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MulDMLton	  
•  Goals	  
–  Safety,	  Scalability,	  ready	  for	  future	  manycore	  processors	  

•  Parallel	  extension	  of	  MLton	  –	  a	  whole-‐program,	  
opDmizing	  SML	  compiler	  

•  Parallel	  extension	  of	  Concurrent	  ML	  
–  Lots	  of	  Concurrency!	  
–  Interact	  by	  sending	  messages	  over	  first-‐class	  channels	  
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C	  

send	  (c,	  v)	  

v	  ß	  recv	  (c)	  



MulDMLton	  GC:	  ConsideraDons	  
•  Standard	  ML	  –	  funcDonal	  PL	  with	  side-‐effects	  
– Most	  objects	  are	  small	  and	  ephemeral	  

•  Independent	  generaDonal	  GC	  
–  #	  MutaDons	  <<	  #	  Reads	  

•  Keep	  cost	  of	  reads	  to	  be	  low	  
•  Minimize	  NUMA	  effects	  
•  Run	  on	  non-‐cache	  coherent	  HW	  
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MulDMLton	  GC:	  Design	  
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Invariant	  PreservaDon	  
•  Read	  and	  write	  barriers	  for	  preserving	  
invariants	  
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Challenge	  
•  Object	  reads	  are	  pervasive	  
–  RB	  overhead	  ∝	  cost	  (RB)	  *	  frequency	  (RB)	  

•  Read	  barrier	  opDmizaDon	  
–  Stacks	  and	  Registers	  never	  point	  to	  forwarded	  objects	  

9	  
Figure 2: Read barrier overhead as a percentage of mutator time.
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Figure 3: Effectiveness of read barrier checks: Checks represents
the number of read barrier invocations and forwarded represents the
number of instances when the read barrier encountered a forwarded
object.

ing non-pointer values. If such a type additionally happens to have
value-carrying constructors that reference heap-allocated objects,
the non-pointer value representing the empty constructor will be
stored in the object pointer field. Hence, the read barrier must first
check whether the presumed pointer does in fact point to a heap ob-
ject. Otherwise, the original value is returned (line 2). If the given
pointer points to a forwarded object, the current location of the ob-
ject stored is returned. Otherwise, the original value is returned.

We evaluated a set of 8 benchmarks (described in Section 7.1)
running on a 16 core AMD64, a 48 core Intel SCC and an 864
core Azul Vega 3 machine to measure read barrier overheads.
Figure 2 shows these overheads as a percentage of mutator time.
Our experiments reveal that, on average, the mutator spends 20.1%,
15.3% and 21.3% of time executing read barriers on the AMD64,
SCC and Azul architectures, respectively, for our benchmarks.

Although a Brooks-style unconditional read barrier would have
avoided the cost of the second branch in our read barrier imple-
mentation, it would necessitate having an additional address length
field in the object header for an indirection pointer. Most objects
in our system tend to be small. In our benchmarks, we observed
that 95% of the objects allocated were less than 3 words in size,
including a word-sized header. The addition of an extra word in
the object header for an indirection pointer would lead to substan-
tial memory overheads, which in turn leads to additional garbage
collection costs. Hence, we choose to encode read barriers condi-
tionally rather than unconditionally.

But, does the utility of the read barrier justify its cost? We mea-
sure the number of instances the read barrier is invoked and the
number of instances the barrier finds a forwarded object (see Fig-
ure 3). We see that read barriers find forwarded objects in less than

one thousands of a percent of the number of instances they are in-
voked. Thus, in our system, the cost of read barriers is substantial,
but only rarely do they have to perform the task of forwarding refer-
ences. These results motivate our interest in a memory management
design that eliminates read barriers altogether.

3. GC Design and Implementation
In this section, we describe the design and implementation of the
runtime system and garbage collector.

3.1 Threading system
Our programming model separates program-level concurrency
from the physical parallelism available in the underlying ma-
chine through the use of lightweight, user-level threads. These
lightweight threads are multiplexed over system-level threads. One
system-level thread is created for every core and is pinned to it.
Thus, the runtime system effectively treats a system-level thread
as a virtual processor. Load distribution is through work sharing,
where threads are eagerly spawned on different cores in a round-
robin fashion. Once created on a core, lightweight threads never
migrate to another core.

Lightweight threads are preemptively scheduled on every core.
On a timer interrupt, the threading system is informed that an in-
terrupt has occurred by setting a flag at a known location. At every
garbage collector safe-point, the current thread checks whether the
timer interrupt flag has been set, and if it is, resets the flag and
yields control to another thread.

3.2 Baseline collector (Stop-the-world)
The baseline heap design uses a single, contiguous heap, shared
among all cores. In order to allow local allocation, each core re-
quests a page-sized chunk from the heap. While a single lock pro-
tects the chunk allocation, objects are allocated within chunks by
bumping a core-local heap frontier.

In order to perform garbage collection, all the cores synchro-
nize on a barrier, with one core responsible for collecting the en-
tire heap. The garbage collection algorithm is inspired from San-
som’s [19] collector, which combines Cheney’s two-space copying
collector and Jonker’s single-space sliding compaction collector.
Cheney’s copying collector walks the live objects in the heap just
once per collection, while Jonker’s mark-compact collector per-
forms two walks. But Cheney’s collector can only utilize half of
memory allocated for the heap. Sansom’s collector combines the
best of both worlds. Copying collection is performed when heap
requirements are less than half of the available memory. The run-
time system dynamically switches to mark-compact collection if
the heap utilization increases beyond half of the available space.

Since ML programs tend to have a high rate of allocation,
and most objects are short-lived temporaries, it is beneficial to
perform generational collection. The garbage collector supports
Appel-style generational collection [2] for collecting temporaries.
The generational collector has two generations, and all objects that
survive a generational collection are copied to the older generation.
Generational collection can work with both copying and mark-
compact major collection schemes. The runtime system chooses
to perform generational collection if the ratio of live objects to the
total objects falls below a tunable threshold.

Our choice of a stop-the-world baseline collector was to enable
better understanding of mutator overheads among various local col-
lector designs, as opposed to illustrating absolute performance im-
provement of the local collectors over the baseline. Although a par-
allel collector would have improved overall baseline performance,
we would expect poorer scalability due to frequent global synchro-
nizations [10, 14, 20].
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Mutator	  and	  Forwarded	  Objects	  
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#	  RB	  invocaDons	  

#	  Encountered	  
forwarded	  objects	  

<	   0.00001	  

Eliminate	  read	  barriers	  altogether	  



RB	  EliminaDon	  
•  Visibility	  Invariant	  
– Mutator	  does	  not	  encounter	  forwarded	  objects	  

•  ObservaDon	  
– No	  forwarded	  objects	  created	  ⇒	  visibility	  
invariant	  ⇒	  No	  read	  barriers	  

•  Exploit	  concurrency	  à	  Procras(na(on!	  
	  

