Eliminating Read Barriers through
Procrastination and Cleanliness

KC Sivaramakrishnan
Lukasz Ziarek
Suresh Jagannathan

PURDUE

Big Picture

Lightweight user-level threads

EEEE

@ @ ______ @ Lots of

concurrency!
/ Scheduler 1

|

PURDUE

2 UNIVERSITY

Big Picture

Expendable
resource?

@ @ ______ @ Lots of

concurrency!
/ Scheduler 1

PURDUE

3 UNIVERSITY

Big Picture

Exploit program concurrency
to
eliminate read barriers from thread-local collectors

Expendable
resource?
@ ______ @ Lots of
concurrency!
/ Scheduler 1

Alleviate MM
cost?

GC Operation = Heap

PURDUE

4 UNIVERSITY

MultiMLton

* Goals
— Safety, Scalability, ready for future manycore processors
* Parallel extension of MLton —a whole-program,
optimizing SML compiler

 Parallel extension of Concurrent ML
— Lots of Concurrency!

— Interact by sending messages over first-class channels

send (c, v)

v € recv (c)

PURDUE

MultiMLton GC: Considerations

e Standard ML - functional PL with side-effects

— Most objects are small and ephemeral
* Independent generational GC

— # Mutations << # Reads
» Keep cost of reads to be low

e Minimize NUMA effects
e Run on non-cache coherent HW

PURDUE

Thread-local GC

Shared Heap

Local Heap *) Local Heap Local Heap Local Heap

* NUMA Awareness

e Circumvent cache-coherence issues
PURDUE

7 UNIVERSITY

* Read and write barriers for preserving
Invariants

Transitive
closure of x

Exporting
writes

Shared Heap Shared Heap

Mutator
needs read
barriers! Local Heap

«ocal Heap

PURDUE

8 UNIVERSITY

Challenge

* Object reads are pervasive
— RB overhead o< cost (RB) * frequency (RB)

* Read barrier optimization

— Stac

35

w
(=}

N
Ul
T

Read barrier overhead (%)

ks and Registers never point to forwarded objects

Mean Overhead

EEN AMD~

e — ff;ﬁ:% 20.1%
| 15.3 %
21.3 %

PURDUE

UNIVERSITY

Mutator and Forwarded Objects

Encountered
forwarded objects

< 0.00001
RB invocations

\5/ Eliminate read barriers altogether

~

w

PURDUE

10

RB Elimination

* Visibility Invariant
— Mutator does not encounter forwarded objects

e Observation

— No forwarded objects created = visibility
invariant = No read barriers

* Exploit concurrency = Procrastination!

PURDUE

11

Shared Heap

Local Heap

- Tis running

- Tis suspended

- T is blocked PURDUE

12 UNIVERSITY

Shared Heap

Control
switches
to T2

Local Heap

- Tis running

Delayed write list 2

- Tis suspended

- T is blocked PURDUE

13 UNIVERSITY

Shared Heap

Local Hezp

- Tis running /

Delayed write list 2

- Tis suspended

- T is blocked y PURDUE

UNIVERSITY

Shared Heap

(LG
rl:=x1 r2 :=x2

Local Heap

- Tis running

Delayed write list 2

- Tis suspended

- T is blocked PURDUE

15 UNIVERSITY

Shared Heap

CICC
2> rl:=x1 r2 := x2

Force local
GC Local Heap

- Tis running

Delayed write list 2

- Tis suspended

- T is blocked PURDUE

16 UNIVERSITY

Correctness

 Does Procrastination introduce deadlocks?

— Threads can be procrastinated while holding a lock!

(B je
A\\N

‘ @ = Tis running
Q - Tis suspended

‘ - Tis blocked

PURDUE

17

Correctness

 Does Procrastination introduce deadlocks?

— Threads can be procrastinated while holding a lock!

(L je
A\\N

e |s Procrastination safe?

' @ = Tis running
O - Tis suspended

‘ - Tis blocked

— Yes. Forcing a local GC unblocks the threads.

— No deadlocks or livelocks!

PURDUE

18

Correctness

 Does Procrastination introduce deadlocks?

— Threads can be procrastinated while holding a lock!

i @ = Tis running
SN\
Q - Tis suspended

‘ - Tis blocked

— Yes. Forcing a local GC unblocks the threads.

e |s Procrastination safe?

— No deadlocks or livelocks!

