

and 3.74X slower on AMD, Azul, and SCC respectively. This is

due to the increased number of shared heap collections, which are

more expensive than other architectures as a result of the absence

of caching. This is noticeable by a more rapid increase in garbage

collection overhead percentages (Figure 13d).

7.3 Impact of cleanliness
Cleanliness information allows the runtime system to avoid pre-

empting threads on a write barrier when the source of an exporting

write is clean. In order to study the impact of cleanliness, we re-

moved the reference counting code and cleanliness check from the

write barrier; thus, every exporting write results in a thread preemp-

tion and stall. The results presented here were taken on the AMD

machine with programs running on 16 cores with the benchmark

configurations given in Figure 10. The results will be similar on

SCC and Azul.

(a) Total time (b) Mutator time (c) GC time (d) GC overhead

Figure 11: Performance comparison of Stop-the-world (STW), Boehm-Demers-Weiser conservative garbage collector (BDW), local collector

with read barriers (RB+), and local collector without read barriers (RB-): Geometric mean for 8 benchmarks running on AMD64 with 16

cores.

(a) Total time (b) Mutator time (c) Garbage collection time (d) Garbage collection overhead

Figure 12: Performance comparison of local collector with read barriers (RB+) and local collector without read barriers (RB-): Geometric

mean for 8 benchmarks running on Azul with 846 cores.

(a) Total time (b) Mutator time (c) Garbage collection time (d) Garbage collection overhead

Figure 13: Performance comparison of local collector with read barriers (RB+) and local collector without read barriers (RB-): Geometric

mean for 8 benchmarks running on SCC with 48 cores.

explains why the total running time of RB- approaches RB+ as the

heap size is decreased in Figure 11a. With decreasing heap size, the

programs spend a larger portion of the time performing GCs, while

the mutator time remains consistent. Hence, there is diminishing

returns from using RB- as heap size decreases.

Next, we analyze the performance on Azul (see Figure 12). We

only consider performance of our local collectors since our AMD

results show that the other collectors (STW and BDW) simply do

not have favorable scalability characteristics. At 3X the minimum

heap size, RB- is 30% faster than RB+.

SCC performance results are presented in Figure 13. At 3X the

minimum heap size, RB- is 20% faster than RB+. From the total

time graphs, we can see that the programs tend to run much slower

as we decrease the heap sizes on SCC. Compared to the fastest

running times, the slowest running time for RB- is 2.01X, 2.05X,

and 3.74X slower on AMD, Azul, and SCC respectively. This is

due to the increased number of shared heap collections, which are

more expensive than other architectures as a result of the absence

of caching. This is noticeable by a more rapid increase in garbage

collection overhead percentages (Figure 13d).

7.3 Impact of cleanliness
Cleanliness information allows the runtime system to avoid pre-

empting threads on a write barrier when the source of an exporting

write is clean. In order to study the impact of cleanliness, we re-

moved the reference counting code and cleanliness check from the

write barrier; thus, every exporting write results in a thread preemp-

tion and stall. The results presented here were taken on the AMD

machine with programs running on 16 cores with the benchmark

configurations given in Figure 10. The results will be similar on

SCC and Azul.

MulDMLton	
 -­‐	
 SCC	
 implementaDon	

Programming Models for the Intel SCC Many-core Processor Chair for Operating Systems

W
or

ks
ho

p
AP

M
M

 2
01

1
as

 P
ar

t o
f t

he
 H

PC
S

20
11

4

• Strictly No Cache Coherency
Cluster-on-Chip Architecture

• Private off-die DRAM Regions (one per Core)
Caches enabled! One Linux instance per Core!

• Shared / Global off-die DRAM Region
Caches disabled per default! e.g. for global shared data

• Shared on-die MPB Regions
Cached in L1, L2 Bypass / Fast L1 Invalidation for MPB-Data

Shared off-die DRAM

CPU0L1$L2$Private DRAM CPU47L1$L2$Private DRAM

Message Passing Buffer (8KB/core)

Shared-Memory Models of the SCC

Non-­‐Cached	
 -­‐-­‐	

Shared	
 heap	

Cached	
 -­‐-­‐	

Local	
 heap	

53	

Total	
 Dme:	
 SCC	
 and	
 AZUL	

54	

(a) Total time (b) Mutator time (c) GC time (d) GC overhead

Figure 11: Performance comparison of Stop-the-world (STW), Boehm-Demers-Weiser conservative garbage collector (BDW), local collector

with read barriers (RB+), and local collector without read barriers (RB-): Geometric mean for 8 benchmarks running on AMD64 with 16

cores.

(a) Total time (b) Mutator time (c) Garbage collection time (d) Garbage collection overhead

Figure 12: Performance comparison of local collector with read barriers (RB+) and local collector without read barriers (RB-): Geometric

mean for 8 benchmarks running on Azul with 846 cores.