11	  



ProcrasDnaDon	  
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T	   à	  T	  is	  suspended	  

T	   à	  T	  is	  blocked	  
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ProcrasDnaDon	  
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à	  r1	  :=	  x1	   	  	  	  	  	  	  r2	  :=	  x2	  



Correctness	  
•  Does	  ProcrasDnaDon	  introduce	  deadlocks?	  
–  Threads	  can	  be	  procrasDnated	  while	  holding	  a	  lock!	  
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T1	   T2	  T2	  
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T	   à	  T	  is	  suspended	  

T	   à	  T	  is	  blocked	  



Correctness	  
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T1	  

•  Is	  ProcrasDnaDon	  safe?	  
– Yes.	  Forcing	  a	  local	  GC	  unblocks	  the	  threads.	  
– No	  deadlocks	  or	  livelocks!	  

T2	  
T	   à	  T	  is	  running	  

T	   à	  T	  is	  suspended	  

T	   à	  T	  is	  blocked	  

•  Does	  ProcrasDnaDon	  introduce	  deadlocks?	  
–  Threads	  can	  be	  procrasDnated	  while	  holding	  a	  lock!	  

	  



Correctness	  
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T1	   T2	  

•  Does	  ProcrasDnaDon	  introduce	  deadlocks?	  
–  Threads	  can	  be	  procrasDnated	  while	  holding	  a	  lock!	  

	  
T	   à	  T	  is	  running	  

T	   à	  T	  is	  suspended	  

T	   à	  T	  is	  blocked	  
•  Is	  ProcrasDnaDon	  safe?	  
– Yes.	  Forcing	  a	  local	  GC	  unblocks	  the	  threads.	  
– No	  deadlocks	  or	  livelocks!	  



•  Efficacy	  (ProcrasDnaDon)	  ∝	  #	  Available	  runnable	  
threads	  	  

Is	  ProcrasDnaDon	  alone	  enough?	  
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M	  

W1	  W1	   W1	  

F	  

J	  

Serial	  (low	  thread	  availability)	  

Concurrent	  (high	  thread	  availability)	  

•  With	  ProcrasDnaDon,	  half	  of	  local	  major	  GCs	  were	  
forced	  

Eager	  exporDng	  writes	  while	  preserving	  
visibility	  invariant	  



Cleanliness	  
•  A	  clean	  object	  closure	  can	  be	  liped	  to	  the	  
shared	  heap	  without	  breaking	  the	  visibility	  
invariant	  
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r	  :=	  x	  
inSharedHeap	  (r)	  

inLocalHeap	  (x)	  
&&	  

isClean	  (x)	  

Eager	  write	  (no	  ProcrasDnaDon)	  



Cleanliness:	  IntuiDon	  
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Shared	  Heap	  

Local	  Heap	  

x	  

lip	  (x)	  to	  shared	  	  
heap	  



Shared	  Heap	  

Local	  Heap	  

Cleanliness:	  IntuiDon	  
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x	  

FWD	  

find	  all	  references	  	  
to	  FWD	  



Shared	  Heap	  

Local	  Heap	  

Cleanliness:	  IntuiDon	  
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x	   Need	  to	  scan	  the	  	  
enDre	  local	  heap	  



Local	  Heap	  

h	  

Shared	  Heap	  

Cleanliness:	  Simpler	  quesDon	  
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x	  

FWD	  

Do	  all	  references	  	  
originate	  from	  	  
heap	  region	  h?	  

sizeof	  (h)	  <<	  sizeof	  (local	  heap)	  



Local	  Heap	  

h	  

Shared	  Heap	  

Cleanliness:	  Simpler	  quesDon	  
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x	   Only	  scan	  the	  
heap	  region	  h.	  

Heap	  
session!	  

sizeof	  (h)	  <<	  sizeof	  (local	  heap)	  



•  Current	  session	  closed	  &	  new	  session	  opened	  
–  Aper	  an	  exporDng	  write,	  a	  user-‐level	  context	  switch,	  a	  
local	  GC	  

Heap	  Sessions	  
•  Source	  of	  an	  exporDng	  write	  is	  open	  
–  Young	  
–  rarely	  referenced	  from	  outside	  the	  closure	  
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Previous	  Session	   Current	  
Session	   Free	  Local	  Heap	  

SessionStart	   FronDer	  

Young	  
Objects	  

Old	  	  
Objects	   Start	  



•  Current	  session	  closed	  &	  new	  session	  opened	  
–  Aper	  an	  exporDng	  write,	  a	  user-‐level	  context	  switch,	  a	  
local	  GC	  

–  SessionStart	  is	  moved	  to	  FronDer	  

Heap	  Sessions	  
•  Source	  of	  an	  exporDng	  write	  is	  open	  
–  Young	  
–  rarely	  referenced	  from	  outside	  the	  closure	  

28	  
•  Average	  current	  session	  size	  <	  4KB	  

Previous	  Session	   Free	  Local	  Heap	  

FronDer	  &	  SessionStart	  Start	  



Cleanliness:	  Eager	  exporDng	  writes	  
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•  A	  clean	  object	  closure	  
–  is	  fully	  contained	  within	  the	  current	  session	  
–  has	  no	  references	  from	  previous	  session	  

Previous	  Session	  
Current	  
Session	  

Free	  
Local	  Heap	  

X

Y Z

r	  :=	  x	  

r	  
Shared	  Heap	  



Cleanliness:	  Eager	  exporDng	  writes	  
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•  A	  clean	  object	  closure	  
–  is	  fully	  contained	  within	  the	  current	  session	  
–  has	  no	  references	  from	  previous	  session	  

Previous	  Session	  
Current	  
Session	  

Free	  
Local	  Heap	  

X

Y Z

r	  :=	  x	  

r	  
Shared	  Heap	  

Walk	  
and	  fix	  

FWD	  



Avoid	  tracing	  current	  session?	  
•  Many	  SML	  objects	  are	  tree-‐structured	  (List,	  Tree,	  etc,.)	  

–  Specialize	  for	  no	  pointers	  from	  outside	  the	  object	  closure	  

•  ∀x’	  ∊	  transiDve	  object	  closure	  (x),	  	  
	   	   	  ref_count	  (x)	  =	  0	  &&	  ref_count	  (x’)	  =	  1	  
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Local	  Heap	  

x(0)	  

y(1)	  

z(1)	  

•  Eager	  exporDng	  write	  
–  No	  current	  session	  tracing	  needed!	  