PURDUE

19

Is Procrastination alone enough?

e Efficacy (Procrastination) oc # Available runnable
threads

— Serial (low thread availability)

= Concurrent (high thread availability)

* With Procrastination, half of local major GCs were

forced

\J‘/ Eager exporting writes while preserving
o Visibility invariant
PURDUE

20

Cleanliness

* A clean object closure can be lifted to the
shared heap without breaking the visibility
Invariant

inLocalHeap (x)
inSharedHeap (r) &&
isClean (x)

\ Eager write (no Procrastination)

PURDUE

21

Shared Heap

lift (x) to shared
heap

Local Heap

PURDUE

22 UNIVERSITY

Shared Heap 2

(4]
find all references

to FWD

FWD

Local Heap

PURDUE

23 UNIVERSITY

Shared Heap x

Need to scan the
entire local heap

Local Heap

. PURDUE

UNIVERSITY

Shared Heap

o) |

Local Heap

y/

sizeof (h) << sizeof (local heap)

?

o
Do all references

originate from
heap region h?

PURDUE

25 UNIVERSITY

Shared Heap v

Only scan the
heap region h.

Heap
session!

Local Heap

sizeof (h) << sizeof (local heap)

PURDUE

26 UNIVERSITY

Heap Sessions

* Source of an exporting write is often

— Young
Young
— rarely referenced from outside the closure Objects
Local Heap Previous Session Free
Old T
Objects Start SessionStart Frontier

e Current session closed & new session opened

— After an exporting write, a user-level context switch, a
local GC

PURDUE

27 UNIVERSITY

Heap Sessions

* Source of an exporting write is often
— Young

— rarely referenced from outside the closure

Local Heap Previous Session Free

Start Frontier & SessionStart

e Current session closed & new session opened

— After an exporting write, a user-level context switch, a
local GC

— SessionStart is moved to Frontier

* Average current session size < 4KB
PURDUE

28 UNIVERSITY

* A clean object closure
— is fully contained within the current session
— has no references from previous session

()| Free

Current
Previous Session Session

I v

Local Heap

Shared Heap

PURDUE

29 UNIVERSITY

* A clean object closure
— is fully contained within the current session

— has no references from previous session

Local Heap FWD

Current
Previous Session Srission

Shared Heap

., PURDUE

UNIVERSITY

Avoid tracing current session?

 Many SML objects are tree-structured (List, Tree, etc,.)
— Specialize for no pointers from outside the object closure

e VX Etransitive object closure (x),

ref count (x) =0 && ref count (x’) =1

@ @ No refs
| from
@ outside

— ref_count does not consider pointers from stack or registers

* Eager exporting write

— No current session tracing needed!

PURDUE

31

Reference Count

* Purpose
— Track pointers from previous session to current session
— ldentify tree-structured object

— () O

Zero One LocalMany Global

* Does not track pointers from stack and registers

— Reference count only triggered during object initialization
and mutation

PURDUE

32

Bringing it all together

e VX € transitive object closure (x),
if max (ref_count (x’))

— One & ref_count (x) = 0 = tree-structured (Clean)
= Session tracing not needed

— LocalMany = Clean = Trace current session

— Global = 1+ pointer from previous session =
Procrastinate

,; PURDUE

Local Heap
Previous @

Session Current Session

Shared heap

., PURDUE

UNIVERSITY

Local Heap

Previous
Session

Walk
current
stack

Current Session

Shared heap

PURDUE

35 UNIVERSITY

Local Heap

Previous
Session Current Session

No need to
walk current
session!

Shared heap

PURDUE

36 UNIVERSITY

Local Heap

Previous
Session Current Session

Shared heap

PURDUE

37 UNIVERSITY

Local Heap

Previous
Session Current Session

Shared heap

PURDUE

38 UNIVERSITY

Previous ”
Session

Current Session

Local Heap

Shared heap

PURDUE

39 UNIVERSITY

Walk
current
stack

Local Heap

Previous FWD
Session Current Session

Walk
current
session

Shared heap

.o PURDUE

UNIVERSITY

Walk
current
stack

Local Heap

Previous
Session Current Session

Walk
current
session

Shared heap Q

PURDUE

41 UNIVERSITY

Local Heap

Previous
Session Current Session

Shared heap

PURDUE

42 UNIVERSITY

Local Heap

Previous
Session Current Session

F.=X Procrastinate

Shared heap

PURDUE

43 UNIVERSITY

Immutable Objects

e Specialize exporting writes
* |f immutable object in previous session
— Copy to shared heap

* Immutable objects in SML do not have identity

— Original object unmodified

* Avoid space leaks

— Treat large immutable objects as mutable

. PURDUE

Cleanliness: Summary

* Cleanliness allows eager exporting writes
while preserving visibility invariant