(a) Total time (b) Mutator time (c) Garbage collection time (d) Garbage collection overhead

Figure 13: Performance comparison of local collector with read barriers (RB+) and local collector without read barriers (RB-): Geometric

mean for 8 benchmarks running on SCC with 48 cores.

explains why the total running time of RB- approaches RB+ as the

heap size is decreased in Figure 11a. With decreasing heap size, the

programs spend a larger portion of the time performing GCs, while

the mutator time remains consistent. Hence, there is diminishing

returns from using RB- as heap size decreases.

Next, we analyze the performance on Azul (see Figure 12). We

only consider performance of our local collectors since our AMD

results show that the other collectors (STW and BDW) simply do

not have favorable scalability characteristics. At 3X the minimum

heap size, RB- is 30% faster than RB+.

SCC performance results are presented in Figure 13. At 3X the

minimum heap size, RB- is 20% faster than RB+. From the total

time graphs, we can see that the programs tend to run much slower

as we decrease the heap sizes on SCC. Compared to the fastest

running times, the slowest running time for RB- is 2.01X, 2.05X,

and 3.74X slower on AMD, Azul, and SCC respectively. This is

due to the increased number of shared heap collections, which are

more expensive than other architectures as a result of the absence

of caching. This is noticeable by a more rapid increase in garbage

collection overhead percentages (Figure 13d).

7.3 Impact of cleanliness
Cleanliness information allows the runtime system to avoid pre-

empting threads on a write barrier when the source of an exporting

write is clean. In order to study the impact of cleanliness, we re-

moved the reference counting code and cleanliness check from the

write barrier; thus, every exporting write results in a thread preemp-

tion and stall. The results presented here were taken on the AMD

machine with programs running on 16 cores with the benchmark

configurations given in Figure 10. The results will be similar on

SCC and Azul.

(a) Total time (b) Mutator time (c) GC time (d) GC overhead

Figure 11: Performance comparison of Stop-the-world (STW), Boehm-Demers-Weiser conservative garbage collector (BDW), local collector

with read barriers (RB+), and local collector without read barriers (RB-): Geometric mean for 8 benchmarks running on AMD64 with 16

cores.

(a) Total time (b) Mutator time (c) Garbage collection time (d) Garbage collection overhead

Figure 12: Performance comparison of local collector with read barriers (RB+) and local collector without read barriers (RB-): Geometric

mean for 8 benchmarks running on Azul with 846 cores.

(a) Total time (b) Mutator time (c) Garbage collection time (d) Garbage collection overhead

Figure 13: Performance comparison of local collector with read barriers (RB+) and local collector without read barriers (RB-): Geometric

mean for 8 benchmarks running on SCC with 48 cores.

explains why the total running time of RB- approaches RB+ as the

heap size is decreased in Figure 11a. With decreasing heap size, the

programs spend a larger portion of the time performing GCs, while

the mutator time remains consistent. Hence, there is diminishing

returns from using RB- as heap size decreases.

Next, we analyze the performance on Azul (see Figure 12). We

only consider performance of our local collectors since our AMD

results show that the other collectors (STW and BDW) simply do

not have favorable scalability characteristics. At 3X the minimum

heap size, RB- is 30% faster than RB+.

SCC performance results are presented in Figure 13. At 3X the

minimum heap size, RB- is 20% faster than RB+. From the total

time graphs, we can see that the programs tend to run much slower

as we decrease the heap sizes on SCC. Compared to the fastest

running times, the slowest running time for RB- is 2.01X, 2.05X,

and 3.74X slower on AMD, Azul, and SCC respectively. This is

due to the increased number of shared heap collections, which are

more expensive than other architectures as a result of the absence

of caching. This is noticeable by a more rapid increase in garbage

collection overhead percentages (Figure 13d).

7.3 Impact of cleanliness
Cleanliness information allows the runtime system to avoid pre-

empting threads on a write barrier when the source of an exporting

write is clean. In order to study the impact of cleanliness, we re-

moved the reference counting code and cleanliness check from the

write barrier; thus, every exporting write results in a thread preemp-

tion and stall. The results presented here were taken on the AMD

machine with programs running on 16 cores with the benchmark

configurations given in Figure 10. The results will be similar on

SCC and Azul.

SCC	
 (48-­‐cores)	
 AZUL	
 (864-­‐Cores)	

20%	
 30%	

Non-­‐cache	
 coherent	
 Scalable,	
 cache-­‐coherent	

Cleanliness	
 Impact	
 (1)	

!"
#$
%&

'(
)

!"
"#
$%&
'

($
&)
*'
+,
-

./
,)
-0
&$
12
'

0$
3
*4
56%
5*

78
",
'-*

&%)
9

:
$)
;*
"<
&/
-

=,
8"*
%8

>$
?-
&$
8*

*!+ @AB@ CDEBF @EC BADF@ FEA@F @BF @ED BEFB
*!+,-.+ @AB@ CGHFB@F @HF IBEECB EGBFB FGH CBBGHF BICB
*!+,/0+ @FCFBF DI@EDAF@ EG@IA EADICFB FIGFBH@@ FECH@ H@FBCH D@@HA

Figure 14: Number of preemptions on write barrier.

