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MulDMLton	
  
•  Goals	
  
–  Safety,	
  Scalability,	
  ready	
  for	
  future	
  manycore	
  processors	
  

•  Parallel	
  extension	
  of	
  MLton	
  –	
  a	
  whole-­‐program,	
  
opDmizing	
  SML	
  compiler	
  

•  Parallel	
  extension	
  of	
  Concurrent	
  ML	
  
–  Lots	
  of	
  Concurrency!	
  
–  Interact	
  by	
  sending	
  messages	
  over	
  first-­‐class	
  channels	
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MulDMLton	
  GC:	
  ConsideraDons	
  
•  Standard	
  ML	
  –	
  funcDonal	
  PL	
  with	
  side-­‐effects	
  
– Most	
  objects	
  are	
  small	
  and	
  ephemeral	
  

•  Independent	
  generaDonal	
  GC	
  
–  #	
  MutaDons	
  <<	
  #	
  Reads	
  

•  Keep	
  cost	
  of	
  reads	
  to	
  be	
  low	
  
•  Minimize	
  NUMA	
  effects	
  
•  Run	
  on	
  non-­‐cache	
  coherent	
  HW	
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•  NUMA	
  Awareness	
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Invariant	
  PreservaDon	
  
•  Read	
  and	
  write	
  barriers	
  for	
  preserving	
  
invariants	
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Challenge	
  
•  Object	
  reads	
  are	
  pervasive	
  
–  RB	
  overhead	
  ∝	
  cost	
  (RB)	
  *	
  frequency	
  (RB)	
  

•  Read	
  barrier	
  opDmizaDon	
  
–  Stacks	
  and	
  Registers	
  never	
  point	
  to	
  forwarded	
  objects	
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Figure 2: Read barrier overhead as a percentage of mutator time.
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Figure 3: Effectiveness of read barrier checks: Checks represents
the number of read barrier invocations and forwarded represents the
number of instances when the read barrier encountered a forwarded
object.

ing non-pointer values. If such a type additionally happens to have
value-carrying constructors that reference heap-allocated objects,
the non-pointer value representing the empty constructor will be
stored in the object pointer field. Hence, the read barrier must first
check whether the presumed pointer does in fact point to a heap ob-
ject. Otherwise, the original value is returned (line 2). If the given
pointer points to a forwarded object, the current location of the ob-
ject stored is returned. Otherwise, the original value is returned.

We evaluated a set of 8 benchmarks (described in Section 7.1)
running on a 16 core AMD64, a 48 core Intel SCC and an 864
core Azul Vega 3 machine to measure read barrier overheads.
Figure 2 shows these overheads as a percentage of mutator time.
Our experiments reveal that, on average, the mutator spends 20.1%,
15.3% and 21.3% of time executing read barriers on the AMD64,
SCC and Azul architectures, respectively, for our benchmarks.

Although a Brooks-style unconditional read barrier would have
avoided the cost of the second branch in our read barrier imple-
mentation, it would necessitate having an additional address length
field in the object header for an indirection pointer. Most objects
in our system tend to be small. In our benchmarks, we observed
that 95% of the objects allocated were less than 3 words in size,
including a word-sized header. The addition of an extra word in
the object header for an indirection pointer would lead to substan-
tial memory overheads, which in turn leads to additional garbage
collection costs. Hence, we choose to encode read barriers condi-
tionally rather than unconditionally.

But, does the utility of the read barrier justify its cost? We mea-
sure the number of instances the read barrier is invoked and the
number of instances the barrier finds a forwarded object (see Fig-
ure 3). We see that read barriers find forwarded objects in less than

one thousands of a percent of the number of instances they are in-
voked. Thus, in our system, the cost of read barriers is substantial,
but only rarely do they have to perform the task of forwarding refer-
ences. These results motivate our interest in a memory management
design that eliminates read barriers altogether.

3. GC Design and Implementation
In this section, we describe the design and implementation of the
runtime system and garbage collector.

3.1 Threading system
Our programming model separates program-level concurrency
from the physical parallelism available in the underlying ma-
chine through the use of lightweight, user-level threads. These
lightweight threads are multiplexed over system-level threads. One
system-level thread is created for every core and is pinned to it.
Thus, the runtime system effectively treats a system-level thread
as a virtual processor. Load distribution is through work sharing,
where threads are eagerly spawned on different cores in a round-
robin fashion. Once created on a core, lightweight threads never
migrate to another core.

Lightweight threads are preemptively scheduled on every core.
On a timer interrupt, the threading system is informed that an in-
terrupt has occurred by setting a flag at a known location. At every
garbage collector safe-point, the current thread checks whether the
timer interrupt flag has been set, and if it is, resets the flag and
yields control to another thread.

3.2 Baseline collector (Stop-the-world)
The baseline heap design uses a single, contiguous heap, shared
among all cores. In order to allow local allocation, each core re-
quests a page-sized chunk from the heap. While a single lock pro-
tects the chunk allocation, objects are allocated within chunks by
bumping a core-local heap frontier.

In order to perform garbage collection, all the cores synchro-
nize on a barrier, with one core responsible for collecting the en-
tire heap. The garbage collection algorithm is inspired from San-
som’s [19] collector, which combines Cheney’s two-space copying
collector and Jonker’s single-space sliding compaction collector.
Cheney’s copying collector walks the live objects in the heap just
once per collection, while Jonker’s mark-compact collector per-
forms two walks. But Cheney’s collector can only utilize half of
memory allocated for the heap. Sansom’s collector combines the
best of both worlds. Copying collection is performed when heap
requirements are less than half of the available memory. The run-
time system dynamically switches to mark-compact collection if
the heap utilization increases beyond half of the available space.

Since ML programs tend to have a high rate of allocation,
and most objects are short-lived temporaries, it is beneficial to
perform generational collection. The garbage collector supports
Appel-style generational collection [2] for collecting temporaries.
The generational collector has two generations, and all objects that
survive a generational collection are copied to the older generation.
Generational collection can work with both copying and mark-
compact major collection schemes. The runtime system chooses
to perform generational collection if the ratio of live objects to the
total objects falls below a tunable threshold.