 With Procrastination + Cleanliness, <1% of
local GCs were forced

PURDUE

45

Evaluation

 \ariants
— RB- : TLC with Procrastination and Cleanliness

— RB+ : TLC with read barriers

e Sansom’s dual-mode GC

— Cheney’s 2-space copying collection €< -2 Jonker’s sliding
mark-compacting

— Generational, 2 generations, No aging
* Target Architectures:

— 16-core AMD Opteron server (NUMA)

— 48-core Intel SCC (non-cache coherent)

— 864-core Azul Vega3

PURDUE

46

Results

e Speedup: At 3X min heap size, RB- faster than
RB+

— AMD (16-cores) 32% (2X faster than STW
collector)

— SCC (48-cores) 20%
— AZUL (864-cores) 30%
* Concurrency

— During exporting write, 8 runnable user-level
threads/core!

PURDUE

47

Cleanliness Impact

RB- MU- : RB- GC ignoring mutability for Cleanliness
RB- CL- : RB- GC ignoring Cleanliness (Only Procrastination)

70 1 1 I 1 I I
Avg. slowdown
60 \; ________________
\ 11.4%
50 \ 28.2%
31.7%
;5 40
=
Z 30|
©
2
o
» 20}
10}
0
B s "o @ | e o l
> S & x\r{\ 0‘9 & @ &
N\ & & (@) <@) R S
v 0@ &(9 @e S Sy N Q@A
Q (/00 (90 ¢ é\o
s PURDU

UNIVERSITY

Conclusion

* Eliminate the need for read barriers by
preserving the visibility invariant

— Procrastination: Exploit concurrency for delaying
exporting writes

— Cleanliness: Exploit generational property for
eagerly perform exporting writes

* Additional niceties
— Completely dynamic = Portable

— Does not impose any restriction on the GC
strategy

PURDUE

49

Questions?

*) MultiMLton

http://multimlton.cs.purdue.edu

PURDUE

50

Results

* On AMD, 16 Cores, 3X minimum heap size

e Mutator time:

— STW GC spends the least amount of time in the
mutator

* No read/write barriers

— Compared to STW GC, the mutator time of
* RB- 18% more, RB+ 39% more

* GC time:
— RB- spends the least amount time doing GC
— RB- within 5% of RB+
PURDUE

51

Performance on AMD (16-cores)

I ‘
. | &0 RB-
At 3X min 3, ey A m-® RB+
heap size: s I & STW
___________________ £ | A—A BDW
Soal %
RB+ 32% I
STW 106% £]
BDW 584% =
b1 2 3 5 6 7
Heap size relative to min heap size
(a) Total time
64 : ‘
16 : : bay i
oo RB- 2 % " B
A m-8 RB+ || “,+ _________ ‘
8 A —a A |O-@® STW 16
A—4A BDW

————&———‘

Normalized Mutator Time (log)
N

b1

4

“.I--l-l---l---l---l---li

5 6

Heap size relative to min heap size

(b) Mutator time

7

Normalized GC Time (log)
[e0]

=

n

@ RB-

H-8 RB+ ||

® ¢ STW ||

o7

1

|
|
|
|
|
n
3

2 4

5 6

Heap size relative to min heap size

(c) GC time

52

PURDUE

MultiMLton - SCC implementation

Cached --
Local heap

Non-Cached --
Shared heap

Shared off-die DRAM

Private DRAM

L2$

L1$

CPUO

)

o

Private DRAM

L2$

L1$

CPU47

=

Message Passing Buffer (8KB/core)

53

PURDUE

Total time: SCC and AZUL

Normalized Time
N N w
= th =]

=
1

SCC (48-cores)

1.00

1 2 B 4 5 6
Heap size relativk to min heap size
|
1
20%

Non-cache coherent

AZUL (864-Cores)
2.6 ! ! ! ! ! I f
2w [eere]
3 m 3 ~|m-m RB+
£ e m v
D L8 1 | - | .
= : : s.\ : I
O : ; ; : "W :
=z T4F N ,,!*a--’;;,,
I B |
1.2 1

180 05 1.0 15 20 25 310 35 4.0
Heap size relative to min hgap size

30%

Scalable, cache-coherent

-, PURDUE

RB- 1831 46532| 154| 38621 25812 132 156 3523
RB- MU- 1831| 4092312| 192 735543 50323| 209|433092| 3743
RB- CL- |[124232]|67156821| 50178 5867423 27023911| 25491(912349| 61198