!"
#$
%&

'(
)

!"
"#
$%&
'

($
&)
*'
+,
-

./
,)
-0
&$
12
'

0$
3
*4
56%
5*

78
",
'-*

&%)
9

:
$)
;*
"<
&/
-

=,
8"*
%8

>$
?-
&$
8*

!"
#$
%&

'(
)

!"
"#
$%&
'

($
&)
*'
+,
-

./
,)
-0
&$
12
'

0$
3
*4
56%
5*

78
",
'-*

&%)
9

:
$)
;*
"<
&/
-

=,
8"*
%8

>$
?-
&$
8*

*!+ @A@B @ACD @ EAFG @ CAGE @ CADH
*!+,-.+ @A@B CIAH @A@E IAGD @A@H HABJ IAED CADH
*!+,/0+ EBAFF C@@ @ACB IIADF HCAJG BJAHH CIAE HGABJ

Figure 15: Forced GCs as a percentage of the total number of major
GCs.

Figure 14 shows the number of preemptions on write barrier for
different local collector configurations. RB- row represents the lo-
cal collector designs with all of the features enabled; RB- MU- row
shows a cleanliness optimization that does not take an object’s mu-
tability into consideration in determining cleanliness (using only
recorded reference counts instead), and row RB- CL- row repre-
sents preemptions incurred when the collector does not use any
cleanliness information at all. Without cleanliness, on average, the
programs perform substantially more preemptions when encoun-
tering a write barrier.

Recall that if all of the threads belonging to a core get preempted
on a write barrier, a local major GC is forced, which lifts all of
the sources of exporting writes, fixes the references to forwarding
pointers and unblocks the stalled threads. Hence, an increase in the
number of preemptions leads to an increase in the number of local
collections.

Figure 15 shows the percentage of local major GCs that were
forced compared to the total number of local major GCs. Row RB-
CL- shows the percentage of forced GCs if cleanliness information
is not used. On average, 49% of local major collection performed
is due to forced GCs if cleanliness information is not used, whereas
it is less than 1% otherwise. On benchmarks like BarnesHut,
GameOfLife and Mandelbrot, where all of the threads tend to
operate on a shared global data structure, there are a large number
of exporting writes. On such benchmarks almost all local GCs are
forced in the absence of cleanliness. This adversely affects the
running time of programs.

Figure 16 shows the running time of programs without using
cleanliness. On average, programs tend to run 28.2% slower if
cleanliness information is ignored. The results show that cleanli-
ness analysis therefore plays a significant role in our GC design.

7.4 Impact of immutability
If the source of an exporting write is immutable, we can make a
copy of the object in the shared heap and assign a reference to the
new shared heap object to the target. Hence, we can ignore the
reference count of such objects. Not all languages may have the
ability to distinguish between mutable and immutable objects in
the compiler or in the runtime system. Hence, we study the impact
of our local collector design with mutability information in mind.
To do this, we ignore the test for mutability in the cleanliness check

Figure 16: Impact of utilizing object mutability information and
cleanliness analysis on the performance of RB- GC.

!"#$%&'&&()*%&(+'
,-./
01/.
230,
0244
,20/
/5,2
0,34
00,2

!"
#$
%&

'(
)

!6
67
8(9
&

:8
9*
'&
;<
=

>)
<*
=#
98
?;
&

@8
A
'B
CD(
C'

EF
6<
&='

9(*
#

G
8*
H'
6I
9)
=

J<
F6'
(F

K8
L=
98
F'

*+,-+$."'# 1$2 02$4 /$3 ,2$, 05$3 4$1 02$2 /$,
/012+3"3345#+
346"+789:"3;

,-./ 01/. 230, 0244 ,20/ /5,2 0,34 00,2

Figure 17: Impact of heap session: % LM clean represents the
fraction of instances when a clean object closure has at least one
object with LOCAL MANY references.

(Line 4 in Figure 6) and modify the object lifting code in Figure 8
to treat all objects as mutable.

RB- MU- row in Figure 14 and Figure 15 show the number of
write barrier preemptions and the percentage of forced GCs, re-
spectively, if all objects were treated as mutable. For some pro-
grams such as AllPairs, CountGraphs, or Kclustering, ob-
ject mutability does not play a significant factor. For benchmarks
where it does, distinguishing between mutable and immutable ob-
jects helps avoid inducing preemptions on a write barrier since a
copy of the immutable object can be created in the shared heap
without the need to repair existing references to the local heap copy.

Figure 16 shows the performance impact of taking object
mutability into account. BarnesHut, GameOfLife and Nucleic
are slower due to the increased number of forced GCs. Interest-
ingly, AllPairs, CountGraphs, Kclustering and Raytrace are
marginally faster since they avoid manipulating the imSet (Line
14 in Figure 8) and walking immutable objects after the objects
are lifted (Lines 25-27 in Figure 8). On average, we see a 11.4%
performance impact if mutability information is not utilized for
cleanliness.