Our choice of a stop-the-world baseline collector was to enable
better understanding of mutator overheads among various local col-
lector designs, as opposed to illustrating absolute performance im-
provement of the local collectors over the baseline. Although a par-
allel collector would have improved overall baseline performance,
we would expect poorer scalability due to frequent global synchro-
nizations [10, 14, 20].
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#	
  RB	
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#	
  Encountered	
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RB	
  EliminaDon	
  
•  Visibility	
  Invariant	
  
– Mutator	
  does	
  not	
  encounter	
  forwarded	
  objects	
  

•  ObservaDon	
  
– No	
  forwarded	
  objects	
  created	
  ⇒	
  visibility	
  
invariant	
  ⇒	
  No	
  read	
  barriers	
  

•  Exploit	
  concurrency	
  à	
  Procras(na(on!	
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Correctness	
  
•  Does	
  ProcrasDnaDon	
  introduce	
  deadlocks?	
  
–  Threads	
  can	
  be	
  procrasDnated	
  while	
  holding	
  a	
  lock!	
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•  Efficacy	
  (ProcrasDnaDon)	
  ∝	
  #	
  Available	
  runnable	
  
threads	
  	
  

Is	
  ProcrasDnaDon	
  alone	
  enough?	
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  of	
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  were	
  
forced	
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Cleanliness	
  
•  A	
  clean	
  object	
  closure	
  can	
  be	
  liped	
  to	
  the	
  
shared	
  heap	
  without	
  breaking	
  the	
  visibility	
  
invariant	
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•  Current	
  session	
  closed	
  &	
  new	
  session	
  opened	
  
–  Aper	
  an	
  exporDng	
  write,	
  a	
  user-­‐level	
  context	
  switch,	
  a	
  
local	
  GC	
  

Heap	
  Sessions	
  
•  Source	
  of	
  an	
  exporDng	
  write	
  is	
  open	
  
–  Young	
  
–  rarely	
  referenced	
  from	
  outside	
  the	
  closure	
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•  Current	
  session	
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  &	
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  session	
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  an	
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  write,	
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  referenced	
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  &	
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  Eager	
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  writes	
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•  A	
  clean	
  object	
  closure	
  
–  is	
  fully	
  contained	
  within	
  the	
  current	
  session	
  
–  has	
  no	
  references	
  from	
  previous	
  session	
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•  A	
  clean	
  object	
  closure	
  
–  is	
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  contained	
  within	
  the	
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  session	
  
–  has	
  no	
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  session	
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Avoid	
  tracing	
  current	
  session?	
  
•  Many	
  SML	
  objects	
  are	
  tree-­‐structured	
  (List,	
  Tree,	
  etc,.)	
  

–  Specialize	
  for	
  no	
  pointers	
  from	
  outside	
  the	
  object	
  closure	
  

•  ∀x’	
  ∊	
  transiDve	
  object	
  closure	
  (x),	
  	
  
	
   	
   	
  ref_count	
  (x)	
  =	
  0	
  &&	
  ref_count	
  (x’)	
  =	
  1	
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Local	
  Heap	
  

x(0)	
  

y(1)	
  

z(1)	
  

•  Eager	
  exporDng	
  write	
  
–  No	
  current	
  session	
  tracing	
  needed!	
  

	
  

No	
  refs	
  
from	
  

outside	
  

–  ref_count	
  does	
  not	
  consider	
  pointers	
  from	
  stack	
  or	
  registers	
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•  Purpose	
  
–  Track	
  pointers	
  from	
  previous	
  session	
  to	
  current	
  session	
  
–  IdenDfy	
  tree-­‐structured	
  object	
  

•  Does	
  not	
  track	
  pointers	
  from	
  stack	
  and	
  registers	
  
–  Reference	
  count	
  only	
  triggered	
  during	
  object	
  iniDalizaDon	
  
and	
  mutaDon	
  



Bringing	
  it	
  all	
  together	
  
•  ∀x’	
  ∊	
  transiDve	
  object	
  closure	
  (x),	
  	
  

	
   	
   	
  if	
  max	
  (ref_count	
  (x’))	
  
– One	
  &	
  ref_count	
  (x)	
  =	
  0	
  ⇒	
  tree-­‐structured	
  (Clean)	
  
⇒	
  Session	
  tracing	
  not	
  needed	
  

– LocalMany	
  ⇒	
  Clean	
  ⇒	
  Trace	
  current	
  session	
  
– Global	
  ⇒	
  1+	
  pointer	
  from	
  previous	
  session	
  ⇒	
  
ProcrasGnate	
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Immutable	
  Objects	
  
•  Specialize	
  exporDng	
  writes	
  
•  If	
  immutable	
  object	
  in	
  previous	
  session	
  
– Copy	
  to	
  shared	
  heap	
  

•  Immutable	
  objects	
  in	
  SML	
  do	
  not	
  have	
  idenGty	
  

– Original	
  object	
  unmodified	
  

•  Avoid	
  space	
  leaks	
  
– Treat	
  large	
  immutable	
  objects	
  as	
  mutable	
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Cleanliness:	
  Summary	
  
•  Cleanliness	
  allows	
  eager	
  exporDng	
  writes	
  
while	
  preserving	
  visibility	
  invariant	
  

•  With	
  ProcrasDnaDon	
  +	
  Cleanliness,	
  <1%	
  of	
  
local	
  GCs	
  were	
  forced	
  

45	
  



EvaluaDon	
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•  Variants	
  
–  RB-­‐	
  :	
  TLC	
  with	
  ProcrasDnaDon	
  and	
  Cleanliness	
  	
  
–  RB+	
  :	
  TLC	
  with	
  read	
  barriers	
  

•  Sansom’s	
  dual-­‐mode	
  GC	
  
–  Cheney’s	
  2-­‐space	
  copying	
  collecDon	
  ßà	
  Jonker’s	
  sliding	
  
mark-­‐compacDng	
  

–  GeneraDonal,	
  2	
  generaDons,	
  No	
  aging	
  
•  Target	
  Architectures:	
  	
