Bounding Data Races in
Space and Time

KC Sivaramakrishnan

University of OCaml Labs Darwin College, 1851 Royal
Cambridge Cambridge Commission

Multicore OCaml

Multicore OCaml

e OCaml is an industrial-strength, functional programming
language

* Projects: MirageOS unikernel, Coq proof assistant, F* programming language

* Companies: Facebook (Hack, Flow, Infer, Reason), Microsoft (Everest, F*¥),
JaneStreet (all trading & support systems), Docker (Docker for Mac &
Windows), Citrix (XenStore)

Multicore OCaml

e OCaml is an industrial-strength, functional programming
language

* Projects: MirageOS unikernel, Coq proof assistant, F* programming language

* Companies: Facebook (Hack, Flow, Infer, Reason), Microsoft (Everest, F*),

JaneStreet (all trading & support systems), Docker (Docker for Mac &
Windows), Citrix (XenStore)

e No multicore support!

Multicore OCaml

e OCaml is an industrial-strength, functional programming
language

* Projects: MirageOS unikernel, Coq proof assistant, F* programming language

* Companies: Facebook (Hack, Flow, Infer, Reason), Microsoft (Everest, F*¥),
JaneStreet (all trading & support systems), Docker (Docker for Mac &
Windows), Citrix (XenStore)

e No multicore support!

® Multicore OCaml
* Native support for and parallelism in OCaml

* Lead from OCaml Labs + (JaneStreet, Microsoft Research, INRIA).

Modelling Memory

Modelling Memory

® How do you reason about access to memory!?

Modelling Memory

® How do you reason about access to memory?

* Spoiler: No single global sequentially consistent memory

Modelling Memory

® How do you reason about access to memory?

* Spoiler: No single global sequentially consistent memory

® Modern multicore processors reorder instructions for
performance

Modelling Memory

® How do you reason about access to memory?

* Spoiler: No single global sequentially consistent memory

® Modern multicore processors reorder instructions for

performance
Initially a = 0 && b =0

Thread 1 Thread 2
a =1 b =1
rl = b r2 = a

ri{ == 0 && r2 ==0 ???

Modelling Memory

® How do you reason about access to memory?

* Spoiler: No single global sequentially consistent memory

® Modern multicore processors reorder instructions for

performance
Initially a = 0 && b =0

Thread 1 Thread 2
a =1 b =1
rl = b r2 = a

ri{ == 0 && r2 ==0 ???

Allowed under x86, ARM, POWER

Modelling Memory

® How do you reason about access to memory?

* Spoiler: No single global sequentially consistent memory

® Modern multicore processors reorder instructions for

performance
Initially a = 0 && b =0

Thread 1 Thread 2
a =1 b =1
rl = b r2 = a

ri{ == 0 && r2 ==0 ???

Allowed under x86, ARM, POWER

Modelling Memory

® How do you reason about access to memory?

* Spoiler: No single global sequentially consistent memory

® Modern multicore processors reorder instructions for

performance
Initially a = 0 && b =0

Thread 1 Thread 2
rl = b r2 = a
a =1 b =1

ri{ == 0 && r2 ==0 ???

Allowed under x86, ARM, POWER

Modelling Memory

o Compilers optimisations also reorder memory access
Instructions

Modelling Memory

o Compilers optimisations also reorder memory access
Instructions

Thread 1 Thread 1
r1=a*2 CSE rl:a*z
r2 = b + 1 ; r2 =b + 1
r3 =a * 2 r3 = ri

Modelling Memory

o Compilers optimisations also reorder memory access
Instructions

Thread 1 Thread 1
= * _
ril a 2 CSE rl = a * 2
r2 = b + 1 ; r2 =b + 1
r3 =a * 2 r3 = ri
Initially
&a == &b
& &

Modelling Memory

o Compilers optimisations also reorder memory access
Instructions

Thread 1 Thread 1

= * -
rl a 2 CSE rl = a * 2

r2

r2 b + 1

r3
Initially

&a == &b Thread 2
& &

Modelling Memory

o Compilers optimisations also reorder memory access
Instructions

Thread 1 Thread 1

= * -
rl a 2 CSE rl = a * 2

r2 = r2 = b + 1
N r3 = r3 = ril
Initially
&a == &b : Thread 2
& &
a b 1]l == 2 && @ e
r2 == 0 &&