7.5 Impact of heap session
In order to assess the effectiveness of using heap sessions, we mea-
sured the percentage of instances where the source of an exporting
write is clean with at least one of the objects in the closure has a
LOCAL MANY reference. During such instances, we walk the current
heap session to fix any references to forwarded objects. Without us-
ing heap sessions, we would have preempted the thread in the write
barrier, reducing available concurrency. The results were obtained

55	

Number	
 of	
 PreempDons	
 on	
 exporDng	
 writes	

Forced	
 GCs	
 as	
 a	
 %	
 of	
 total	
 number	
 of	
 local	
 major	
 GCs	

	

Benchmark	
 CharacterisDcs	

56	

!"# $%% !&'(!"# $%% !&'()*$+ !"# $%% !&'(!"#$%&##
'(()*+,- ./% 01 /020 /# /# 0! // "0# 0/" 1"%#. !1"$0##&
3*,45-678 %%" %2 /1." "2 "2 .%# " 0/" /2"! 1"%#. !1.$%&0
9:748;,*<6- "0&! /!! !!%0 "! "! //%# / /". "0# /#1.! !!2$120
=*>5?@A+@5 "!!0 /"% !"## "/ "/ &01 /1 "0# /2"! ./&" !0/$!&10
BC(7-85,+4; 1#!1 /2. .&"% 1" 1" /"#0 1 "0# /2"! ./&" !01$#.&#
D*4E5(F,:8 1!& !1 ##& " " 1" . /". 0/" ./&" !#%$11&0
G7C(5+C /!12 .% !%#/ /1 /! #2& / #! 1.! /#1.! !%.$#1".
H*I8,*C5 .2& 0! "/11 // /" ##1 ! /". "0# "2!. !%&$#.."

!.0$1#..
!&2$012.
022$02!&
020$!/2/
02#$.#11
02%$/.."
0/&$2/!/
01&$!/&/
0!/$10%%
002$/001
00!$2"&#
0#/$&..

0.2$20%1
0./$0""0
0.!$!01"
#2/$#0"

#/#$22&"
#1!$21/#
#%2$&%/"
.%%$2&#%
..0$.#/1
&11$/!11
&1&$022&
#.1$/!.%0

!,,-./01-2*3/04*
5"6789642.+:/;< =*>+;4/?8

6@048*!,,-./04?*5A69

Figure 10: Benchmark characteristics. %Sh represents the average
fraction of bytes allocated in the shared heap across all the archi-
tectures.

• AllPairs: an implementation of Floyd-Warshall algorithm for
computing all pairs shortest path.

• BarnesHut: an n-body simulation using Barnes-Hut algorithm.
• CountGraphs: computes all symmetries (automorphisms)

within a set of graphs.
• GameOfLife: Conway’s Game of Life simulator
• Kclustering: a k-means clustering algorithm, where each stage

is spawned as a server.
• Mandelbrot: a Mandelbrot set generator.
• Nucleic: Pseudoknot [11] benchmark applied on multiple in-

puts.
• Raytrace: a ray-tracing algorithm to render a scene.

Parameters are appropriately scaled for different architectures
to ensure sufficient work for each of the cores. The benchmarks
running on AMD and SCC were given the same input size. Hence,
we see that the benchmarks allocate the same amount of memory
during their lifetime. But, we increase the number of threads on
the SCC when compared to AMD since there is more hardware
parallelism available. For Azul, we scale both the input size and the
number of threads, and as a result we see a large increase in bytes
allocated when compared to the other platforms. Out of the total
bytes allocated during the program execution, on average 5.4% is
allocated in the shared heap. Thus, most of the objects allocated are
collected locally, without the need for stalling all of the mutators.

We observe that the allocation rate is highly architecture depen-
dent, and is the slowest on the SCC. Allocation rate is particularly
dependent on memory bandwidth, processor speed and cache be-
havior. On the SCC, not only is the processor slow (533MHz) but
the serial memory bandwidth for our experimental setup is only
around 70 MB/s.

7.2 Performance
Next, we analyze the performance of the new local collector design.
In order to establish a baseline for the results presented, we have
ported our runtime system to utilize the Boehm-Demers-Weiser
(BDW) conservative garbage collector [7]. We briefly describe the
port of our runtime system utilizing BDW GC.

Although BDW GC is conservative, it can utilize tracing infor-
mation when provided. Our compiler generates tracing information
for all objects, including the stack. However, we provide the trac-
ing information for all object allocations except the stack. Stack
objects in our runtime system represent all of the reserved space
for a stack, while only a part of the stack is actually used which can
grow and shrink as frames are pushed and popped. Since the BDW
GC does not allow tracing information of objects to be changed af-

ter allocation, we scan stack objects conservatively. BDW uses a
mark-sweep algorithm, and we enable parallel marking and thread-
local allocations.

Figure 11a illustrates space-time trade-offs critical for any
garbage collector evaluation. STW GC is the baseline stop-the-
world collector described in Section 3.2, while RB+ and RB- are
local collectors. RB+ is a local collector with read barriers while
RB- is our new local collector design without read barriers, exploit-
ing procrastination and cleanliness. We compare the normalized
running times of our benchmarks under different garbage collec-
tion schemes as we decrease the heap size. For each run of the
experiment, we decrease the maximum heap size allowed and re-
port the maximum size of the heap utilized. Thus, we leave it to the
collectors to figure out the optimal heap size, within the allowed
space. This is essential for the local collectors, since the allocation
pattern of each core is usually very different and depends on the
structure of the program.