  
–  16-­‐core	
  AMD	
  Opteron	
  server	
  (NUMA)	
  
–  48-­‐core	
  Intel	
  SCC	
  (non-­‐cache	
  coherent)	
  
–  864-­‐core	
  Azul	
  Vega3	
  



Results	
  
•  Speedup:	
  At	
  3X	
  min	
  heap	
  size,	
  RB-­‐	
  faster	
  than	
  
RB+	
  
– AMD	
  (16-­‐cores)	
  32%	
  (2X	
  faster	
  than	
  STW	
  
collector)	
  

– SCC	
  (48-­‐cores)	
  20%	
  
– AZUL	
  (864-­‐cores)	
  30%	
  

•  Concurrency	
  
– During	
  exporDng	
  write,	
  8	
  runnable	
  user-­‐level	
  
threads/core!	
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Cleanliness	
  Impact	
  
•  RB-­‐	
  MU-­‐	
  :	
  RB-­‐	
  GC	
  ignoring	
  mutability	
  for	
  Cleanliness	
  
•  RB-­‐	
  CL-­‐	
  :	
  RB-­‐	
  GC	
  ignoring	
  Cleanliness	
  (Only	
  ProcrasGnaGon)	
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Avg.	
  slowdown	
  
-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐	
  

11.4%	
  
28.2%	
  
31.7%	
  



Conclusion	
  
•  Eliminate	
  the	
  need	
  for	
  read	
  barriers	
  by	
  
preserving	
  the	
  visibility	
  invariant	
  
– Procras'na'on:	
  Exploit	
  concurrency	
  for	
  delaying	
  
exporDng	
  writes	
  

– Cleanliness:	
  Exploit	
  generaDonal	
  property	
  for	
  
eagerly	
  perform	
  exporDng	
  writes	
  

•  AddiDonal	
  niceDes	
  
– Completely	
  dynamic	
  à	
  Portable	
  
– Does	
  not	
  impose	
  any	
  restricDon	
  on	
  the	
  GC	
  
strategy	
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hxp://mulDmlton.cs.purdue.edu	
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Results	
  
•  On	
  AMD,	
  16	
  Cores,	
  3X	
  minimum	
  heap	
  size	
  
•  Mutator	
  'me:	
  	
  
– STW	
  GC	
  spends	
  the	
  least	
  amount	
  of	
  Dme	
  in	
  the	
  
mutator	
  
•  No	
  read/write	
  barriers	
  

– Compared	
  to	
  STW	
  GC,	
  the	
  mutator	
  Dme	
  of	
  
•  RB-­‐	
  18%	
  more,	
  RB+	
  39%	
  more	
  

•  GC	
  'me:	
  	
  
– RB-­‐	
  spends	
  the	
  least	
  amount	
  Dme	
  doing	
  GC	
  
– RB-­‐	
  within	
  5%	
  of	
  RB+	
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Performance	
  on	
  AMD	
  (16-­‐cores)	
  

(a) Total time (b) Mutator time (c) GC time (d) GC overhead

Figure 11: Performance comparison of Stop-the-world (STW), Boehm-Demers-Weiser conservative garbage collector (BDW), local collector

with read barriers (RB+), and local collector without read barriers (RB-): Geometric mean for 8 benchmarks running on AMD64 with 16

cores.

(a) Total time (b) Mutator time (c) Garbage collection time (d) Garbage collection overhead

Figure 12: Performance comparison of local collector with read barriers (RB+) and local collector without read barriers (RB-): Geometric

mean for 8 benchmarks running on Azul with 846 cores.

(a) Total time (b) Mutator time (c) Garbage collection time (d) Garbage collection overhead

Figure 13: Performance comparison of local collector with read barriers (RB+) and local collector without read barriers (RB-): Geometric

mean for 8 benchmarks running on SCC with 48 cores.

explains why the total running time of RB- approaches RB+ as the

heap size is decreased in Figure 11a. With decreasing heap size, the

programs spend a larger portion of the time performing GCs, while

the mutator time remains consistent. Hence, there is diminishing

returns from using RB- as heap size decreases.

Next, we analyze the performance on Azul (see Figure 12). We

only consider performance of our local collectors since our AMD

results show that the other collectors (STW and BDW) simply do

not have favorable scalability characteristics. At 3X the minimum

heap size, RB- is 30% faster than RB+.

SCC performance results are presented in Figure 13. At 3X the

minimum heap size, RB- is 20% faster than RB+. From the total

time graphs, we can see that the programs tend to run much slower

as we decrease the heap sizes on SCC. Compared to the fastest

running times, the slowest running time for RB- is 2.01X, 2.05X,

and 3.74X slower on AMD, Azul, and SCC respectively. This is

due to the increased number of shared heap collections, which are

more expensive than other architectures as a result of the absence

of caching. This is noticeable by a more rapid increase in garbage

collection overhead percentages (Figure 13d).

7.3 Impact of cleanliness
Cleanliness information allows the runtime system to avoid pre-

empting threads on a write barrier when the source of an exporting

write is clean. In order to study the impact of cleanliness, we re-

moved the reference counting code and cleanliness check from the

write barrier; thus, every exporting write results in a thread preemp-

tion and stall. The results presented here were taken on the AMD

machine with programs running on 16 cores with the benchmark

configurations given in Figure 10. The results will be similar on

SCC and Azul.

At	
  3X	
  min	
  
heap	
  size:	
  
-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐	
  
RB+	
   	
  32%	
  	
  
STW 	
  106%	
  
BDW	
  584%	
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(a) Total time (b) Mutator time (c) GC time (d) GC overhead

Figure 11: Performance comparison of Stop-the-world (STW), Boehm-Demers-Weiser conservative garbage collector (BDW), local collector

with read barriers (RB+), and local collector without read barriers (RB-): Geometric mean for 8 benchmarks running on AMD64 with 16

cores.