	  

No	  refs	  
from	  

outside	  

–  ref_count	  does	  not	  consider	  pointers	  from	  stack	  or	  registers	  



Reference	  Count	  
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Current	  Session	  

X(0)	  

Current	  Session	  

X(1)	  

Current	  Session	  

X(LM)	  

Current	  Session	  

X(G)	  

Prev
Sess	  

Zero	   One	   LocalMany	   Global	  

•  Purpose	  
–  Track	  pointers	  from	  previous	  session	  to	  current	  session	  
–  IdenDfy	  tree-‐structured	  object	  

•  Does	  not	  track	  pointers	  from	  stack	  and	  registers	  
–  Reference	  count	  only	  triggered	  during	  object	  iniDalizaDon	  
and	  mutaDon	  



Bringing	  it	  all	  together	  
•  ∀x’	  ∊	  transiDve	  object	  closure	  (x),	  	  

	   	   	  if	  max	  (ref_count	  (x’))	  
– One	  &	  ref_count	  (x)	  =	  0	  ⇒	  tree-‐structured	  (Clean)	  
⇒	  Session	  tracing	  not	  needed	  

– LocalMany	  ⇒	  Clean	  ⇒	  Trace	  current	  session	  
– Global	  ⇒	  1+	  pointer	  from	  previous	  session	  ⇒	  
ProcrasGnate	  

33	  



Example	  1:	  Tree-‐structured	  Object	  
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Previous	  
Session	   Current	  Session	  

x(0)	  

y(1)	  

z(1)	  
T1	  Local	  Heap	  

Shared	  heap	  

r	  :=	  x	  

r	  

current	  	  
stack	  



Shared	  heap	  

Example	  1:	  Tree-‐structured	  Object	  
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Previous	  
Session	   Current	  Session	  

x	  

y	  

z	  

T1	  current	  	  
stack	  Local	  Heap	  

r	  :=	  x	  

FWD	  

r	  

Walk	  
current	  
stack	  



Shared	  heap	  

Example	  1:	  Tree-‐structured	  Object	  
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Previous	  
Session	   Current	  Session	  

x	  

y	  

z	  

T1	  current	  	  
stack	  Local	  Heap	  

r	  :=	  x	  

r	  

No	  need	  to	  
walk	  current	  
session!	  



Shared	  heap	  

Example	  1:	  Tree-‐structured	  Object	  

37	  

Previous	  
Session	   Current	  Session	  

x	  

y	  

z	  

T1	  Local	  Heap	  

r	  :=	  x	  

r	  

T2	   Next	  
stack	  

FWD	  current	  	  
stack	  



Shared	  heap	  

Example	  1:	  Tree-‐structured	  Object	  
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Previous	  
Session	   Current	  Session	  

x	  

y	  

z	  

T1	  previous	  
stack	  Local	  Heap	  

r	  :=	  x	  

r	  

T2	   current	  
stack	  

Context	  Switch	  

Walk	  
target	  
stack	  



Example	  2:	  Object	  Graph	  
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Previous	  
Session	   Current	  Session	  

x(0)	  

y
(LM)	  

z(1)	  
current	  	  
stack	  Local	  Heap	  

Shared	  heap	  

r	  :=	  x	  

r	  

a	  



Shared	  heap	  

Example	  2:	  Object	  Graph	  
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Example	  2:	  Object	  Graph	  
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Example	  3:	  Global	  Reference	  
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Example	  3:	  Global	  Reference	  
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Immutable	  Objects	  
•  Specialize	  exporDng	  writes	  
•  If	  immutable	  object	  in	  previous	  session	  
– Copy	  to	  shared	  heap	  

•  Immutable	  objects	  in	  SML	  do	  not	  have	  idenGty	  

– Original	  object	  unmodified	  

•  Avoid	  space	  leaks	  
– Treat	  large	  immutable	  objects	  as	  mutable	  
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Cleanliness:	  Summary	  
•  Cleanliness	  allows	  eager	  exporDng	  writes	  
while	  preserving	  visibility	  invariant	  

•  With	  ProcrasDnaDon	  +	  Cleanliness,	  <1%	  of	  
local	  GCs	  were	  forced	  
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EvaluaDon	  
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•  Variants	  
–  RB-‐	  :	  TLC	  with	  ProcrasDnaDon	  and	  Cleanliness	  	  
–  RB+	  :	  TLC	  with	  read	  barriers	  

•  Sansom’s	  dual-‐mode	  GC	  
–  Cheney’s	  2-‐space	  copying	  collecDon	  ßà	  Jonker’s	  sliding	  
mark-‐compacDng	  

–  GeneraDonal,	  2	  generaDons,	  No	  aging	  
•  Target	  Architectures:	  	  
–  16-‐core	  AMD	  Opteron	  server	  (NUMA)	  
–  48-‐core	  Intel	  SCC	  (non-‐cache	  coherent)	  
–  864-‐core	  Azul	  Vega3	  



Results	  
•  Speedup:	  At	  3X	  min	  heap	  size,	  RB-‐	  faster	  than	  
RB+	  
– AMD	  (16-‐cores)	  32%	  (2X	  faster	  than	  STW	  
collector)	  

– SCC	  (48-‐cores)	  20%	  
– AZUL	  (864-‐cores)	  30%	  

•  Concurrency	  
– During	  exporDng	  write,	  8	  runnable	  user-‐level	  
threads/core!	  
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Cleanliness	  Impact	  
•  RB-‐	  MU-‐	  :	  RB-‐	  GC	  ignoring	  mutability	  for	  Cleanliness	  
•  RB-‐	  CL-‐	  :	  RB-‐	  GC	  ignoring	  Cleanliness	  (Only	  ProcrasGnaGon)	  

48	  

Avg.	  slowdown	  
-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐	  

11.4%	  
28.2%	  
31.7%	  



Conclusion	  
•  Eliminate	  the	  need	  for	  read	  barriers	  by	  
preserving	  the	  visibility	  invariant	  
– Procras'na'on:	  Exploit	  concurrency	  for	  delaying	  
exporDng	  writes	  

– Cleanliness:	  Exploit	  generaDonal	  property	  for	  
eagerly	  perform	  exporDng	  writes	  

•  AddiDonal	  niceDes	  
– Completely	  dynamic	  à	  Portable	  
– Does	  not	  impose	  any	  restricDon	  on	  the	  GC	  
strategy	  
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QuesDons?	  

hxp://mulDmlton.cs.purdue.edu	  
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Results	  
•  On	  AMD,	  16	  Cores,	  3X	  minimum	  heap	  size	  
•  Mutator	  'me:	  	  
– STW	  GC	  spends	  the	  least	  amount	  of	  Dme	  in	  the	  
mutator	  
•  No	  read/write	  barriers	  

– Compared	  to	  STW	  GC,	  the	  mutator	  Dme	  of	  
•  RB-‐	  18%	  more,	  RB+	  39%	  more	  

•  GC	  'me:	  	  
– RB-‐	  spends	  the	  least	  amount	  Dme	  doing	  GC	  
– RB-‐	  within	  5%	  of	  RB+	  
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Performance	  on	  AMD	  (16-‐cores)	  

(a) Total time (b) Mutator time (c) GC time (d) GC overhead

Figure 11: Performance comparison of Stop-the-world (STW), Boehm-Demers-Weiser conservative garbage collector (BDW), local collector

with read barriers (RB+), and local collector without read barriers (RB-): Geometric mean for 8 benchmarks running on AMD64 with 16

cores.

(a) Total time (b) Mutator time (c) Garbage collection time (d) Garbage collection overhead

Figure 12: Performance comparison of local collector with read barriers (RB+) and local collector without read barriers (RB-): Geometric

mean for 8 benchmarks running on Azul with 846 cores.