The results presented here were collected on 16 cores. As we
decrease overall heap sizes, we see programs under all of the dif-
ferent GC schemes taking longer to run. But RB- exhibits better
performance characteristics than its counterparts. We observe that
the minimum heap size under which the local collectors would run
is greater than the STW and BDW GCs. In the local collectors,
since the heap is split across all of the cores, there is more frag-
mentation. Also, under the current scheme, each local collector is
greedy and will try to utilize as much heap as it can in order to
reduce the running time (by choosing semi-space collection over
mark-compact), without taking into account the heap requirements
of other local collectors. Currently, when one of the local cores
runs out of memory, we terminate the program. Since we are inter-
ested in throughput on scalable architectures where memory is not
a bottleneck, we have not optimized the collectors for memory uti-
lization. We believe we can modify our collector for memory con-
strained environments by allowing local heaps to shrink on demand
and switch from semi-space to compacting collection, if other local
heaps run out of memory.

The STW and BDW GCs are much slower than the two local
collectors. In order to study the reason behind this slowdown,
we separate the mutator time (Figure 11b) and garbage collection
time (Figure 11c). We see that STW GC is actually faster than
the local collectors in terms of mutator time, since it does not
pay the overhead of executing read or write barriers. But, since
every collection requires stopping all the mutators and a single
collector performs the collection, it executes serially during a GC.
Figure 11d shows that roughly 70% of the execution total time for
our benchmarks under STW is spent performing GCs, negatively
impacting scalability.

Interestingly, we see that programs running under the BDW GC
are much slower when compared to other GCs. This is mainly due
to allocation costs. Although we enabled thread-local allocations,
on 16 cores, approximately 40% of the time was spent on object
allocation. While the cost of object allocation for our other collec-
tors only involves bumping the frontier, allocation in BDW GC is
significantly more costly, involving scanning through a free list, in-
curring substantial overhead. Moreover, BDW GC is tuned for lan-
guages like C/C++ and Java, where the object lifetimes are longer
and allocation rate is lower when compared to functional program-
ming languages.

In Figure 11a, at 3X the minimum heap size, RB+, STW and
BDW GCs are 32%, 106% and 584% slower than the RB- GC. We
observe that there is very little difference between RB+ and RB-
in terms of GC time but the mutator time for RB+ is consistently
higher than RB- due to read barrier costs. The difference in mutator
times is consistent since it is not adversely affected by the increased
number of GCs incurred as a result of smaller heap sizes. This also

Session	
 Impact	

!"
#$
%&

'(
)

!"
"#
$%&
'

($
&)
*'
+,
-

./
,)
-0
&$
12
'

0$
3
*4
56%
5*

78
",
'-*

&%)
9

:
$)
;*
"<
&/
-

=,
8"*
%8

>$
?-
&$
8*

*!+ @AB@ CDEBF @EC BADF@ FEA@F @BF @ED BEFB
*!+,-.+ @AB@ CGHFB@F @HF IBEECB EGBFB FGH CBBGHF BICB
*!+,/0+ @FCFBF DI@EDAF@ EG@IA EADICFB FIGFBH@@ FECH@ H@FBCH D@@HA

Figure 14: Number of preemptions on write barrier.

!"
#$
%&

'(
)

!"
"#
$%&
'

($
&)
*'
+,
-

./
,)
-0
&$
12
'

0$
3
*4
56%
5*

78
",
'-*

&%)
9

:
$)
;*
"<
&/
-

=,
8"*
%8

>$
?-
&$
8*

!"
#$
%&

'(
)

!"
"#
$%&
'

($
&)
*'
+,
-

./
,)
-0
&$
12
'

0$
3
*4
56%
5*

78
",
'-*

&%)
9

:
$)
;*
"<
&/
-

=,
8"*
%8

>$
?-
&$
8*

*!+ @A@B @ACD @ EAFG @ CAGE @ CADH
*!+,-.+ @A@B CIAH @A@E IAGD @A@H HABJ IAED CADH
*!+,/0+ EBAFF C@@ @ACB IIADF HCAJG BJAHH CIAE HGABJ

Figure 15: Forced GCs as a percentage of the total number of major
GCs.

Figure 14 shows the number of preemptions on write barrier for
different local collector configurations. RB- row represents the lo-
cal collector designs with all of the features enabled; RB- MU- row
shows a cleanliness optimization that does not take an object’s mu-
tability into consideration in determining cleanliness (using only
recorded reference counts instead), and row RB- CL- row repre-
sents preemptions incurred when the collector does not use any
cleanliness information at all. Without cleanliness, on average, the
programs perform substantially more preemptions when encoun-
tering a write barrier.

Recall that if all of the threads belonging to a core get preempted
on a write barrier, a local major GC is forced, which lifts all of
the sources of exporting writes, fixes the references to forwarding
pointers and unblocks the stalled threads. Hence, an increase in the
number of preemptions leads to an increase in the number of local
collections.

