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• OCaml is an industrial-strength, functional programming 

language

★ Projects: MirageOS unikernel, Coq proof assistant, F* programming language

★ Companies: Facebook (Hack, Flow, Infer, Reason), Microsoft (Everest, F*), 
JaneStreet (all trading & support systems), Docker (Docker for Mac & 
Windows), Citrix (XenStore)

• No multicore support!

• Multicore OCaml

★ Native support for concurrency and parallelism in OCaml

★ Lead from OCaml Labs + (JaneStreet, Microsoft Research, INRIA).
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Thread 1
r1 = a * 2 

r2 = b + 1
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Memory Model
• Unambiguous specification of program outcomes

★ More than just thread interleavings

• Memory Model Desiderata

★ Not too weak (good for programmers)

★ Not too strong (good for hardware)

★ Admits optimisations (good for compilers)

★ Mathematically rigorous (good for verification)

• Difficult to get right

★ C/C++11 memory model is flawed

★ Java memory model is flawed

★ Several papers every year in top PL conferences 
proposing / fixing models
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Memory Model: Programmer’s view

• Data race

★ Concurrent access to memory location, one of which is a write

• Sequential consistency (SC)

★ No intra-thread reordering, only inter-thread interleaving

• DRF-SC: primary tool in concurrent programmers arsenal

★ If a program has no races (under SC semantics), then the program has SC 
semantics

★ Well-synchronised programs do not have surprising behaviours

• Our observation: DRF-SC is too weak for programmers
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C/C++ Memory Model
• C/C++ (C11) memory model offers DRF-SC, but.. 

★ If a program has races (even benign), then the behaviour is undefined!

★ Most C/C++ programs have races => most C/C++ programs are 
allowed to crash and burn

• Races on unrelated locations can affect behaviour

★ We would like a memory model where data races are bounded in 
space
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int a;
volatile bool flag;

Thread 1 
a = 1;
flag = true;  

Thread 2 
a = 2;
if (flag) {
  // no race here
  r1 = a;
  r2 = a;
}

r1 == 1 && r2 == 2 is allowed  
Races in the past 
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Java Memory Model
• Future data races can affect the past

!13

Class C { int x; }
C g;

Thread 1 
C c = new C();
c.x = 42;

 
r1 = c.x;
g = c;

Thread 2 
g.x = 7;

 

assert (r1 == 42) fails 

• We would like a memory model that bounds data races in time
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If I read a variable twice and there are no concurrent writes, 
then both reads return the same value
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• Memory Model Desiderata

★ Not too weak (good for 
programmers)

★ Not too strong (good for 
hardware)

★ Admits optimisations (good for 
compilers)

★ Mathematically rigorous (good for 
verification)                                     

• OCaml Memory model

★ Local version of DRF-SC — key 
discovery

★ Free on x86, 0.6% overhead on 
ARM, 2.6% overhead on POWER

★ Allows most common compiler 
optimisations 

★ Simple operational and axiomatic 
semantics + proved soundness 
(optimization + to-hardware)
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Local DRF
• If there are no data races, 

★ on some variables (space)

★ in some interval (time)

★ then the program has SC behaviour on those variables in that time interval

• Space = {all variables} && Time = whole execution => DRF-SC

!16

Thread 1 
msg = 1;
b = 0;
Flag = 1;

Thread 2 
b = 1;
if (Flag) { 
  r = msg;
}

Flag is atomic

Due to local DRF, despite the race on b,  message-passing idiom still works!
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Trace

Machine state =  
State of all threads + 

Heap

Memory 
access

• Pick a set of L of locations

• Pick a machine state M where there are no ongoing races in L

★ M is said to be L-stable

• Local DRF Theorem 

★ Starting from an L-stable state M, until the next race on any location in L 
under SC semantics, the program has SC semantics

Space

Time
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• Local DRF prohibits certain hardware and software 
optimisations

★ Preserve load-to-store ordering

• No compiler optimisation that reorders load-to-store ordering 
is allowed

• ARM & POWER do not preserve load-to-store ordering

★ Insert necessary synchronisation between every mutable load and store

★ What is the performance cost?

Performance Implication

!24

r1 = a;
b = c;
a = r1;   

Redundant store elimination���������������!
r1 = a;
b = c;
;   
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• OCaml memory model
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Summary
• OCaml memory model

★ Balances comprehensibility (Local DRF theorem) and Performance (free on 
x86, 0.6% on ARMv8, 2.6% on POWER)

★ Allows common compiler optimisations

★ Compilation + Optimisations proved sound

• Proposed as the memory model for OCaml

★ Also suitable for other safe languages (Swift, WebAssembly, JavaScript)
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