(a) Total time (b) Mutator time (c) Garbage collection time (d) Garbage collection overhead

Figure 12: Performance comparison of local collector with read barriers (RB+) and local collector without read barriers (RB-): Geometric

mean for 8 benchmarks running on Azul with 846 cores.

(a) Total time (b) Mutator time (c) Garbage collection time (d) Garbage collection overhead

Figure 13: Performance comparison of local collector with read barriers (RB+) and local collector without read barriers (RB-): Geometric

mean for 8 benchmarks running on SCC with 48 cores.

explains why the total running time of RB- approaches RB+ as the

heap size is decreased in Figure 11a. With decreasing heap size, the

programs spend a larger portion of the time performing GCs, while

the mutator time remains consistent. Hence, there is diminishing

returns from using RB- as heap size decreases.

Next, we analyze the performance on Azul (see Figure 12). We

only consider performance of our local collectors since our AMD

results show that the other collectors (STW and BDW) simply do

not have favorable scalability characteristics. At 3X the minimum

heap size, RB- is 30% faster than RB+.

SCC performance results are presented in Figure 13. At 3X the

minimum heap size, RB- is 20% faster than RB+. From the total

time graphs, we can see that the programs tend to run much slower

as we decrease the heap sizes on SCC. Compared to the fastest

running times, the slowest running time for RB- is 2.01X, 2.05X,

and 3.74X slower on AMD, Azul, and SCC respectively. This is

due to the increased number of shared heap collections, which are

more expensive than other architectures as a result of the absence

of caching. This is noticeable by a more rapid increase in garbage

collection overhead percentages (Figure 13d).

7.3 Impact of cleanliness
Cleanliness information allows the runtime system to avoid pre-

empting threads on a write barrier when the source of an exporting

write is clean. In order to study the impact of cleanliness, we re-

moved the reference counting code and cleanliness check from the

write barrier; thus, every exporting write results in a thread preemp-

tion and stall. The results presented here were taken on the AMD

machine with programs running on 16 cores with the benchmark

configurations given in Figure 10. The results will be similar on

SCC and Azul.

(a) Total time (b) Mutator time (c) GC time (d) GC overhead

Figure 11: Performance comparison of Stop-the-world (STW), Boehm-Demers-Weiser conservative garbage collector (BDW), local collector

with read barriers (RB+), and local collector without read barriers (RB-): Geometric mean for 8 benchmarks running on AMD64 with 16

cores.

(a) Total time (b) Mutator time (c) Garbage collection time (d) Garbage collection overhead

Figure 12: Performance comparison of local collector with read barriers (RB+) and local collector without read barriers (RB-): Geometric

mean for 8 benchmarks running on Azul with 846 cores.

(a) Total time (b) Mutator time (c) Garbage collection time (d) Garbage collection overhead

Figure 13: Performance comparison of local collector with read barriers (RB+) and local collector without read barriers (RB-): Geometric

mean for 8 benchmarks running on SCC with 48 cores.

explains why the total running time of RB- approaches RB+ as the

heap size is decreased in Figure 11a. With decreasing heap size, the

programs spend a larger portion of the time performing GCs, while

the mutator time remains consistent. Hence, there is diminishing

returns from using RB- as heap size decreases.

Next, we analyze the performance on Azul (see Figure 12). We

only consider performance of our local collectors since our AMD

results show that the other collectors (STW and BDW) simply do

not have favorable scalability characteristics. At 3X the minimum

heap size, RB- is 30% faster than RB+.

SCC performance results are presented in Figure 13. At 3X the

minimum heap size, RB- is 20% faster than RB+. From the total

time graphs, we can see that the programs tend to run much slower

as we decrease the heap sizes on SCC. Compared to the fastest

running times, the slowest running time for RB- is 2.01X, 2.05X,

and 3.74X slower on AMD, Azul, and SCC respectively. This is

due to the increased number of shared heap collections, which are

more expensive than other architectures as a result of the absence

of caching. This is noticeable by a more rapid increase in garbage

collection overhead percentages (Figure 13d).

7.3 Impact of cleanliness
Cleanliness information allows the runtime system to avoid pre-

empting threads on a write barrier when the source of an exporting

write is clean. In order to study the impact of cleanliness, we re-

moved the reference counting code and cleanliness check from the

write barrier; thus, every exporting write results in a thread preemp-

tion and stall. The results presented here were taken on the AMD

machine with programs running on 16 cores with the benchmark

configurations given in Figure 10. The results will be similar on

SCC and Azul.
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(a) Total time (b) Mutator time (c) GC time (d) GC overhead

Figure 11: Performance comparison of Stop-the-world (STW), Boehm-Demers-Weiser conservative garbage collector (BDW), local collector

with read barriers (RB+), and local collector without read barriers (RB-): Geometric mean for 8 benchmarks running on AMD64 with 16

cores.

(a) Total time (b) Mutator time (c) Garbage collection time (d) Garbage collection overhead

Figure 12: Performance comparison of local collector with read barriers (RB+) and local collector without read barriers (RB-): Geometric

mean for 8 benchmarks running on Azul with 846 cores.

(a) Total time (b) Mutator time (c) Garbage collection time (d) Garbage collection overhead

Figure 13: Performance comparison of local collector with read barriers (RB+) and local collector without read barriers (RB-): Geometric

mean for 8 benchmarks running on SCC with 48 cores.

explains why the total running time of RB- approaches RB+ as the

heap size is decreased in Figure 11a. With decreasing heap size, the

programs spend a larger portion of the time performing GCs, while

the mutator time remains consistent. Hence, there is diminishing

returns from using RB- as heap size decreases.

Next, we analyze the performance on Azul (see Figure 12). We

only consider performance of our local collectors since our AMD

results show that the other collectors (STW and BDW) simply do

not have favorable scalability characteristics. At 3X the minimum

heap size, RB- is 30% faster than RB+.