Number of Preemptions on exporting writes

N s/ S/ & /) o/ &
/e /) 8/ /) 8/ /s/) &
> & Q)) <@ @ X <
S / &/ & ¢ 3 v /S /X
S </ 5/5S/ /5 /) /S/) L
Q /SO /) ©] S
RB- 0.08(0.17| 0| 3.54 of 143 o 172

RB- MU- 0.08| 19.2| 0.03| 9.47| 0.02] 2.86| 9.37| 1.72
RB- CL- 38.55] 100| 0.18] 99.75] 21.64| 86.22| 19.3| 24.86

Forced GCs as a % of total number of local major GCs

55

PURDUE

Benchmark Characteristics

Allocation Rate

Bytes Allocated (GB)

Benchmark (MB/s) # Threads
AMD | SCC | AZUL |AMD| SCC | AZUL | % Sh | AMD | SCC | AZUL
AllPairs 817 53 1505 16 16 54 11 256 512 32768
Barneshut 772 70 1382 20 20 876 2 512 1024 32768
Countgraphs 2594 144 4475 24 24 1176 1 128 256 16384
GameOfLife 2445 127 4266 21 21 953 13 256 1024 8192
Kclustering 3643 108 8927 32 32 1265 3 256 1024 8192
Mandelbrot 349 43 669 2 2 32 8 128 512 8192
Nucleic 1430 87 4761 13 14 609 1 64 384 16384
Raytrace 809 54 2133 11 12 663 4 128 256 2048
PURDUE

56

Session Impact

% LM clean

Avg. session
size (bytes)

2908(1580(3612 1344 2318 8723 1264 1123

Figure 17: Impact of heap session: % LM clean represents the
fraction of instances when a clean object closure has at least one
object with LOCAL_MANY references.

PURDUE

57

Read Barrier

Conditional (Baker Style)

From

Unconditional (Brooks style)

From

Read Barrier

Vv Conditional (Baker Style)

From

pointer readBarrier (polnter *p) {
if (* (Header*) (p — HD OFF) == F)
return * (pointer*)p;
return p;

}
x Has Conditional Check

Unconditional (Brooks style)

From

To

pointer readBarrier (polnter *p) {
return * (pointer*) (p — IND OFF);

}

x Needs extra header word
PURDUE

59 UNIVERSITY

Read Barrier Optimizations

Stacks and registers never point to forwarding
pointers

“Eager” read barriers (D.Bacon et al. POPL'93)
Scan stack after exporting write

Exporting write is a GC safe-point

Reduces RB overhead by ~5%

o PURDUE

At 3X min
heap size:

RB+ 30%

Performance on AZUL

n 0—0 RB- |
m H-8 RB+

a
e —— -

0 05 1.0 1.5 2.0 25 3.0 35 4.0
Heap size relative to min heap size

(a) Total time

16

Normalized GC Time (log)
N

RB-
RB+

g

0 05 1.0

15 2.0 2.5 3.0 3.5 4.0
Heap size relative to min heap size

(c) Garbage collection time

=
U
=

' =
B
e Ce

=
N
Q

Normalized Mutator Time
=
w

=
=

=
(=}

=

o—o RB-
L B H-B RB+||

1
-

W
S S - S
.

0 05 1.0 15 2.0 25 3.0 3.5 4.0

Heap size relative to min heap size

(b) Mutator time

0 05 1.0 1.5 2.0 25 3.0 3.5 4.0

Heap size relative to min heap size

(d) Garbage collection overhead

61

PURDUE

At 3X min
heap size:

RB+ 20%

Performance on SCC

Normalized Time
N N w
o w =)

=
v

|H-3 RB+|]

@ RB-

1.00

64

4 5 6

Heap size relative to min heap size

(a) Total time

32F

16;

Normalized GC Time (log)
(o]

[S

®—® RB-

H-8 RB+|]

o

1

2

4

5 6

Heap size relative to min heap size

(c) Garbage collection time

o 1l.35
£
130

utato

M
=
N
o

1.15¢

Normalized
[}
=
o

1.05r

©1.25"

&—@® RB- ||
H-8 RB+

‘"

=
o

1 2 3

5 6

Heap size relative to min heap size

(b) Mutator time

GC overhead (%)
N w H (6]
e o O o

=
2

o

UWes e —
’

e RB- ||
m-# RB+

(e}

1 2

5 6

Heap size relative to min heap size

(d) Garbage collection overhead

62

PURDUE

send (c, v)

v € recv (c)

T1’s local heap T2’s local heap
Abstract Shared Heap

Before Communication

PURDUE

63 UNIVERSITY

send (c, v)

v € recv (c)

T1’s local heap T2’s local heap
Abstract Shared Heap

After Communication

., PURDUE

UNIVERSITY