Figure 15 shows the percentage of local major GCs that were
forced compared to the total number of local major GCs. Row RB-
CL- shows the percentage of forced GCs if cleanliness information
is not used. On average, 49% of local major collection performed
is due to forced GCs if cleanliness information is not used, whereas
it is less than 1% otherwise. On benchmarks like BarnesHut,
GameOfLife and Mandelbrot, where all of the threads tend to
operate on a shared global data structure, there are a large number
of exporting writes. On such benchmarks almost all local GCs are
forced in the absence of cleanliness. This adversely affects the
running time of programs.

Figure 16 shows the running time of programs without using
cleanliness. On average, programs tend to run 28.2% slower if
cleanliness information is ignored. The results show that cleanli-
ness analysis therefore plays a significant role in our GC design.

7.4 Impact of immutability
If the source of an exporting write is immutable, we can make a
copy of the object in the shared heap and assign a reference to the
new shared heap object to the target. Hence, we can ignore the
reference count of such objects. Not all languages may have the
ability to distinguish between mutable and immutable objects in
the compiler or in the runtime system. Hence, we study the impact
of our local collector design with mutability information in mind.
To do this, we ignore the test for mutability in the cleanliness check

Figure 16: Impact of utilizing object mutability information and
cleanliness analysis on the performance of RB- GC.

!"#$%&'&&()*%&(+'
,-./
01/.
230,
0244
,20/
/5,2
0,34
00,2

!"
#$
%&

'(
)

!6
67
8(9
&

:8
9*
'&
;<
=

>)
<*
=#
98
?;
&

@8
A
'B
CD(
C'

EF
6<
&='

9(*
#

G
8*
H'
6I
9)
=

J<
F6'
(F

K8
L=
98
F'

*+,-+$."'# 1$2 02$4 /$3 ,2$, 05$3 4$1 02$2 /$,
/012+3"3345#+
346"+789:"3;

,-./ 01/. 230, 0244 ,20/ /5,2 0,34 00,2

Figure 17: Impact of heap session: % LM clean represents the
fraction of instances when a clean object closure has at least one
object with LOCAL MANY references.

(Line 4 in Figure 6) and modify the object lifting code in Figure 8
to treat all objects as mutable.

RB- MU- row in Figure 14 and Figure 15 show the number of
write barrier preemptions and the percentage of forced GCs, re-
spectively, if all objects were treated as mutable. For some pro-
grams such as AllPairs, CountGraphs, or Kclustering, ob-
ject mutability does not play a significant factor. For benchmarks
where it does, distinguishing between mutable and immutable ob-
jects helps avoid inducing preemptions on a write barrier since a
copy of the immutable object can be created in the shared heap
without the need to repair existing references to the local heap copy.

Figure 16 shows the performance impact of taking object
mutability into account. BarnesHut, GameOfLife and Nucleic
are slower due to the increased number of forced GCs. Interest-
ingly, AllPairs, CountGraphs, Kclustering and Raytrace are
marginally faster since they avoid manipulating the imSet (Line
14 in Figure 8) and walking immutable objects after the objects
are lifted (Lines 25-27 in Figure 8). On average, we see a 11.4%
performance impact if mutability information is not utilized for
cleanliness.

7.5 Impact of heap session
In order to assess the effectiveness of using heap sessions, we mea-
sured the percentage of instances where the source of an exporting
write is clean with at least one of the objects in the closure has a
LOCAL MANY reference. During such instances, we walk the current
heap session to fix any references to forwarded objects. Without us-
ing heap sessions, we would have preempted the thread in the write
barrier, reducing available concurrency. The results were obtained

57	

Read	
 Barrier	

CondiDonal	
 (Baker	
 Style)	
 UncondiDonal	
 (Brooks	
 style)	

From	

From	

To	
 To	

58	

Read	
 Barrier	

CondiDonal	
 (Baker	
 Style)	
 UncondiDonal	
 (Brooks	
 style)	

F	

pointer readBarrier (pointer *p) {

 if (*(Header*)(p – HD_OFF) == F)

 return *(pointer*)p;

 return p;

}

pointer readBarrier (pointer *p) {

 return *(pointer*)(p – IND_OFF);

}

F	

Has	
 CondiDonal	
 Check	
 Needs	
 extra	
 header	
 word	

From	

From	

To	
 To	

59	

Read	
 Barrier	
 OpDmizaDons	

•  Stacks	
 and	
 registers	
 never	
 point	
 to	
 forwarding	

pointers	

•  “Eager”	
 read	
 barriers	
 (D.Bacon	
 et	
 al.	
 POPL’93)	

•  Scan	
 stack	
 aper	
 exporDng	
 write	

•  ExporDng	
 write	
 is	
 a	
 GC	
 safe-­‐point	

•  Reduces	
 RB	
 overhead	
 by	
 ~5%	

60	

Performance	
 on	
 AZUL	

(a) Total time (b) Mutator time (c) GC time (d) GC overhead

Figure 11: Performance comparison of Stop-the-world (STW), Boehm-Demers-Weiser conservative garbage collector (BDW), local collector

with read barriers (RB+), and local collector without read barriers (RB-): Geometric mean for 8 benchmarks running on AMD64 with 16

cores.

