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Big Picture

Lightweight user-level threads
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Big Picture

Exploit program concurrency
to
eliminate read barriers from thread-local collectors

Expendable
resource?
@ ______ @ Lots of
concurrency!
/ Scheduler 1

Alleviate MM
cost?

GC Operation = Heap
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MultiMLton

* Goals
— Safety, Scalability, ready for future manycore processors
* Parallel extension of MLton —a whole-program,
optimizing SML compiler

 Parallel extension of Concurrent ML
— Lots of Concurrency!

— Interact by sending messages over first-class channels

send (c, v)

v € recv (c)
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MultiMLton GC: Considerations

e Standard ML - functional PL with side-effects

— Most objects are small and ephemeral
* Independent generational GC

— # Mutations << # Reads
» Keep cost of reads to be low

e Minimize NUMA effects
e Run on non-cache coherent HW
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Thread-local GC

Shared Heap

Local Heap *) Local Heap Local Heap Local Heap

* NUMA Awareness

e Circumvent cache-coherence issues
PURDUE
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* Read and write barriers for preserving
Invariants

Transitive
closure of x

Exporting
writes

Shared Heap Shared Heap

Mutator
needs read
barriers! Local Heap

«ocal Heap
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Challenge

* Object reads are pervasive
— RB overhead o< cost (RB) * frequency (RB)

* Read barrier optimization

— Stac
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Read barrier overhead (%)

ks and Registers never point to forwarded objects

Mean Overhead

EEN AMD~

e — ff;ﬁ:% 20.1%
| 15.3 %
21.3 %
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Mutator and Forwarded Objects

# Encountered
forwarded objects

< 0.00001
# RB invocations

\5/ Eliminate read barriers altogether

~

w
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RB Elimination

* Visibility Invariant
— Mutator does not encounter forwarded objects

e Observation

— No forwarded objects created = visibility
invariant = No read barriers

* Exploit concurrency = Procrastination!

PURDUE
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Shared Heap

Local Heap

- Tis running

- Tis suspended

- T is blocked PURDUE
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Shared Heap

Control
switches
to T2

Local Heap

- Tis running

Delayed write list 2

- Tis suspended

- T is blocked PURDUE
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Shared Heap

Local Hezp

- Tis running /

Delayed write list 2

- Tis suspended

- T is blocked y PURDUE
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Shared Heap

(LG
rl:=x1 r2 :=x2

Local Heap

- Tis running

Delayed write list 2

- Tis suspended

- T is blocked PURDUE
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Shared Heap

CICC
2> rl:=x1 r2 := x2

Force local
GC Local Heap

- Tis running

Delayed write list 2

- Tis suspended

- T is blocked PURDUE
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Correctness

 Does Procrastination introduce deadlocks?

— Threads can be procrastinated while holding a lock!

(B je
A\\N

‘ @ = Tis running
Q - Tis suspended

‘ - Tis blocked
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Correctness

 Does Procrastination introduce deadlocks?

— Threads can be procrastinated while holding a lock!

(L je
A\\N

e |s Procrastination safe?

' @ = Tis running
O - Tis suspended

‘ - Tis blocked

— Yes. Forcing a local GC unblocks the threads.

— No deadlocks or livelocks!
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Correctness

 Does Procrastination introduce deadlocks?

— Threads can be procrastinated while holding a lock!

i @ = Tis running
SN\
Q - Tis suspended

‘ - Tis blocked

— Yes. Forcing a local GC unblocks the threads.

e |s Procrastination safe?

— No deadlocks or livelocks!
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Is Procrastination alone enough?

e Efficacy (Procrastination) oc # Available runnable
threads

— Serial (low thread availability)

= Concurrent (high thread availability)

* With Procrastination, half of local major GCs were

forced

\J‘/ Eager exporting writes while preserving
o Visibility invariant
PURDUE
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Cleanliness

* A clean object closure can be lifted to the
shared heap without breaking the visibility
Invariant

inLocalHeap (x)
inSharedHeap (r) &&
isClean (x)

\ Eager write (no Procrastination)

PURDUE
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Shared Heap

lift (x) to shared
heap

Local Heap

PURDUE
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Shared Heap 2

(4]
find all references

to FWD

FWD

Local Heap
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Shared Heap x

Need to scan the
entire local heap

Local Heap

. PURDUE
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Shared Heap

o) |

Local Heap

y/

sizeof (h) << sizeof (local heap)

?

o
Do all references

originate from
heap region h?
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Shared Heap v

Only scan the
heap region h.