SCC performance results are presented in Figure 13. At 3X the

minimum heap size, RB- is 20% faster than RB+. From the total

time graphs, we can see that the programs tend to run much slower

as we decrease the heap sizes on SCC. Compared to the fastest

running times, the slowest running time for RB- is 2.01X, 2.05X,

and 3.74X slower on AMD, Azul, and SCC respectively. This is

due to the increased number of shared heap collections, which are

more expensive than other architectures as a result of the absence

of caching. This is noticeable by a more rapid increase in garbage

collection overhead percentages (Figure 13d).

7.3 Impact of cleanliness
Cleanliness information allows the runtime system to avoid pre-

empting threads on a write barrier when the source of an exporting

write is clean. In order to study the impact of cleanliness, we re-

moved the reference counting code and cleanliness check from the

write barrier; thus, every exporting write results in a thread preemp-

tion and stall. The results presented here were taken on the AMD

machine with programs running on 16 cores with the benchmark

configurations given in Figure 10. The results will be similar on

SCC and Azul.
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Figure 11: Performance comparison of Stop-the-world (STW), Boehm-Demers-Weiser conservative garbage collector (BDW), local collector

with read barriers (RB+), and local collector without read barriers (RB-): Geometric mean for 8 benchmarks running on AMD64 with 16

cores.

(a) Total time (b) Mutator time (c) Garbage collection time (d) Garbage collection overhead

Figure 12: Performance comparison of local collector with read barriers (RB+) and local collector without read barriers (RB-): Geometric

mean for 8 benchmarks running on Azul with 846 cores.
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Figure 13: Performance comparison of local collector with read barriers (RB+) and local collector without read barriers (RB-): Geometric

mean for 8 benchmarks running on SCC with 48 cores.

explains why the total running time of RB- approaches RB+ as the

heap size is decreased in Figure 11a. With decreasing heap size, the

programs spend a larger portion of the time performing GCs, while

the mutator time remains consistent. Hence, there is diminishing

returns from using RB- as heap size decreases.

Next, we analyze the performance on Azul (see Figure 12). We

only consider performance of our local collectors since our AMD

results show that the other collectors (STW and BDW) simply do

not have favorable scalability characteristics. At 3X the minimum

heap size, RB- is 30% faster than RB+.

SCC performance results are presented in Figure 13. At 3X the

minimum heap size, RB- is 20% faster than RB+. From the total

time graphs, we can see that the programs tend to run much slower

as we decrease the heap sizes on SCC. Compared to the fastest

running times, the slowest running time for RB- is 2.01X, 2.05X,

and 3.74X slower on AMD, Azul, and SCC respectively. This is

due to the increased number of shared heap collections, which are

more expensive than other architectures as a result of the absence

of caching. This is noticeable by a more rapid increase in garbage

collection overhead percentages (Figure 13d).

7.3 Impact of cleanliness
Cleanliness information allows the runtime system to avoid pre-

empting threads on a write barrier when the source of an exporting

write is clean. In order to study the impact of cleanliness, we re-

moved the reference counting code and cleanliness check from the

write barrier; thus, every exporting write results in a thread preemp-

tion and stall. The results presented here were taken on the AMD

machine with programs running on 16 cores with the benchmark

configurations given in Figure 10. The results will be similar on

SCC and Azul.
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  (48-­‐cores)	
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  (864-­‐Cores)	
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   30%	
  

Non-­‐cache	
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   Scalable,	
  cache-­‐coherent	
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Figure 14: Number of preemptions on write barrier.
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Figure 15: Forced GCs as a percentage of the total number of major
GCs.

Figure 14 shows the number of preemptions on write barrier for
different local collector configurations. RB- row represents the lo-
cal collector designs with all of the features enabled; RB- MU- row
shows a cleanliness optimization that does not take an object’s mu-
tability into consideration in determining cleanliness (using only
recorded reference counts instead), and row RB- CL- row repre-
sents preemptions incurred when the collector does not use any
cleanliness information at all. Without cleanliness, on average, the
programs perform substantially more preemptions when encoun-
tering a write barrier.

Recall that if all of the threads belonging to a core get preempted
on a write barrier, a local major GC is forced, which lifts all of
the sources of exporting writes, fixes the references to forwarding
pointers and unblocks the stalled threads. Hence, an increase in the
number of preemptions leads to an increase in the number of local
collections.

Figure 15 shows the percentage of local major GCs that were
forced compared to the total number of local major GCs. Row RB-
CL- shows the percentage of forced GCs if cleanliness information
is not used. On average, 49% of local major collection performed
is due to forced GCs if cleanliness information is not used, whereas
it is less than 1% otherwise. On benchmarks like BarnesHut,
GameOfLife and Mandelbrot, where all of the threads tend to
operate on a shared global data structure, there are a large number
of exporting writes. On such benchmarks almost all local GCs are
forced in the absence of cleanliness. This adversely affects the
running time of programs.

Figure 16 shows the running time of programs without using
cleanliness. On average, programs tend to run 28.2% slower if
cleanliness information is ignored. The results show that cleanli-
ness analysis therefore plays a significant role in our GC design.

7.4 Impact of immutability
If the source of an exporting write is immutable, we can make a
copy of the object in the shared heap and assign a reference to the
new shared heap object to the target. Hence, we can ignore the
reference count of such objects. Not all languages may have the
ability to distinguish between mutable and immutable objects in
the compiler or in the runtime system. Hence, we study the impact
of our local collector design with mutability information in mind.
To do this, we ignore the test for mutability in the cleanliness check

Figure 16: Impact of utilizing object mutability information and
cleanliness analysis on the performance of RB- GC.
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Figure 17: Impact of heap session: % LM clean represents the
fraction of instances when a clean object closure has at least one
object with LOCAL MANY references.

(Line 4 in Figure 6) and modify the object lifting code in Figure 8
to treat all objects as mutable.