Modelling Memory

o Compilers optimisations also reorder memory access
Instructions

Thread 1 Thread 1
= * -
rl a 2 CSE rl = a * 2
r2 = = b +1
- r3 = r3 = rl
Initially
&a == &b . Thread 2
& &
_ o . b =10

Modelling Memory

o Compilers optimisations also reorder memory access
Instructions

Thread 1 Thread 1
= * -
rl a 2 CSE rl = a * 2
r3 =a * 2 = b +1
r2 =b + 1 r3 = rl
Initially
&a == &b
& & :
o b =0
a b 1 rl == 2 && - rl == 2 &&

Memory Model

¢ Unambiguous specification of program outcomes

* More than just thread interleavings

Memory Model

¢ Unambiguous specification of program outcomes

* More than just thread interleavings

e Memory Model Desiderata

* Not too weak (good for programmers)
* Not too strong (good for hardware)

* Admits optimisations (good for compilers)

* Mathematically rigorous (good for verification)

Memory Model

Unambiguous specification of program outcomes
* More than just thread interleavings

Memory Model Desiderata

* Not too weak (good for programmers)

* Not too strong (good for hardware)

* Admits optimisations (good for compilers)

* Mathematically rigorous (good for verification)
Difficult to get right

*x C/C++1 1| memory model is flawed

* Java memory model is flawed

* Several papers every year in top PL conferences
proposing / fixing models

Memory Model: Programmer’s view

Memory Model: Programmer’s view

e Data race

* Concurrent access to memory location, one of which is a write

Memory Model: Programmer’s view

e Data race

* Concurrent access to memory location, one of which is a write

e Sequential consistency (SC)

* No intra-thread reordering, only inter-thread interleaving

Memory Model: Programmer’s view

e Data race

* Concurrent access to memory location, one of which is a write

e Sequential consistency (SC)

* No intra-thread reordering, only inter-thread interleaving

¢ DRF=SC:primary tool in concurrent programmers arsenal

* If a program has no races (under SC semantics), then the program has SC
semantics

*x Well-synchronised programs do not have surprising behaviours

Memory Model: Programmer’s view

e Data race

* Concurrent access to memory location, one of which is a write
e Sequential consistency (SC)
* No intra-thread reordering, only inter-thread interleaving

¢ DRF=SC:primary tool in concurrent programmers arsenal

* If a program has no races (under SC semantics), then the program has SC
semantics

*x Well-synchronised programs do not have surprising behaviours

e Qur observation: DRF-SC is too weak for programmers

C/C++ Memory Model

o C/C++ (ClI) memory model offers DRF-SC, but..

C/C++ Memory Model

o C/C++ (ClI) memory model offers DRF-SC, but..

* If a program has races (even benign), then the behaviour is undefined!

C/C++ Memory Model

o C/C++ (ClI) memory model offers DRF-SC, but..

* If a program has races (even benign), then the behaviour is undefined!

*x Most C/C++ programs have races => most C/C++ programs are
allowed to crash and burn

C/C++ Memory Model

o C/C++ (ClI) memory model offers DRF-SC, but..
* If a program has races (even benign), then the behaviour is undefined!

*x Most C/C++ programs have races => most C/C++ programs are
allowed to crash and burn

e Races on unrelated locations can affect behaviour

C/C++ Memory Model

o C/C++ (ClI) memory model offers DRF-SC, but..

* If a program has races (even benign), then the behaviour is undefined!

*x Most C/C++ programs have races => most C/C++ programs are
allowed to crash and burn

e Races on unrelated locations can affect behaviour

* We would like a memory model where data races are bounded in
space

Java Memory Model

¢ |ava also offers DRF-SC

*x Unlike C++, type safety necessitates defined behaviour under races

10

Java Memory Model

¢ |ava also offers DRF-SC

*x Unlike C++, type safety necessitates defined behaviour under races

* No data races in space, but allows races in time...