Heap
session!

Local Heap

sizeof (h) << sizeof (local heap)

PURDUE
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Heap Sessions

* Source of an exporting write is often

— Young
Young
— rarely referenced from outside the closure Objects
Local Heap Previous Session Free
Old T
Objects Start SessionStart Frontier

e Current session closed & new session opened

— After an exporting write, a user-level context switch, a
local GC

PURDUE
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Heap Sessions

* Source of an exporting write is often
— Young

— rarely referenced from outside the closure

Local Heap Previous Session Free

Start Frontier & SessionStart

e Current session closed & new session opened

— After an exporting write, a user-level context switch, a
local GC

— SessionStart is moved to Frontier

* Average current session size < 4KB
PURDUE
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* A clean object closure
— is fully contained within the current session
— has no references from previous session

()| Free

Current
Previous Session Session

I v

Local Heap

Shared Heap

PURDUE
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* A clean object closure
— is fully contained within the current session

— has no references from previous session

Local Heap FWD

Current
Previous Session Srission

Shared Heap

., PURDUE
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Avoid tracing current session?

 Many SML objects are tree-structured (List, Tree, etc,.)
— Specialize for no pointers from outside the object closure

e VX Etransitive object closure (x),

ref count (x) =0 && ref count (x’) =1

@ @ No refs
| from
@ outside

— ref_count does not consider pointers from stack or registers

* Eager exporting write

— No current session tracing needed!

PURDUE
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Reference Count

* Purpose
— Track pointers from previous session to current session
— ldentify tree-structured object

— () O

Zero One LocalMany Global

* Does not track pointers from stack and registers

— Reference count only triggered during object initialization
and mutation

PURDUE
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Bringing it all together

e VX € transitive object closure (x),
if max (ref_count (x’))

— One & ref_count (x) = 0 = tree-structured (Clean)
= Session tracing not needed

— LocalMany = Clean = Trace current session

— Global = 1+ pointer from previous session =
Procrastinate

,; PURDUE



Local Heap
Previous @

Session Current Session

Shared heap

., PURDUE
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Local Heap

Previous
Session

Walk
current
stack

Current Session

Shared heap
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Local Heap

Previous
Session Current Session

No need to
walk current
session!

Shared heap
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Local Heap

Previous
Session Current Session

Shared heap
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Local Heap

Previous
Session Current Session

Shared heap
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Previous ”
Session

Current Session

Local Heap

Shared heap
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Walk
current
stack

Local Heap

Previous FWD
Session Current Session

Walk
current
session

Shared heap

.o PURDUE
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Walk
current
stack

Local Heap

Previous
Session Current Session

Walk
current
session

Shared heap Q
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Local Heap

Previous
Session Current Session

Shared heap
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Local Heap

Previous
Session Current Session

F.=X Procrastinate

Shared heap
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Immutable Objects

e Specialize exporting writes
* |f immutable object in previous session
— Copy to shared heap

* Immutable objects in SML do not have identity

— Original object unmodified

* Avoid space leaks

— Treat large immutable objects as mutable

. PURDUE



Cleanliness: Summary

* Cleanliness allows eager exporting writes
while preserving visibility invariant

 With Procrastination + Cleanliness, <1% of
local GCs were forced

PURDUE
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Evaluation

 \ariants
— RB- : TLC with Procrastination and Cleanliness

— RB+ : TLC with read barriers

e Sansom’s dual-mode GC

— Cheney’s 2-space copying collection €< -2 Jonker’s sliding
mark-compacting

— Generational, 2 generations, No aging
* Target Architectures:

— 16-core AMD Opteron server (NUMA)

— 48-core Intel SCC (non-cache coherent)

— 864-core Azul Vega3

PURDUE
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Results

e Speedup: At 3X min heap size, RB- faster than
RB+

— AMD (16-cores) 32% (2X faster than STW
collector)

— SCC (48-cores) 20%
— AZUL (864-cores) 30%
* Concurrency

— During exporting write, 8 runnable user-level
threads/core!