(a) Total time (b) Mutator time (c) Garbage collection time (d) Garbage collection overhead

Figure 13: Performance comparison of local collector with read barriers (RB+) and local collector without read barriers (RB-): Geometric

mean for 8 benchmarks running on SCC with 48 cores.

explains why the total running time of RB- approaches RB+ as the

heap size is decreased in Figure 11a. With decreasing heap size, the

programs spend a larger portion of the time performing GCs, while

the mutator time remains consistent. Hence, there is diminishing

returns from using RB- as heap size decreases.

Next, we analyze the performance on Azul (see Figure 12). We

only consider performance of our local collectors since our AMD

results show that the other collectors (STW and BDW) simply do

not have favorable scalability characteristics. At 3X the minimum

heap size, RB- is 30% faster than RB+.

SCC performance results are presented in Figure 13. At 3X the

minimum heap size, RB- is 20% faster than RB+. From the total

time graphs, we can see that the programs tend to run much slower

as we decrease the heap sizes on SCC. Compared to the fastest

running times, the slowest running time for RB- is 2.01X, 2.05X,

and 3.74X slower on AMD, Azul, and SCC respectively. This is

due to the increased number of shared heap collections, which are

more expensive than other architectures as a result of the absence

of caching. This is noticeable by a more rapid increase in garbage

collection overhead percentages (Figure 13d).

7.3 Impact of cleanliness
Cleanliness information allows the runtime system to avoid pre-

empting threads on a write barrier when the source of an exporting

write is clean. In order to study the impact of cleanliness, we re-

moved the reference counting code and cleanliness check from the

write barrier; thus, every exporting write results in a thread preemp-

tion and stall. The results presented here were taken on the AMD

machine with programs running on 16 cores with the benchmark

configurations given in Figure 10. The results will be similar on

SCC and Azul.

At	  3X	  min	  
heap	  size:	  
-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐	  
RB+	   	  32%	  	  
STW 	  106%	  
BDW	  584%	  
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(a) Total time (b) Mutator time (c) GC time (d) GC overhead

Figure 11: Performance comparison of Stop-the-world (STW), Boehm-Demers-Weiser conservative garbage collector (BDW), local collector

with read barriers (RB+), and local collector without read barriers (RB-): Geometric mean for 8 benchmarks running on AMD64 with 16

cores.

(a) Total time (b) Mutator time (c) Garbage collection time (d) Garbage collection overhead

Figure 12: Performance comparison of local collector with read barriers (RB+) and local collector without read barriers (RB-): Geometric

mean for 8 benchmarks running on Azul with 846 cores.

(a) Total time (b) Mutator time (c) Garbage collection time (d) Garbage collection overhead

Figure 13: Performance comparison of local collector with read barriers (RB+) and local collector without read barriers (RB-): Geometric

mean for 8 benchmarks running on SCC with 48 cores.

explains why the total running time of RB- approaches RB+ as the

heap size is decreased in Figure 11a. With decreasing heap size, the

programs spend a larger portion of the time performing GCs, while

the mutator time remains consistent. Hence, there is diminishing

returns from using RB- as heap size decreases.

Next, we analyze the performance on Azul (see Figure 12). We

only consider performance of our local collectors since our AMD

results show that the other collectors (STW and BDW) simply do

not have favorable scalability characteristics. At 3X the minimum

heap size, RB- is 30% faster than RB+.

SCC performance results are presented in Figure 13. At 3X the

minimum heap size, RB- is 20% faster than RB+. From the total

time graphs, we can see that the programs tend to run much slower

as we decrease the heap sizes on SCC. Compared to the fastest

running times, the slowest running time for RB- is 2.01X, 2.05X,

and 3.74X slower on AMD, Azul, and SCC respectively. This is

due to the increased number of shared heap collections, which are

more expensive than other architectures as a result of the absence

of caching. This is noticeable by a more rapid increase in garbage

collection overhead percentages (Figure 13d).

7.3 Impact of cleanliness
Cleanliness information allows the runtime system to avoid pre-

empting threads on a write barrier when the source of an exporting

write is clean. In order to study the impact of cleanliness, we re-

moved the reference counting code and cleanliness check from the

write barrier; thus, every exporting write results in a thread preemp-

tion and stall. The results presented here were taken on the AMD

machine with programs running on 16 cores with the benchmark

configurations given in Figure 10. The results will be similar on

SCC and Azul.
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Figure 11: Performance comparison of Stop-the-world (STW), Boehm-Demers-Weiser conservative garbage collector (BDW), local collector

with read barriers (RB+), and local collector without read barriers (RB-): Geometric mean for 8 benchmarks running on AMD64 with 16

cores.
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Figure 12: Performance comparison of local collector with read barriers (RB+) and local collector without read barriers (RB-): Geometric

mean for 8 benchmarks running on Azul with 846 cores.
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Figure 13: Performance comparison of local collector with read barriers (RB+) and local collector without read barriers (RB-): Geometric

mean for 8 benchmarks running on SCC with 48 cores.

explains why the total running time of RB- approaches RB+ as the

heap size is decreased in Figure 11a. With decreasing heap size, the

programs spend a larger portion of the time performing GCs, while

the mutator time remains consistent. Hence, there is diminishing

returns from using RB- as heap size decreases.

Next, we analyze the performance on Azul (see Figure 12). We

only consider performance of our local collectors since our AMD

results show that the other collectors (STW and BDW) simply do

not have favorable scalability characteristics. At 3X the minimum

heap size, RB- is 30% faster than RB+.

SCC performance results are presented in Figure 13. At 3X the

minimum heap size, RB- is 20% faster than RB+. From the total

time graphs, we can see that the programs tend to run much slower

as we decrease the heap sizes on SCC. Compared to the fastest

running times, the slowest running time for RB- is 2.01X, 2.05X,

and 3.74X slower on AMD, Azul, and SCC respectively. This is

due to the increased number of shared heap collections, which are

more expensive than other architectures as a result of the absence

of caching. This is noticeable by a more rapid increase in garbage

collection overhead percentages (Figure 13d).

7.3 Impact of cleanliness
Cleanliness information allows the runtime system to avoid pre-

empting threads on a write barrier when the source of an exporting

write is clean. In order to study the impact of cleanliness, we re-

moved the reference counting code and cleanliness check from the

write barrier; thus, every exporting write results in a thread preemp-

tion and stall. The results presented here were taken on the AMD

machine with programs running on 16 cores with the benchmark

configurations given in Figure 10. The results will be similar on

SCC and Azul.



MulDMLton	  -‐	  SCC	  implementaDon	  

Programming Models for the Intel SCC Many-core Processor Chair for Operating Systems
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• Strictly No Cache Coherency
Cluster-on-Chip Architecture

• Private off-die DRAM Regions (one per Core)
Caches enabled!  One Linux instance per Core!