10

Java Memory Model

¢ |ava also offers DRF-SC

*x Unlike C++, type safety necessitates defined behaviour under races

* No data races in space, but allows races in time...

int a;
volatile bool flag;

10

Java Memory Model

¢ |ava also offers DRF-SC

*x Unlike C++, type safety necessitates defined behaviour under races

* No data races in space, but allows races in time...

int a;
volatile bool flag;

Thread 1
a = 1;
flag = true;

10

Java Memory Model

¢ |ava also offers DRF-SC

*x Unlike C++, type safety necessitates defined behaviour under races

* No data races in space, but allows races in time...

int a;
volatile bool flag;

Thread 1 Thread 2

a = 1; a = 2;

flag = true; if (flag) {
// no race here
rl = a;
r2 = a;

10

Java Memory Model

¢ |ava also offers DRF-SC

*x Unlike C++, type safety necessitates defined behaviour under races

* No data races in space, but allows races in time...

int a;
volatile bool flag;

Thread 1 Thread 2
a = 1; a = 2;
flag = true; if (flag) {
// no race here
rl = a;
r2 = a;
}

rl == 1 && r2 == 2 is allowed

10

Java Memory Model

¢ |ava also offers DRF-SC

*x Unlike C++, type safety necessitates defined behaviour under races

* No data races in space, but allows races in time...

int a;
volatile bool flag;

Thread 1 Thread 2
a = 1; a = 2;
flag = true; if (flag) {
// no race here

rl = a;
r2 = a;

Races in the past }
affects future rl == 1 && r2 == 2 is allowed

10

Java Memory Model

e Future data races can affect the past

Java Memory Model

e Future data races can affect the past

Class C { int x; }

11

Java Memory Model

e Future data races can affect the past

Class C { int x; }

Thread 1

C c = new C();
c.X = 42;
rl = c.x;

Can assert (r1 == 42) fail?

11

Java Memory Model

e Future data races can affect the past

Class C { int x; }
C g;

Thread 1

C c = new C();
c.X = 42;

rl = c.X;

g = C;

Thread 2
g.x = 7;

Can assert (r1 == 42) fail?

12

Java Memory Model

e Future data races can affect the past

Class C { int x; }

C g;
threacs Thread 2
C c = new C(); < = 7.
c.x = 42; g !
g = c;

rl = c.x;

13

Java Memory Model

e Future data races can affect the past

Class C { int x; }

C g;
Thread 1 Thread 2
C c = new C(); _
C.X = 427*///////’/////////-g.x = 7;
g = C;
rl = c.x;

assert (r1 == 42) fails

13

Java Memory Model

e Future data races can affect the past

Class C { int x; }

C g;
Thread 1 Thread 2
C c = new C(); _
C.X = 427*///////’/////////-g.x = 7;
g = C;
rl = c.x;

assert (r1 == 42) fails

®* We would like a memory model that bounds data races in time

13

OCaml Memory Model: Goal

OCaml Memory Model: Goal

e [anguage memory models should specify behaviours under data
races

14

OCaml Memory Model: Goal

e [anguage memory models should specify behaviours under data
races

* Not because they are useful

14

OCaml Memory Model: Goal

e [anguage memory models should specify behaviours under data
races

* Not because they are useful

* But to limit their damage

14

OCaml Memory Model: Goal

e [anguage memory models should specify behaviours under data
races

* Not because they are useful

* But to limit their damage

If | read a variable twice and there are no concurrent writes,
then both reads return the same value

14

OCaml MM: Contributions

e Memory Model Desiderata

*

Not too weak (good for
programmers)

Not too strong (good for
hardware)

Admits optimisations (good for
compilers)

Mathematically rigorous (good for
verification)

15

e OCaml Memory model

* Local version of DRF-SC — key
discovery

* Free on x86, 0.6% overhead on
ARM, 2.6% overhead on POWER

* Allows most common compiler
optimisations

* Simple operational and axiomatic
semantics + proved soundness
(optimization + to-hardware)

Local DRF

Local DRF

e |f there are no data races,

Local DRF

e |f there are no data races,

* on some variables (space)

16

Local DRF

e |f there are no data races,

* on some variables (space)

* in some interval (time)

16

Local DRF

e |f there are no data races,

* on some variables (space)

* in some interval (time)

* then the program has SC behaviour on those variables in that time interval

16

Local DRF

e |f there are no data races,

* on some variables (space)

* in some interval (time)

* then the program has SC behaviour on those variables in that time interval

e Space = {all variables} && Time = whole execution => DRF-SC

16

Local DRF

¢ |[f there are no data races,
* on some variables (space)
* in some interval (time)
* then the program has SC behaviour on those variables in that time interval

e Space = {all variables} && Time = whole execution => DRF-SC

Flag is atomic

Thread 1 Thread 2

msg = 1; b =1;

b = 0; 1f (Flag) {
Flag = 1; r = msqg;