RB- MU- row in Figure 14 and Figure 15 show the number of
write barrier preemptions and the percentage of forced GCs, re-
spectively, if all objects were treated as mutable. For some pro-
grams such as AllPairs, CountGraphs, or Kclustering, ob-
ject mutability does not play a significant factor. For benchmarks
where it does, distinguishing between mutable and immutable ob-
jects helps avoid inducing preemptions on a write barrier since a
copy of the immutable object can be created in the shared heap
without the need to repair existing references to the local heap copy.

Figure 16 shows the performance impact of taking object
mutability into account. BarnesHut, GameOfLife and Nucleic
are slower due to the increased number of forced GCs. Interest-
ingly, AllPairs, CountGraphs, Kclustering and Raytrace are
marginally faster since they avoid manipulating the imSet (Line
14 in Figure 8) and walking immutable objects after the objects
are lifted (Lines 25-27 in Figure 8). On average, we see a 11.4%
performance impact if mutability information is not utilized for
cleanliness.

7.5 Impact of heap session
In order to assess the effectiveness of using heap sessions, we mea-
sured the percentage of instances where the source of an exporting
write is clean with at least one of the objects in the closure has a
LOCAL MANY reference. During such instances, we walk the current
heap session to fix any references to forwarded objects. Without us-
ing heap sessions, we would have preempted the thread in the write
barrier, reducing available concurrency. The results were obtained
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Figure 10: Benchmark characteristics. %Sh represents the average
fraction of bytes allocated in the shared heap across all the archi-
tectures.

• AllPairs: an implementation of Floyd-Warshall algorithm for
computing all pairs shortest path.

• BarnesHut: an n-body simulation using Barnes-Hut algorithm.
• CountGraphs: computes all symmetries (automorphisms)

within a set of graphs.
• GameOfLife: Conway’s Game of Life simulator
• Kclustering: a k-means clustering algorithm, where each stage

is spawned as a server.
• Mandelbrot: a Mandelbrot set generator.
• Nucleic: Pseudoknot [11] benchmark applied on multiple in-

puts.
• Raytrace: a ray-tracing algorithm to render a scene.

Parameters are appropriately scaled for different architectures
to ensure sufficient work for each of the cores. The benchmarks
running on AMD and SCC were given the same input size. Hence,
we see that the benchmarks allocate the same amount of memory
during their lifetime. But, we increase the number of threads on
the SCC when compared to AMD since there is more hardware
parallelism available. For Azul, we scale both the input size and the
number of threads, and as a result we see a large increase in bytes
allocated when compared to the other platforms. Out of the total
bytes allocated during the program execution, on average 5.4% is
allocated in the shared heap. Thus, most of the objects allocated are
collected locally, without the need for stalling all of the mutators.

We observe that the allocation rate is highly architecture depen-
dent, and is the slowest on the SCC. Allocation rate is particularly
dependent on memory bandwidth, processor speed and cache be-
havior. On the SCC, not only is the processor slow (533MHz) but
the serial memory bandwidth for our experimental setup is only
around 70 MB/s.

7.2 Performance
Next, we analyze the performance of the new local collector design.
In order to establish a baseline for the results presented, we have
ported our runtime system to utilize the Boehm-Demers-Weiser
(BDW) conservative garbage collector [7]. We briefly describe the
port of our runtime system utilizing BDW GC.

Although BDW GC is conservative, it can utilize tracing infor-
mation when provided. Our compiler generates tracing information
for all objects, including the stack. However, we provide the trac-
ing information for all object allocations except the stack. Stack
objects in our runtime system represent all of the reserved space
for a stack, while only a part of the stack is actually used which can
grow and shrink as frames are pushed and popped. Since the BDW
GC does not allow tracing information of objects to be changed af-

ter allocation, we scan stack objects conservatively. BDW uses a
mark-sweep algorithm, and we enable parallel marking and thread-
local allocations.

Figure 11a illustrates space-time trade-offs critical for any
garbage collector evaluation. STW GC is the baseline stop-the-
world collector described in Section 3.2, while RB+ and RB- are
local collectors. RB+ is a local collector with read barriers while
RB- is our new local collector design without read barriers, exploit-
ing procrastination and cleanliness. We compare the normalized
running times of our benchmarks under different garbage collec-
tion schemes as we decrease the heap size. For each run of the
experiment, we decrease the maximum heap size allowed and re-
port the maximum size of the heap utilized. Thus, we leave it to the
collectors to figure out the optimal heap size, within the allowed
space. This is essential for the local collectors, since the allocation
pattern of each core is usually very different and depends on the
structure of the program.

The results presented here were collected on 16 cores. As we
decrease overall heap sizes, we see programs under all of the dif-
ferent GC schemes taking longer to run. But RB- exhibits better
performance characteristics than its counterparts. We observe that
the minimum heap size under which the local collectors would run
is greater than the STW and BDW GCs. In the local collectors,
since the heap is split across all of the cores, there is more frag-
mentation. Also, under the current scheme, each local collector is
greedy and will try to utilize as much heap as it can in order to
reduce the running time (by choosing semi-space collection over
mark-compact), without taking into account the heap requirements
of other local collectors. Currently, when one of the local cores
runs out of memory, we terminate the program. Since we are inter-
ested in throughput on scalable architectures where memory is not
a bottleneck, we have not optimized the collectors for memory uti-
lization. We believe we can modify our collector for memory con-
strained environments by allowing local heaps to shrink on demand
and switch from semi-space to compacting collection, if other local
heaps run out of memory.

The STW and BDW GCs are much slower than the two local
collectors. In order to study the reason behind this slowdown,
we separate the mutator time (Figure 11b) and garbage collection
time (Figure 11c). We see that STW GC is actually faster than
the local collectors in terms of mutator time, since it does not
pay the overhead of executing read or write barriers. But, since
every collection requires stopping all the mutators and a single
collector performs the collection, it executes serially during a GC.
Figure 11d shows that roughly 70% of the execution total time for
our benchmarks under STW is spent performing GCs, negatively
impacting scalability.