• Shared / Global off-die DRAM Region
Caches disabled per default!  e.g. for global shared data

• Shared on-die MPB Regions
Cached in L1, L2 Bypass / Fast L1 Invalidation for MPB-Data

Shared off-die DRAM

CPU0L1$L2$Private DRAM CPU47L1$L2$Private DRAM

Message Passing Buffer (8KB/core)

Shared-Memory Models of the SCC

Non-‐Cached	  -‐-‐	  
Shared	  heap	  

Cached	  -‐-‐	  
Local	  heap	  
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Total	  Dme:	  SCC	  and	  AZUL	  
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(a) Total time (b) Mutator time (c) GC time (d) GC overhead

Figure 11: Performance comparison of Stop-the-world (STW), Boehm-Demers-Weiser conservative garbage collector (BDW), local collector

with read barriers (RB+), and local collector without read barriers (RB-): Geometric mean for 8 benchmarks running on AMD64 with 16

cores.

(a) Total time (b) Mutator time (c) Garbage collection time (d) Garbage collection overhead

Figure 12: Performance comparison of local collector with read barriers (RB+) and local collector without read barriers (RB-): Geometric

mean for 8 benchmarks running on Azul with 846 cores.

(a) Total time (b) Mutator time (c) Garbage collection time (d) Garbage collection overhead

Figure 13: Performance comparison of local collector with read barriers (RB+) and local collector without read barriers (RB-): Geometric

mean for 8 benchmarks running on SCC with 48 cores.

explains why the total running time of RB- approaches RB+ as the

heap size is decreased in Figure 11a. With decreasing heap size, the

programs spend a larger portion of the time performing GCs, while

the mutator time remains consistent. Hence, there is diminishing

returns from using RB- as heap size decreases.

Next, we analyze the performance on Azul (see Figure 12). We

only consider performance of our local collectors since our AMD

results show that the other collectors (STW and BDW) simply do

not have favorable scalability characteristics. At 3X the minimum

heap size, RB- is 30% faster than RB+.

SCC performance results are presented in Figure 13. At 3X the

minimum heap size, RB- is 20% faster than RB+. From the total

time graphs, we can see that the programs tend to run much slower

as we decrease the heap sizes on SCC. Compared to the fastest

running times, the slowest running time for RB- is 2.01X, 2.05X,

and 3.74X slower on AMD, Azul, and SCC respectively. This is

due to the increased number of shared heap collections, which are

more expensive than other architectures as a result of the absence

of caching. This is noticeable by a more rapid increase in garbage

collection overhead percentages (Figure 13d).

7.3 Impact of cleanliness
Cleanliness information allows the runtime system to avoid pre-

empting threads on a write barrier when the source of an exporting

write is clean. In order to study the impact of cleanliness, we re-

moved the reference counting code and cleanliness check from the

write barrier; thus, every exporting write results in a thread preemp-

tion and stall. The results presented here were taken on the AMD

machine with programs running on 16 cores with the benchmark

configurations given in Figure 10. The results will be similar on

SCC and Azul.
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Figure 11: Performance comparison of Stop-the-world (STW), Boehm-Demers-Weiser conservative garbage collector (BDW), local collector

with read barriers (RB+), and local collector without read barriers (RB-): Geometric mean for 8 benchmarks running on AMD64 with 16

cores.
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Figure 12: Performance comparison of local collector with read barriers (RB+) and local collector without read barriers (RB-): Geometric

mean for 8 benchmarks running on Azul with 846 cores.
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Figure 13: Performance comparison of local collector with read barriers (RB+) and local collector without read barriers (RB-): Geometric

mean for 8 benchmarks running on SCC with 48 cores.

explains why the total running time of RB- approaches RB+ as the

heap size is decreased in Figure 11a. With decreasing heap size, the

programs spend a larger portion of the time performing GCs, while

the mutator time remains consistent. Hence, there is diminishing

returns from using RB- as heap size decreases.

Next, we analyze the performance on Azul (see Figure 12). We

only consider performance of our local collectors since our AMD

results show that the other collectors (STW and BDW) simply do

not have favorable scalability characteristics. At 3X the minimum

heap size, RB- is 30% faster than RB+.

SCC performance results are presented in Figure 13. At 3X the

minimum heap size, RB- is 20% faster than RB+. From the total

time graphs, we can see that the programs tend to run much slower

as we decrease the heap sizes on SCC. Compared to the fastest

running times, the slowest running time for RB- is 2.01X, 2.05X,

and 3.74X slower on AMD, Azul, and SCC respectively. This is

due to the increased number of shared heap collections, which are

more expensive than other architectures as a result of the absence

of caching. This is noticeable by a more rapid increase in garbage

collection overhead percentages (Figure 13d).

7.3 Impact of cleanliness
Cleanliness information allows the runtime system to avoid pre-

empting threads on a write barrier when the source of an exporting

write is clean. In order to study the impact of cleanliness, we re-

moved the reference counting code and cleanliness check from the

write barrier; thus, every exporting write results in a thread preemp-

tion and stall. The results presented here were taken on the AMD

machine with programs running on 16 cores with the benchmark

configurations given in Figure 10. The results will be similar on

SCC and Azul.

SCC	  (48-‐cores)	   AZUL	  (864-‐Cores)	  

20%	   30%	  

Non-‐cache	  coherent	   Scalable,	  cache-‐coherent	  



Cleanliness	  Impact	  (1)	  
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Figure 14: Number of preemptions on write barrier.
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Figure 15: Forced GCs as a percentage of the total number of major
GCs.

Figure 14 shows the number of preemptions on write barrier for
different local collector configurations. RB- row represents the lo-
cal collector designs with all of the features enabled; RB- MU- row
shows a cleanliness optimization that does not take an object’s mu-
tability into consideration in determining cleanliness (using only
recorded reference counts instead), and row RB- CL- row repre-
sents preemptions incurred when the collector does not use any
cleanliness information at all. Without cleanliness, on average, the
programs perform substantially more preemptions when encoun-
tering a write barrier.

Recall that if all of the threads belonging to a core get preempted
on a write barrier, a local major GC is forced, which lifts all of
the sources of exporting writes, fixes the references to forwarding
pointers and unblocks the stalled threads. Hence, an increase in the
number of preemptions leads to an increase in the number of local
collections.

Figure 15 shows the percentage of local major GCs that were
forced compared to the total number of local major GCs. Row RB-
CL- shows the percentage of forced GCs if cleanliness information
is not used. On average, 49% of local major collection performed
is due to forced GCs if cleanliness information is not used, whereas
it is less than 1% otherwise. On benchmarks like BarnesHut,
GameOfLife and Mandelbrot, where all of the threads tend to
operate on a shared global data structure, there are a large number
of exporting writes. On such benchmarks almost all local GCs are
forced in the absence of cleanliness. This adversely affects the
running time of programs.

Figure 16 shows the running time of programs without using
cleanliness. On average, programs tend to run 28.2% slower if
cleanliness information is ignored. The results show that cleanli-
ness analysis therefore plays a significant role in our GC design.