}

16

Local DRF

e |f there are no data races,

* on some variables (space)
* in some interval (time)

* then the program has SC behaviour on those variables in that time interval

e Space = {all variables} && Time = whole execution => DRF-SC

Flag is atomic

Thread 1 Thread 2

msg = 1; .- »b = 1;

b = 0; «-"77" 1f (Flag) {
Flag = 1; r = msqg;

}

16

Local DRF

e |f there are no data races,

* on some variables (space)
* in some interval (time)

* then the program has SC behaviour on those variables in that time interval

e Space = {all variables} && Time = whole execution => DRF-SC

Flag is atomic

Thread 1 Thread 2

msg = 1;

b = (Flag) A
Flag = 1; r = msqg;

Due to local DRF, despite the race on b, message-passing idiom still works!

16

Formal Memory Model

Formal Memory Model

e Most programmers can live with local DRF

* Experts demand more (concurrency libraries, high-performance code, etc.)

17

Formal Memory Model

e Most programmers can live with local DRF

* Experts demand more (concurrency libraries, high-performance code, etc.)

e Simple operational semantics that captures all of the allowed
behaviours

17

Formal Memory Model

e Most programmers can live with local DRF

* Experts demand more (concurrency libraries, high-performance code, etc.)

e Simple operational semantics that captures all of the allowed

behaviours
_ a:read H(t)
(READ-NA) H;F » H:F
e, if F(a) < t,t € dom(H)
g e
SILENT writ
() (S, Pli > (F,e)]) = (S, Pli> (F,e")]) (WriTk-NA) H:F —"Y » H[te> x];Fla t]

it F(a) < t, t ¢ dom(H)

: read

. jf’i o S(F): F £:¢h o p (READ-AT) (Fp,x); F RIS (Fp,x); FAUF
(MEMORY) ’ ’ A: write x
(S, Pli = (F,e)]y = (S[¢ + C'], P[i = (F', ¢")]) (WRITE-AT) (Fp,y)i F » (FAUF,x);FoUF
(b) Machine steps (¢) Memory operations
P y op

17

Visualising operational semantics

Non atomic

time

Histories \

18

Visualising operational semantics

Non atomic

time

Histories \

Thread 1

18

Visualising operational semantics

Non atomic

time

Histories \

Thread 1

read(b)

18

Visualising operational semantics

Non atomic

Thread 1

read(b) -> 3/4/5

18

Visualising operational semantics

Non atomic

time

Histories \

Thread 1

read(b) -> 3/4/5 write(c,10)

18

Visualising operational semantics

Non atomic

time

Histories \

Thread 1

read(b) -> 3/4/5 write(c,10)

19

Visualising operational semantics

Non atomic Atomic

i 10

time

Histories \

Thread 1

read(b) -> 3/4/5 write(c,10)

19

Visualising operational semantics

Non atomic Atomic

i 10

time

Histories \

Thread 1

read(b) -> 3/4/5 write(c,10)

19

Visualising operational semantics

Non atomic Atomic

i 10

Thread 1

read(B)

20

Visualising operational semantics

Non atomic Atomic

i 10

Thread 1

read(B) -> 5

20

Visualising operational semantics

Non atomic Atomic

i 10

Thread 1

read(B) -> 5

21

Visualising operational semantics

Non atomic Atomic

i 10

time

Histories \

Thread 1

read(B) -> 5 write (A,20)

21

Visualising operational semantics

Non atomic Atomic

i 20

time

Histories \

Thread 1

read(B) -> 5 write (A,20)

22

Formalizing Local DRF

T, T, T,
Trace =My —> M; — ... — M,

Formalizing Local DRF

T, T, T,
Trace =My - M; — ... — M,

. Machine state =
. State of all threads +

23

Formalizing Local DRF

T, T, T,
Trace X =My — M; — .).. — M,

Machine state=
. State of all threads + :

23

Formalizing Local DRF

T; I I
Trace X =My — M; — .).. — M,

Machine state = !
. State of all threads +

e Pick a set of L of locations

23

Formalizing Local DRF

T, T, T,
Trace X =My — M; — .).. — M,

Machine state = !
. State of all threads +

23

Formalizing Local DRF

I; T, Iy
Trace X =My — M; — .).. — M,

Machine state = !
. State of all threads +

® Pick a machine state M where there are no ongoing races in L

* M is said to be L-stable

23

Formalizing Local DRF

T, T, T,
Trace X =My — M; — ... — M,

Machine state = !
. State of all threads +

® Pick a machine state M where there are no ongoing races in L

* M is said to be L-stable

® |ocal DRF Theorem

* Starting from an L-stable state M, until the next race on any location in L
under SC semantics, the program has SC semantics