Interestingly, we see that programs running under the BDW GC
are much slower when compared to other GCs. This is mainly due
to allocation costs. Although we enabled thread-local allocations,
on 16 cores, approximately 40% of the time was spent on object
allocation. While the cost of object allocation for our other collec-
tors only involves bumping the frontier, allocation in BDW GC is
significantly more costly, involving scanning through a free list, in-
curring substantial overhead. Moreover, BDW GC is tuned for lan-
guages like C/C++ and Java, where the object lifetimes are longer
and allocation rate is lower when compared to functional program-
ming languages.

In Figure 11a, at 3X the minimum heap size, RB+, STW and
BDW GCs are 32%, 106% and 584% slower than the RB- GC. We
observe that there is very little difference between RB+ and RB-
in terms of GC time but the mutator time for RB+ is consistently
higher than RB- due to read barrier costs. The difference in mutator
times is consistent since it is not adversely affected by the increased
number of GCs incurred as a result of smaller heap sizes. This also
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Figure 14: Number of preemptions on write barrier.
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Figure 15: Forced GCs as a percentage of the total number of major
GCs.

Figure 14 shows the number of preemptions on write barrier for
different local collector configurations. RB- row represents the lo-
cal collector designs with all of the features enabled; RB- MU- row
shows a cleanliness optimization that does not take an object’s mu-
tability into consideration in determining cleanliness (using only
recorded reference counts instead), and row RB- CL- row repre-
sents preemptions incurred when the collector does not use any
cleanliness information at all. Without cleanliness, on average, the
programs perform substantially more preemptions when encoun-
tering a write barrier.

Recall that if all of the threads belonging to a core get preempted
on a write barrier, a local major GC is forced, which lifts all of
the sources of exporting writes, fixes the references to forwarding
pointers and unblocks the stalled threads. Hence, an increase in the
number of preemptions leads to an increase in the number of local
collections.

Figure 15 shows the percentage of local major GCs that were
forced compared to the total number of local major GCs. Row RB-
CL- shows the percentage of forced GCs if cleanliness information
is not used. On average, 49% of local major collection performed
is due to forced GCs if cleanliness information is not used, whereas
it is less than 1% otherwise. On benchmarks like BarnesHut,
GameOfLife and Mandelbrot, where all of the threads tend to
operate on a shared global data structure, there are a large number
of exporting writes. On such benchmarks almost all local GCs are
forced in the absence of cleanliness. This adversely affects the
running time of programs.

Figure 16 shows the running time of programs without using
cleanliness. On average, programs tend to run 28.2% slower if
cleanliness information is ignored. The results show that cleanli-
ness analysis therefore plays a significant role in our GC design.

7.4 Impact of immutability
If the source of an exporting write is immutable, we can make a
copy of the object in the shared heap and assign a reference to the
new shared heap object to the target. Hence, we can ignore the
reference count of such objects. Not all languages may have the
ability to distinguish between mutable and immutable objects in
the compiler or in the runtime system. Hence, we study the impact
of our local collector design with mutability information in mind.
To do this, we ignore the test for mutability in the cleanliness check

Figure 16: Impact of utilizing object mutability information and
cleanliness analysis on the performance of RB- GC.
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Figure 17: Impact of heap session: % LM clean represents the
fraction of instances when a clean object closure has at least one
object with LOCAL MANY references.

(Line 4 in Figure 6) and modify the object lifting code in Figure 8
to treat all objects as mutable.

RB- MU- row in Figure 14 and Figure 15 show the number of
write barrier preemptions and the percentage of forced GCs, re-
spectively, if all objects were treated as mutable. For some pro-
grams such as AllPairs, CountGraphs, or Kclustering, ob-
ject mutability does not play a significant factor. For benchmarks
where it does, distinguishing between mutable and immutable ob-
jects helps avoid inducing preemptions on a write barrier since a
copy of the immutable object can be created in the shared heap
without the need to repair existing references to the local heap copy.

Figure 16 shows the performance impact of taking object
mutability into account. BarnesHut, GameOfLife and Nucleic
are slower due to the increased number of forced GCs. Interest-
ingly, AllPairs, CountGraphs, Kclustering and Raytrace are
marginally faster since they avoid manipulating the imSet (Line
14 in Figure 8) and walking immutable objects after the objects
are lifted (Lines 25-27 in Figure 8). On average, we see a 11.4%
performance impact if mutability information is not utilized for
cleanliness.

7.5 Impact of heap session
In order to assess the effectiveness of using heap sessions, we mea-
sured the percentage of instances where the source of an exporting
write is clean with at least one of the objects in the closure has a
LOCAL MANY reference. During such instances, we walk the current
heap session to fix any references to forwarded objects. Without us-
ing heap sessions, we would have preempted the thread in the write
barrier, reducing available concurrency. The results were obtained
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Figure 11: Performance comparison of Stop-the-world (STW), Boehm-Demers-Weiser conservative garbage collector (BDW), local collector

with read barriers (RB+), and local collector without read barriers (RB-): Geometric mean for 8 benchmarks running on AMD64 with 16

cores.

(a) Total time (b) Mutator time (c) Garbage collection time (d) Garbage collection overhead

Figure 12: Performance comparison of local collector with read barriers (RB+) and local collector without read barriers (RB-): Geometric

mean for 8 benchmarks running on Azul with 846 cores.

(a) Total time (b) Mutator time (c) Garbage collection time (d) Garbage collection overhead

Figure 13: Performance comparison of local collector with read barriers (RB+) and local collector without read barriers (RB-): Geometric

mean for 8 benchmarks running on SCC with 48 cores.

explains why the total running time of RB- approaches RB+ as the

heap size is decreased in Figure 11a. With decreasing heap size, the

programs spend a larger portion of the time performing GCs, while

the mutator time remains consistent. Hence, there is diminishing

returns from using RB- as heap size decreases.