7.4 Impact of immutability
If the source of an exporting write is immutable, we can make a
copy of the object in the shared heap and assign a reference to the
new shared heap object to the target. Hence, we can ignore the
reference count of such objects. Not all languages may have the
ability to distinguish between mutable and immutable objects in
the compiler or in the runtime system. Hence, we study the impact
of our local collector design with mutability information in mind.
To do this, we ignore the test for mutability in the cleanliness check

Figure 16: Impact of utilizing object mutability information and
cleanliness analysis on the performance of RB- GC.
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Figure 17: Impact of heap session: % LM clean represents the
fraction of instances when a clean object closure has at least one
object with LOCAL MANY references.

(Line 4 in Figure 6) and modify the object lifting code in Figure 8
to treat all objects as mutable.

RB- MU- row in Figure 14 and Figure 15 show the number of
write barrier preemptions and the percentage of forced GCs, re-
spectively, if all objects were treated as mutable. For some pro-
grams such as AllPairs, CountGraphs, or Kclustering, ob-
ject mutability does not play a significant factor. For benchmarks
where it does, distinguishing between mutable and immutable ob-
jects helps avoid inducing preemptions on a write barrier since a
copy of the immutable object can be created in the shared heap
without the need to repair existing references to the local heap copy.

Figure 16 shows the performance impact of taking object
mutability into account. BarnesHut, GameOfLife and Nucleic
are slower due to the increased number of forced GCs. Interest-
ingly, AllPairs, CountGraphs, Kclustering and Raytrace are
marginally faster since they avoid manipulating the imSet (Line
14 in Figure 8) and walking immutable objects after the objects
are lifted (Lines 25-27 in Figure 8). On average, we see a 11.4%
performance impact if mutability information is not utilized for
cleanliness.

7.5 Impact of heap session
In order to assess the effectiveness of using heap sessions, we mea-
sured the percentage of instances where the source of an exporting
write is clean with at least one of the objects in the closure has a
LOCAL MANY reference. During such instances, we walk the current
heap session to fix any references to forwarded objects. Without us-
ing heap sessions, we would have preempted the thread in the write
barrier, reducing available concurrency. The results were obtained
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Number	  of	  PreempDons	  on	  exporDng	  writes	  

Forced	  GCs	  as	  a	  %	  of	  total	  number	  of	  local	  major	  GCs	  
	  



Benchmark	  CharacterisDcs	  
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Figure 10: Benchmark characteristics. %Sh represents the average
fraction of bytes allocated in the shared heap across all the archi-
tectures.

• AllPairs: an implementation of Floyd-Warshall algorithm for
computing all pairs shortest path.

• BarnesHut: an n-body simulation using Barnes-Hut algorithm.
• CountGraphs: computes all symmetries (automorphisms)

within a set of graphs.
• GameOfLife: Conway’s Game of Life simulator
• Kclustering: a k-means clustering algorithm, where each stage

is spawned as a server.
• Mandelbrot: a Mandelbrot set generator.
• Nucleic: Pseudoknot [11] benchmark applied on multiple in-

puts.
• Raytrace: a ray-tracing algorithm to render a scene.

Parameters are appropriately scaled for different architectures
to ensure sufficient work for each of the cores. The benchmarks
running on AMD and SCC were given the same input size. Hence,
we see that the benchmarks allocate the same amount of memory
during their lifetime. But, we increase the number of threads on
the SCC when compared to AMD since there is more hardware
parallelism available. For Azul, we scale both the input size and the
number of threads, and as a result we see a large increase in bytes
allocated when compared to the other platforms. Out of the total
bytes allocated during the program execution, on average 5.4% is
allocated in the shared heap. Thus, most of the objects allocated are
collected locally, without the need for stalling all of the mutators.

We observe that the allocation rate is highly architecture depen-
dent, and is the slowest on the SCC. Allocation rate is particularly
dependent on memory bandwidth, processor speed and cache be-
havior. On the SCC, not only is the processor slow (533MHz) but
the serial memory bandwidth for our experimental setup is only
around 70 MB/s.

7.2 Performance
Next, we analyze the performance of the new local collector design.
In order to establish a baseline for the results presented, we have
ported our runtime system to utilize the Boehm-Demers-Weiser
(BDW) conservative garbage collector [7]. We briefly describe the
port of our runtime system utilizing BDW GC.

Although BDW GC is conservative, it can utilize tracing infor-
mation when provided. Our compiler generates tracing information
for all objects, including the stack. However, we provide the trac-
ing information for all object allocations except the stack. Stack
objects in our runtime system represent all of the reserved space
for a stack, while only a part of the stack is actually used which can
grow and shrink as frames are pushed and popped. Since the BDW
GC does not allow tracing information of objects to be changed af-

ter allocation, we scan stack objects conservatively. BDW uses a
mark-sweep algorithm, and we enable parallel marking and thread-
local allocations.

Figure 11a illustrates space-time trade-offs critical for any
garbage collector evaluation. STW GC is the baseline stop-the-
world collector described in Section 3.2, while RB+ and RB- are
local collectors. RB+ is a local collector with read barriers while
RB- is our new local collector design without read barriers, exploit-
ing procrastination and cleanliness. We compare the normalized
running times of our benchmarks under different garbage collec-
tion schemes as we decrease the heap size. For each run of the
experiment, we decrease the maximum heap size allowed and re-
port the maximum size of the heap utilized. Thus, we leave it to the
collectors to figure out the optimal heap size, within the allowed
space. This is essential for the local collectors, since the allocation
pattern of each core is usually very different and depends on the
structure of the program.

The results presented here were collected on 16 cores. As we
decrease overall heap sizes, we see programs under all of the dif-
ferent GC schemes taking longer to run. But RB- exhibits better
performance characteristics than its counterparts. We observe that
the minimum heap size under which the local collectors would run
is greater than the STW and BDW GCs. In the local collectors,
since the heap is split across all of the cores, there is more frag-
mentation. Also, under the current scheme, each local collector is
greedy and will try to utilize as much heap as it can in order to
reduce the running time (by choosing semi-space collection over
mark-compact), without taking into account the heap requirements
of other local collectors. Currently, when one of the local cores
runs out of memory, we terminate the program. Since we are inter-
ested in throughput on scalable architectures where memory is not
a bottleneck, we have not optimized the collectors for memory uti-
lization. We believe we can modify our collector for memory con-
strained environments by allowing local heaps to shrink on demand
and switch from semi-space to compacting collection, if other local
heaps run out of memory.

The STW and BDW GCs are much slower than the two local
collectors. In order to study the reason behind this slowdown,
we separate the mutator time (Figure 11b) and garbage collection
time (Figure 11c). We see that STW GC is actually faster than
the local collectors in terms of mutator time, since it does not
pay the overhead of executing read or write barriers. But, since
every collection requires stopping all the mutators and a single
collector performs the collection, it executes serially during a GC.
Figure 11d shows that roughly 70% of the execution total time for
our benchmarks under STW is spent performing GCs, negatively
impacting scalability.