23

Formalizing Local DRF

T, T, T,
Trace X =My — M; — ... — M,

Machine state = !
. State of all threads +

® Pick a machine state M where there are no ongoing races in L

* M is said to be L-stable iy :

® |ocal DRFTheorem f

* Starting from an L-stable state M, until the next race on any location in L
under SC semantics, the program has SC semantics

23

Performance Implication

e |ocal DRF prohibits certain hardware and software
optimisations

* Preserve load-to-store ordering

24

Performance Implication

e |ocal DRF prohibits certain hardware and software
optimisations

* Preserve load-to-store ordering

¢ No compiler optimisation that reorders load-to-store ordering
is allowed

24

Performance Implication

e |ocal DRF prohibits certain hardware and software
optimisations

* Preserve load-to-store ordering

¢ No compiler optimisation that reorders load-to-store ordering
is allowed

rl = a; L rl = aj
— o Redundant store ehmmatmn\
(4

4
a =rl; .

O
o
Il
Q

24

Performance Implication

e |ocal DRF prohibits certain hardware and software
optimisations

* Preserve load-to-store ordering

¢ No compiler optimisation that reorders load-to-store ordering
is allowed

rl = aj L rl = a;
b = o Redundant store ehmmatmn\

4
a =rl; .

o
Il
Q

24

Performance Implication

e |ocal DRF prohibits certain hardware and software
optimisations

* Preserve load-to-store ordering

¢ No compiler optimisation that reorders load-to-store ordering
is allowed

= C3; N Cy
a =rl; 7

rl = a; L rl = aj
g b Redundant store ehmmatmn\ b =

24

Performance Implication

e |ocal DRF prohibits certain hardware and software
optimisations

* Preserve load-to-store ordering

¢ No compiler optimisation that reorders load-to-store ordering
is allowed

rl = aj; o rl = aj;
g b = c; Redund4git stordidlimination = c;

a =rl;

o

24

Performance Implication

e |ocal DRF prohibits certain hardware and software
optimisations

* Preserve load-to-store ordering

¢ No compiler optimisation that reorders load-to-store ordering
is allowed

rl = aj S rl = aj;
g b = c; Redund4git stordidlimination = c;

a =rl;

o

e ARM & POWER do not preserve load-to-store ordering

* Insert necessary synchronisation between every mutable load and store

* What is the performance cost?

24

Performance

-
™

B Branch after mutable load (BAL)
B “dmb Id” before assignment (FBS)

' Strong release/acquire (SRA)

™

I
[4V] ~—

Sl | PazI[BWLION

n
o

o

(b) Performance on AArch64: The baseline is trunk OCaml (snapshot on 2017-09-18)

25

Performance

-
™

B Branch after mutable load (BAL)
B “dmb Id” before assignment (FBS)

' Strong release/acquire (SRA)

™

I
4V} ~—

Sl | PazI[BWLION

n
o

o

(b) Performance on AArch64: The baseline is trunk OCaml (snapshot on 2017-09-18)

0.6% overhead on AArch64 (ARMv8)

25

Performance

-
™

B Branch after mutable load (BAL)
B “dmb Id” before assignment (FBS)

' Strong release/acquire (SRA)

™

I
[4V] ~—

Sl | PazI[BWLION

n
o

o

(b) Performance on AArch64: The baseline is trunk OCaml (snapshot on 2017-09-18)

Free on x86, 2.6% on POWER

25

0.6% overhead on AArch64 (ARMv8)

Summary

e OCaml memory model

* Balances comprehensibility (Local DRF theorem) and Performance (free on
x86, 0.6% on ARMv8, 2.6% on POWER)

*x Allows common compiler optimisations

*x Compilation + Optimisations proved sound

20

Summary

e OCaml memory model

* Balances comprehensibility (Local DRF theorem) and Performance (free on
x86, 0.6% on ARMv8, 2.6% on POWER)

*x Allows common compiler optimisations

*x Compilation + Optimisations proved sound

® Proposed as the memory model for OCaml

* Also suitable for other safe languages (Swift, WebAssembly, JavaScript)

20