(a) Total time (b) Mutator time (c) Garbage collection time (d) Garbage collection overhead

Figure 12: Performance comparison of local collector with read barriers (RB+) and local collector without read barriers (RB-): Geometric

mean for 8 benchmarks running on Azul with 846 cores.

(a) Total time (b) Mutator time (c) Garbage collection time (d) Garbage collection overhead

Figure 13: Performance comparison of local collector with read barriers (RB+) and local collector without read barriers (RB-): Geometric

mean for 8 benchmarks running on SCC with 48 cores.

explains why the total running time of RB- approaches RB+ as the

heap size is decreased in Figure 11a. With decreasing heap size, the

programs spend a larger portion of the time performing GCs, while

the mutator time remains consistent. Hence, there is diminishing

returns from using RB- as heap size decreases.

Next, we analyze the performance on Azul (see Figure 12). We

only consider performance of our local collectors since our AMD

results show that the other collectors (STW and BDW) simply do

not have favorable scalability characteristics. At 3X the minimum

heap size, RB- is 30% faster than RB+.

SCC performance results are presented in Figure 13. At 3X the

minimum heap size, RB- is 20% faster than RB+. From the total

time graphs, we can see that the programs tend to run much slower

as we decrease the heap sizes on SCC. Compared to the fastest

running times, the slowest running time for RB- is 2.01X, 2.05X,

and 3.74X slower on AMD, Azul, and SCC respectively. This is

due to the increased number of shared heap collections, which are

more expensive than other architectures as a result of the absence

of caching. This is noticeable by a more rapid increase in garbage

collection overhead percentages (Figure 13d).

7.3 Impact of cleanliness
Cleanliness information allows the runtime system to avoid pre-

empting threads on a write barrier when the source of an exporting

write is clean. In order to study the impact of cleanliness, we re-

moved the reference counting code and cleanliness check from the

write barrier; thus, every exporting write results in a thread preemp-

tion and stall. The results presented here were taken on the AMD

machine with programs running on 16 cores with the benchmark

configurations given in Figure 10. The results will be similar on

SCC and Azul.

(a) Total time (b) Mutator time (c) GC time (d) GC overhead

Figure 11: Performance comparison of Stop-the-world (STW), Boehm-Demers-Weiser conservative garbage collector (BDW), local collector

with read barriers (RB+), and local collector without read barriers (RB-): Geometric mean for 8 benchmarks running on AMD64 with 16

cores.

(a) Total time (b) Mutator time (c) Garbage collection time (d) Garbage collection overhead

Figure 12: Performance comparison of local collector with read barriers (RB+) and local collector without read barriers (RB-): Geometric

mean for 8 benchmarks running on Azul with 846 cores.

(a) Total time (b) Mutator time (c) Garbage collection time (d) Garbage collection overhead

Figure 13: Performance comparison of local collector with read barriers (RB+) and local collector without read barriers (RB-): Geometric

mean for 8 benchmarks running on SCC with 48 cores.

explains why the total running time of RB- approaches RB+ as the

heap size is decreased in Figure 11a. With decreasing heap size, the

programs spend a larger portion of the time performing GCs, while

the mutator time remains consistent. Hence, there is diminishing

returns from using RB- as heap size decreases.

Next, we analyze the performance on Azul (see Figure 12). We

only consider performance of our local collectors since our AMD

results show that the other collectors (STW and BDW) simply do

not have favorable scalability characteristics. At 3X the minimum

heap size, RB- is 30% faster than RB+.

SCC performance results are presented in Figure 13. At 3X the

minimum heap size, RB- is 20% faster than RB+. From the total

time graphs, we can see that the programs tend to run much slower

as we decrease the heap sizes on SCC. Compared to the fastest

running times, the slowest running time for RB- is 2.01X, 2.05X,

and 3.74X slower on AMD, Azul, and SCC respectively. This is

due to the increased number of shared heap collections, which are

more expensive than other architectures as a result of the absence

of caching. This is noticeable by a more rapid increase in garbage

collection overhead percentages (Figure 13d).

7.3 Impact of cleanliness
Cleanliness information allows the runtime system to avoid pre-

empting threads on a write barrier when the source of an exporting

write is clean. In order to study the impact of cleanliness, we re-

moved the reference counting code and cleanliness check from the

write barrier; thus, every exporting write results in a thread preemp-

tion and stall. The results presented here were taken on the AMD

machine with programs running on 16 cores with the benchmark

configurations given in Figure 10. The results will be similar on

SCC and Azul.

At	
 3X	
 min	

heap	
 size:	

-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐	

RB+ 	
 30%	

61	

Performance	
 on	
 SCC	

(a) Total time (b) Mutator time (c) GC time (d) GC overhead

Figure 11: Performance comparison of Stop-the-world (STW), Boehm-Demers-Weiser conservative garbage collector (BDW), local collector

with read barriers (RB+), and local collector without read barriers (RB-): Geometric mean for 8 benchmarks running on AMD64 with 16

cores.

(a) Total time (b) Mutator time (c) Garbage collection time (d) Garbage collection overhead

Figure 12: Performance comparison of local collector with read barriers (RB+) and local collector without read barriers (RB-): Geometric

mean for 8 benchmarks running on Azul with 846 cores.