Next, we analyze the performance on Azul (see Figure 12). We

only consider performance of our local collectors since our AMD

results show that the other collectors (STW and BDW) simply do

not have favorable scalability characteristics. At 3X the minimum

heap size, RB- is 30% faster than RB+.

SCC performance results are presented in Figure 13. At 3X the

minimum heap size, RB- is 20% faster than RB+. From the total

time graphs, we can see that the programs tend to run much slower

as we decrease the heap sizes on SCC. Compared to the fastest

running times, the slowest running time for RB- is 2.01X, 2.05X,

and 3.74X slower on AMD, Azul, and SCC respectively. This is

due to the increased number of shared heap collections, which are

more expensive than other architectures as a result of the absence

of caching. This is noticeable by a more rapid increase in garbage

collection overhead percentages (Figure 13d).

7.3 Impact of cleanliness
Cleanliness information allows the runtime system to avoid pre-

empting threads on a write barrier when the source of an exporting

write is clean. In order to study the impact of cleanliness, we re-

moved the reference counting code and cleanliness check from the

write barrier; thus, every exporting write results in a thread preemp-

tion and stall. The results presented here were taken on the AMD

machine with programs running on 16 cores with the benchmark

configurations given in Figure 10. The results will be similar on

SCC and Azul.
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mean for 8 benchmarks running on SCC with 48 cores.

explains why the total running time of RB- approaches RB+ as the

heap size is decreased in Figure 11a. With decreasing heap size, the

programs spend a larger portion of the time performing GCs, while

the mutator time remains consistent. Hence, there is diminishing

returns from using RB- as heap size decreases.

Next, we analyze the performance on Azul (see Figure 12). We

only consider performance of our local collectors since our AMD

results show that the other collectors (STW and BDW) simply do

not have favorable scalability characteristics. At 3X the minimum

heap size, RB- is 30% faster than RB+.

SCC performance results are presented in Figure 13. At 3X the

minimum heap size, RB- is 20% faster than RB+. From the total

time graphs, we can see that the programs tend to run much slower

as we decrease the heap sizes on SCC. Compared to the fastest

running times, the slowest running time for RB- is 2.01X, 2.05X,

and 3.74X slower on AMD, Azul, and SCC respectively. This is

due to the increased number of shared heap collections, which are

more expensive than other architectures as a result of the absence

of caching. This is noticeable by a more rapid increase in garbage

collection overhead percentages (Figure 13d).

7.3 Impact of cleanliness
Cleanliness information allows the runtime system to avoid pre-

empting threads on a write barrier when the source of an exporting

write is clean. In order to study the impact of cleanliness, we re-

moved the reference counting code and cleanliness check from the

write barrier; thus, every exporting write results in a thread preemp-

tion and stall. The results presented here were taken on the AMD

machine with programs running on 16 cores with the benchmark

configurations given in Figure 10. The results will be similar on

SCC and Azul.
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explains why the total running time of RB- approaches RB+ as the

heap size is decreased in Figure 11a. With decreasing heap size, the

programs spend a larger portion of the time performing GCs, while

the mutator time remains consistent. Hence, there is diminishing

returns from using RB- as heap size decreases.

Next, we analyze the performance on Azul (see Figure 12). We

only consider performance of our local collectors since our AMD

results show that the other collectors (STW and BDW) simply do

not have favorable scalability characteristics. At 3X the minimum

heap size, RB- is 30% faster than RB+.

SCC performance results are presented in Figure 13. At 3X the

minimum heap size, RB- is 20% faster than RB+. From the total

time graphs, we can see that the programs tend to run much slower

as we decrease the heap sizes on SCC. Compared to the fastest

running times, the slowest running time for RB- is 2.01X, 2.05X,

and 3.74X slower on AMD, Azul, and SCC respectively. This is

due to the increased number of shared heap collections, which are

more expensive than other architectures as a result of the absence

of caching. This is noticeable by a more rapid increase in garbage

collection overhead percentages (Figure 13d).
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Cleanliness information allows the runtime system to avoid pre-

empting threads on a write barrier when the source of an exporting

write is clean. In order to study the impact of cleanliness, we re-

moved the reference counting code and cleanliness check from the

write barrier; thus, every exporting write results in a thread preemp-

tion and stall. The results presented here were taken on the AMD

machine with programs running on 16 cores with the benchmark

configurations given in Figure 10. The results will be similar on

SCC and Azul.
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mean for 8 benchmarks running on SCC with 48 cores.

explains why the total running time of RB- approaches RB+ as the

heap size is decreased in Figure 11a. With decreasing heap size, the

programs spend a larger portion of the time performing GCs, while

the mutator time remains consistent. Hence, there is diminishing

returns from using RB- as heap size decreases.

Next, we analyze the performance on Azul (see Figure 12). We

only consider performance of our local collectors since our AMD

results show that the other collectors (STW and BDW) simply do

not have favorable scalability characteristics. At 3X the minimum

heap size, RB- is 30% faster than RB+.

SCC performance results are presented in Figure 13. At 3X the

minimum heap size, RB- is 20% faster than RB+. From the total

time graphs, we can see that the programs tend to run much slower

as we decrease the heap sizes on SCC. Compared to the fastest

running times, the slowest running time for RB- is 2.01X, 2.05X,

and 3.74X slower on AMD, Azul, and SCC respectively. This is

due to the increased number of shared heap collections, which are

more expensive than other architectures as a result of the absence

of caching. This is noticeable by a more rapid increase in garbage

collection overhead percentages (Figure 13d).

7.3 Impact of cleanliness
Cleanliness information allows the runtime system to avoid pre-

empting threads on a write barrier when the source of an exporting

write is clean. In order to study the impact of cleanliness, we re-

moved the reference counting code and cleanliness check from the

write barrier; thus, every exporting write results in a thread preemp-

tion and stall. The results presented here were taken on the AMD

machine with programs running on 16 cores with the benchmark

configurations given in Figure 10. The results will be similar on

SCC and Azul.
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