Interestingly, we see that programs running under the BDW GC
are much slower when compared to other GCs. This is mainly due
to allocation costs. Although we enabled thread-local allocations,
on 16 cores, approximately 40% of the time was spent on object
allocation. While the cost of object allocation for our other collec-
tors only involves bumping the frontier, allocation in BDW GC is
significantly more costly, involving scanning through a free list, in-
curring substantial overhead. Moreover, BDW GC is tuned for lan-
guages like C/C++ and Java, where the object lifetimes are longer
and allocation rate is lower when compared to functional program-
ming languages.

In Figure 11a, at 3X the minimum heap size, RB+, STW and
BDW GCs are 32%, 106% and 584% slower than the RB- GC. We
observe that there is very little difference between RB+ and RB-
in terms of GC time but the mutator time for RB+ is consistently
higher than RB- due to read barrier costs. The difference in mutator
times is consistent since it is not adversely affected by the increased
number of GCs incurred as a result of smaller heap sizes. This also
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Figure 14: Number of preemptions on write barrier.
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Figure 15: Forced GCs as a percentage of the total number of major
GCs.

Figure 14 shows the number of preemptions on write barrier for
different local collector configurations. RB- row represents the lo-
cal collector designs with all of the features enabled; RB- MU- row
shows a cleanliness optimization that does not take an object’s mu-
tability into consideration in determining cleanliness (using only
recorded reference counts instead), and row RB- CL- row repre-
sents preemptions incurred when the collector does not use any
cleanliness information at all. Without cleanliness, on average, the
programs perform substantially more preemptions when encoun-
tering a write barrier.

Recall that if all of the threads belonging to a core get preempted
on a write barrier, a local major GC is forced, which lifts all of
the sources of exporting writes, fixes the references to forwarding
pointers and unblocks the stalled threads. Hence, an increase in the
number of preemptions leads to an increase in the number of local
collections.

Figure 15 shows the percentage of local major GCs that were
forced compared to the total number of local major GCs. Row RB-
CL- shows the percentage of forced GCs if cleanliness information
is not used. On average, 49% of local major collection performed
is due to forced GCs if cleanliness information is not used, whereas
it is less than 1% otherwise. On benchmarks like BarnesHut,
GameOfLife and Mandelbrot, where all of the threads tend to
operate on a shared global data structure, there are a large number
of exporting writes. On such benchmarks almost all local GCs are
forced in the absence of cleanliness. This adversely affects the
running time of programs.

Figure 16 shows the running time of programs without using
cleanliness. On average, programs tend to run 28.2% slower if
cleanliness information is ignored. The results show that cleanli-
ness analysis therefore plays a significant role in our GC design.

7.4 Impact of immutability
If the source of an exporting write is immutable, we can make a
copy of the object in the shared heap and assign a reference to the
new shared heap object to the target. Hence, we can ignore the
reference count of such objects. Not all languages may have the
ability to distinguish between mutable and immutable objects in
the compiler or in the runtime system. Hence, we study the impact
of our local collector design with mutability information in mind.
To do this, we ignore the test for mutability in the cleanliness check

Figure 16: Impact of utilizing object mutability information and
cleanliness analysis on the performance of RB- GC.
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Figure 17: Impact of heap session: % LM clean represents the
fraction of instances when a clean object closure has at least one
object with LOCAL MANY references.

(Line 4 in Figure 6) and modify the object lifting code in Figure 8
to treat all objects as mutable.

RB- MU- row in Figure 14 and Figure 15 show the number of
write barrier preemptions and the percentage of forced GCs, re-
spectively, if all objects were treated as mutable. For some pro-
grams such as AllPairs, CountGraphs, or Kclustering, ob-
ject mutability does not play a significant factor. For benchmarks
where it does, distinguishing between mutable and immutable ob-
jects helps avoid inducing preemptions on a write barrier since a
copy of the immutable object can be created in the shared heap
without the need to repair existing references to the local heap copy.

Figure 16 shows the performance impact of taking object
mutability into account. BarnesHut, GameOfLife and Nucleic
are slower due to the increased number of forced GCs. Interest-
ingly, AllPairs, CountGraphs, Kclustering and Raytrace are
marginally faster since they avoid manipulating the imSet (Line
14 in Figure 8) and walking immutable objects after the objects
are lifted (Lines 25-27 in Figure 8). On average, we see a 11.4%
performance impact if mutability information is not utilized for
cleanliness.

7.5 Impact of heap session
In order to assess the effectiveness of using heap sessions, we mea-
sured the percentage of instances where the source of an exporting
write is clean with at least one of the objects in the closure has a
LOCAL MANY reference. During such instances, we walk the current
heap session to fix any references to forwarded objects. Without us-
ing heap sessions, we would have preempted the thread in the write
barrier, reducing available concurrency. The results were obtained
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Read	  Barrier	  
CondiDonal	  (Baker	  Style)	   UncondiDonal	  (Brooks	  style)	  

F	  

pointer readBarrier (pointer *p) { 

  if (*(Header*)(p – HD_OFF) == F) 

    return *(pointer*)p; 

  return p; 

} 

pointer readBarrier (pointer *p) { 

  return *(pointer*)(p – IND_OFF); 

} 

F	  

Has	  CondiDonal	  Check	   Needs	  extra	  header	  word	  

From	  
From	  

To	  To	  
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Read	  Barrier	  OpDmizaDons	  
•  Stacks	  and	  registers	  never	  point	  to	  forwarding	  
pointers	  

•  “Eager”	  read	  barriers	  (D.Bacon	  et	  al.	  POPL’93)	  
•  Scan	  stack	  aper	  exporDng	  write	  
•  ExporDng	  write	  is	  a	  GC	  safe-‐point	  
•  Reduces	  RB	  overhead	  by	  ~5%	  
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(a) Total time (b) Mutator time (c) GC time (d) GC overhead

Figure 11: Performance comparison of Stop-the-world (STW), Boehm-Demers-Weiser conservative garbage collector (BDW), local collector

with read barriers (RB+), and local collector without read barriers (RB-): Geometric mean for 8 benchmarks running on AMD64 with 16

cores.

(a) Total time (b) Mutator time (c) Garbage collection time (d) Garbage collection overhead

Figure 12: Performance comparison of local collector with read barriers (RB+) and local collector without read barriers (RB-): Geometric

mean for 8 benchmarks running on Azul with 846 cores.

(a) Total time (b) Mutator time (c) Garbage collection time (d) Garbage collection overhead

Figure 13: Performance comparison of local collector with read barriers (RB+) and local collector without read barriers (RB-): Geometric

mean for 8 benchmarks running on SCC with 48 cores.

explains why the total running time of RB- approaches RB+ as the

heap size is decreased in Figure 11a. With decreasing heap size, the

programs spend a larger portion of the time performing GCs, while

the mutator time remains consistent. Hence, there is diminishing

returns from using RB- as heap size decreases.

Next, we analyze the performance on Azul (see Figure 12). We

only consider performance of our local collectors since our AMD

results show that the other collectors (STW and BDW) simply do

not have favorable scalability characteristics. At 3X the minimum

heap size, RB- is 30% faster than RB+.