(a) Total time (b) Mutator time (c) Garbage collection time (d) Garbage collection overhead

Figure 13: Performance comparison of local collector with read barriers (RB+) and local collector without read barriers (RB-): Geometric

mean for 8 benchmarks running on SCC with 48 cores.

explains why the total running time of RB- approaches RB+ as the

heap size is decreased in Figure 11a. With decreasing heap size, the

programs spend a larger portion of the time performing GCs, while

the mutator time remains consistent. Hence, there is diminishing

returns from using RB- as heap size decreases.

Next, we analyze the performance on Azul (see Figure 12). We

only consider performance of our local collectors since our AMD

results show that the other collectors (STW and BDW) simply do

not have favorable scalability characteristics. At 3X the minimum

heap size, RB- is 30% faster than RB+.

SCC performance results are presented in Figure 13. At 3X the

minimum heap size, RB- is 20% faster than RB+. From the total

time graphs, we can see that the programs tend to run much slower

as we decrease the heap sizes on SCC. Compared to the fastest

running times, the slowest running time for RB- is 2.01X, 2.05X,

and 3.74X slower on AMD, Azul, and SCC respectively. This is

due to the increased number of shared heap collections, which are

more expensive than other architectures as a result of the absence

of caching. This is noticeable by a more rapid increase in garbage

collection overhead percentages (Figure 13d).

7.3 Impact of cleanliness
Cleanliness information allows the runtime system to avoid pre-

empting threads on a write barrier when the source of an exporting

write is clean. In order to study the impact of cleanliness, we re-

moved the reference counting code and cleanliness check from the

write barrier; thus, every exporting write results in a thread preemp-

tion and stall. The results presented here were taken on the AMD

machine with programs running on 16 cores with the benchmark

configurations given in Figure 10. The results will be similar on

SCC and Azul.

(a) Total time (b) Mutator time (c) GC time (d) GC overhead

Figure 11: Performance comparison of Stop-the-world (STW), Boehm-Demers-Weiser conservative garbage collector (BDW), local collector

with read barriers (RB+), and local collector without read barriers (RB-): Geometric mean for 8 benchmarks running on AMD64 with 16

cores.

(a) Total time (b) Mutator time (c) Garbage collection time (d) Garbage collection overhead

Figure 12: Performance comparison of local collector with read barriers (RB+) and local collector without read barriers (RB-): Geometric

mean for 8 benchmarks running on Azul with 846 cores.

(a) Total time (b) Mutator time (c) Garbage collection time (d) Garbage collection overhead

Figure 13: Performance comparison of local collector with read barriers (RB+) and local collector without read barriers (RB-): Geometric

mean for 8 benchmarks running on SCC with 48 cores.

explains why the total running time of RB- approaches RB+ as the

heap size is decreased in Figure 11a. With decreasing heap size, the

programs spend a larger portion of the time performing GCs, while

the mutator time remains consistent. Hence, there is diminishing

returns from using RB- as heap size decreases.

Next, we analyze the performance on Azul (see Figure 12). We

only consider performance of our local collectors since our AMD

results show that the other collectors (STW and BDW) simply do

not have favorable scalability characteristics. At 3X the minimum

heap size, RB- is 30% faster than RB+.

SCC performance results are presented in Figure 13. At 3X the

minimum heap size, RB- is 20% faster than RB+. From the total

time graphs, we can see that the programs tend to run much slower

as we decrease the heap sizes on SCC. Compared to the fastest

running times, the slowest running time for RB- is 2.01X, 2.05X,

and 3.74X slower on AMD, Azul, and SCC respectively. This is

due to the increased number of shared heap collections, which are

more expensive than other architectures as a result of the absence

of caching. This is noticeable by a more rapid increase in garbage

collection overhead percentages (Figure 13d).

7.3 Impact of cleanliness
Cleanliness information allows the runtime system to avoid pre-

empting threads on a write barrier when the source of an exporting

write is clean. In order to study the impact of cleanliness, we re-

moved the reference counting code and cleanliness check from the

write barrier; thus, every exporting write results in a thread preemp-

tion and stall. The results presented here were taken on the AMD

machine with programs running on 16 cores with the benchmark

configurations given in Figure 10. The results will be similar on

SCC and Azul.

At	
 3X	
 min	

heap	
 size:	

-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐	

RB+ 	
 20%	

62	

Under	
 the	
 hood	

63	

C	

send	
 (c,	
 v)	

v	
 ß	
 recv	
 (c)	

Abstract	
 Shared	
 Heap	

T1	
 T2	

C	

T1’s	
 local	
 heap	
 T2’s	
 local	
 heap	

v	

Before	
 CommunicaDon	

Under	
 the	
 hood	

64	

C	

send	
 (c,	
 v)	

v	
 ß	
 recv	
 (c)	

Abstract	
 Shared	
 Heap	

T1	
 T2	

C	

T1’s	
 local	
 heap	
 T2’s	
 local	
 heap	

v	

Aper	
 CommunicaDon	