PURDUE
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Cleanliness Impact

RB- MU- : RB- GC ignoring mutability for Cleanliness
RB- CL- : RB- GC ignoring Cleanliness (Only Procrastination)
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Avg. slowdown
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Conclusion

* Eliminate the need for read barriers by
preserving the visibility invariant

— Procrastination: Exploit concurrency for delaying
exporting writes

— Cleanliness: Exploit generational property for
eagerly perform exporting writes

* Additional niceties
— Completely dynamic = Portable

— Does not impose any restriction on the GC
strategy

PURDUE
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Questions?

*) MultiMLton

http://multimlton.cs.purdue.edu

PURDUE
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Results

* On AMD, 16 Cores, 3X minimum heap size

e Mutator time:

— STW GC spends the least amount of time in the
mutator

* No read/write barriers

— Compared to STW GC, the mutator time of
* RB- 18% more, RB+ 39% more

* GC time:
— RB- spends the least amount time doing GC
— RB- within 5% of RB+
PURDUE
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Performance on AMD (16-cores)

I ‘
. | &0 RB-
At 3X min 3, ey A m-® RB+
heap size: s I & STW
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MultiMLton - SCC implementation

Cached --
Local heap

Non-Cached --
Shared heap

Shared off-die DRAM

Private DRAM

L2$

L1$

CPUO

)

o

Private DRAM

L2$

L1$

CPU47

=

Message Passing Buffer (8KB/core)
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Total time: SCC and AZUL
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RB- 1831 46532| 154| 38621 25812 132 156 3523
RB- MU- 1831| 4092312| 192 735543 50323| 209|433092| 3743
RB- CL- |[124232]|67156821| 50178 5867423 27023911| 25491(912349| 61198

Number of Preemptions on exporting writes

N s/ S/ & /) o/ &
/e /) 8/ /) 8/ /s/) &
> & Q) ) <@ @ X <
S  / &/ & ¢ 3 v /S /X
S </ 5/5S/ /5 /) /S/) L
Q /SO /) © ] S
RB- 0.08( 0.17| 0| 3.54 of 143 o 172

RB- MU- 0.08| 19.2| 0.03| 9.47| 0.02] 2.86| 9.37| 1.72
RB- CL- 38.55] 100| 0.18] 99.75] 21.64| 86.22| 19.3| 24.86

Forced GCs as a % of total number of local major GCs
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Benchmark Characteristics

Allocation Rate

Bytes Allocated (GB)

Benchmark (MB/s) # Threads
AMD | SCC | AZUL |AMD| SCC | AZUL | % Sh | AMD | SCC | AZUL
AllPairs 817 53 1505 16 16 54 11 256 512 32768
Barneshut 772 70 1382 20 20 876 2 512 1024 32768
Countgraphs 2594 144 4475 24 24 1176 1 128 256 16384
GameOfLife 2445 127 4266 21 21 953 13 256 1024 8192
Kclustering 3643 108 8927 32 32 1265 3 256 1024 8192
Mandelbrot 349 43 669 2 2 32 8 128 512 8192
Nucleic 1430 87 4761 13 14 609 1 64 384 16384
Raytrace 809 54 2133 11 12 663 4 128 256 2048
PURDUE

56




Session Impact

% LM clean

Avg. session
size (bytes)

2908( 1580( 3612 1344 2318 8723 1264 1123

Figure 17: Impact of heap session: % LM clean represents the
fraction of instances when a clean object closure has at least one
object with LOCAL_MANY references.
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Read Barrier

Conditional (Baker Style)

From

Unconditional (Brooks style)

From




Read Barrier

Vv Conditional (Baker Style)

From

pointer readBarrier (polnter *p) {
if (* (Header*) (p — HD OFF) == F)
return * (pointer*)p;
return p;

}
x Has Conditional Check

Unconditional (Brooks style)

From

To

pointer readBarrier (polnter *p) {
return * (pointer*) (p — IND OFF);

}

x Needs extra header word
PURDUE
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Read Barrier Optimizations

Stacks and registers never point to forwarding
pointers

“Eager” read barriers (D.Bacon et al. POPL'93)
Scan stack after exporting write

Exporting write is a GC safe-point

Reduces RB overhead by ~5%

o PURDUE



At 3X min
heap size:

RB+ 30%

Performance on AZUL
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At 3X min
heap size:

RB+ 20%

Performance on SCC
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send (c, v)

v € recv (c)

T1’s local heap T2’s local heap
Abstract Shared Heap

Before Communication
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send (c, v)

v € recv (c)

T1’s local heap T2’s local heap
Abstract Shared Heap

After Communication
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