SCC performance results are presented in Figure 13. At 3X the

minimum heap size, RB- is 20% faster than RB+. From the total

time graphs, we can see that the programs tend to run much slower

as we decrease the heap sizes on SCC. Compared to the fastest

running times, the slowest running time for RB- is 2.01X, 2.05X,

and 3.74X slower on AMD, Azul, and SCC respectively. This is

due to the increased number of shared heap collections, which are

more expensive than other architectures as a result of the absence

of caching. This is noticeable by a more rapid increase in garbage

collection overhead percentages (Figure 13d).

7.3 Impact of cleanliness
Cleanliness information allows the runtime system to avoid pre-

empting threads on a write barrier when the source of an exporting

write is clean. In order to study the impact of cleanliness, we re-

moved the reference counting code and cleanliness check from the

write barrier; thus, every exporting write results in a thread preemp-

tion and stall. The results presented here were taken on the AMD

machine with programs running on 16 cores with the benchmark

configurations given in Figure 10. The results will be similar on

SCC and Azul.
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cores.
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Figure 12: Performance comparison of local collector with read barriers (RB+) and local collector without read barriers (RB-): Geometric

mean for 8 benchmarks running on Azul with 846 cores.

(a) Total time (b) Mutator time (c) Garbage collection time (d) Garbage collection overhead

Figure 13: Performance comparison of local collector with read barriers (RB+) and local collector without read barriers (RB-): Geometric

mean for 8 benchmarks running on SCC with 48 cores.

explains why the total running time of RB- approaches RB+ as the

heap size is decreased in Figure 11a. With decreasing heap size, the

programs spend a larger portion of the time performing GCs, while

the mutator time remains consistent. Hence, there is diminishing

returns from using RB- as heap size decreases.

Next, we analyze the performance on Azul (see Figure 12). We

only consider performance of our local collectors since our AMD

results show that the other collectors (STW and BDW) simply do

not have favorable scalability characteristics. At 3X the minimum

heap size, RB- is 30% faster than RB+.

SCC performance results are presented in Figure 13. At 3X the

minimum heap size, RB- is 20% faster than RB+. From the total

time graphs, we can see that the programs tend to run much slower

as we decrease the heap sizes on SCC. Compared to the fastest

running times, the slowest running time for RB- is 2.01X, 2.05X,

and 3.74X slower on AMD, Azul, and SCC respectively. This is

due to the increased number of shared heap collections, which are

more expensive than other architectures as a result of the absence

of caching. This is noticeable by a more rapid increase in garbage

collection overhead percentages (Figure 13d).

7.3 Impact of cleanliness
Cleanliness information allows the runtime system to avoid pre-

empting threads on a write barrier when the source of an exporting

write is clean. In order to study the impact of cleanliness, we re-

moved the reference counting code and cleanliness check from the

write barrier; thus, every exporting write results in a thread preemp-

tion and stall. The results presented here were taken on the AMD

machine with programs running on 16 cores with the benchmark

configurations given in Figure 10. The results will be similar on

SCC and Azul.

At	  3X	  min	  
heap	  size:	  
-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐	  
RB+ 	  30%	  
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(a) Total time (b) Mutator time (c) GC time (d) GC overhead

Figure 11: Performance comparison of Stop-the-world (STW), Boehm-Demers-Weiser conservative garbage collector (BDW), local collector

with read barriers (RB+), and local collector without read barriers (RB-): Geometric mean for 8 benchmarks running on AMD64 with 16

cores.

(a) Total time (b) Mutator time (c) Garbage collection time (d) Garbage collection overhead

Figure 12: Performance comparison of local collector with read barriers (RB+) and local collector without read barriers (RB-): Geometric

mean for 8 benchmarks running on Azul with 846 cores.
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Figure 13: Performance comparison of local collector with read barriers (RB+) and local collector without read barriers (RB-): Geometric

mean for 8 benchmarks running on SCC with 48 cores.

explains why the total running time of RB- approaches RB+ as the

heap size is decreased in Figure 11a. With decreasing heap size, the

programs spend a larger portion of the time performing GCs, while

the mutator time remains consistent. Hence, there is diminishing

returns from using RB- as heap size decreases.

Next, we analyze the performance on Azul (see Figure 12). We

only consider performance of our local collectors since our AMD

results show that the other collectors (STW and BDW) simply do

not have favorable scalability characteristics. At 3X the minimum

heap size, RB- is 30% faster than RB+.

SCC performance results are presented in Figure 13. At 3X the

minimum heap size, RB- is 20% faster than RB+. From the total

time graphs, we can see that the programs tend to run much slower

as we decrease the heap sizes on SCC. Compared to the fastest

running times, the slowest running time for RB- is 2.01X, 2.05X,

and 3.74X slower on AMD, Azul, and SCC respectively. This is

due to the increased number of shared heap collections, which are

more expensive than other architectures as a result of the absence

of caching. This is noticeable by a more rapid increase in garbage

collection overhead percentages (Figure 13d).

7.3 Impact of cleanliness
Cleanliness information allows the runtime system to avoid pre-

empting threads on a write barrier when the source of an exporting

write is clean. In order to study the impact of cleanliness, we re-

moved the reference counting code and cleanliness check from the

write barrier; thus, every exporting write results in a thread preemp-

tion and stall. The results presented here were taken on the AMD

machine with programs running on 16 cores with the benchmark

configurations given in Figure 10. The results will be similar on

SCC and Azul.
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Figure 13: Performance comparison of local collector with read barriers (RB+) and local collector without read barriers (RB-): Geometric

mean for 8 benchmarks running on SCC with 48 cores.

explains why the total running time of RB- approaches RB+ as the

heap size is decreased in Figure 11a. With decreasing heap size, the

programs spend a larger portion of the time performing GCs, while

the mutator time remains consistent. Hence, there is diminishing

returns from using RB- as heap size decreases.

Next, we analyze the performance on Azul (see Figure 12). We

only consider performance of our local collectors since our AMD

results show that the other collectors (STW and BDW) simply do

not have favorable scalability characteristics. At 3X the minimum

heap size, RB- is 30% faster than RB+.

SCC performance results are presented in Figure 13. At 3X the

minimum heap size, RB- is 20% faster than RB+. From the total

time graphs, we can see that the programs tend to run much slower

as we decrease the heap sizes on SCC. Compared to the fastest

running times, the slowest running time for RB- is 2.01X, 2.05X,

and 3.74X slower on AMD, Azul, and SCC respectively. This is

due to the increased number of shared heap collections, which are

more expensive than other architectures as a result of the absence

of caching. This is noticeable by a more rapid increase in garbage

collection overhead percentages (Figure 13d).

7.3 Impact of cleanliness
Cleanliness information allows the runtime system to avoid pre-

empting threads on a write barrier when the source of an exporting

write is clean. In order to study the impact of cleanliness, we re-

moved the reference counting code and cleanliness check from the

write barrier; thus, every exporting write results in a thread preemp-

tion and stall. The results presented here were taken on the AMD

machine with programs running on 16 cores with the benchmark

configurations given in Figure 10. The results will be similar on

SCC and Azul.

At	  3X	  min	  
heap	  size:	  
-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐	  
RB+ 	  20%	  
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