
Bounding Data Races in
Space and Time

KC Sivaramakrishnan

University of
Cambridge

OCaml Labs Darwin College,
Cambridge

1851 Royal
Commission

�1

Multicore OCaml

!2

Multicore OCaml
• OCaml is an industrial-strength, functional programming

language

★ Projects: MirageOS unikernel, Coq proof assistant, F* programming language

★ Companies: Facebook (Hack, Flow, Infer, Reason), Microsoft (Everest, F*),
JaneStreet (all trading & support systems), Docker (Docker for Mac &
Windows), Citrix (XenStore)

!2

Multicore OCaml
• OCaml is an industrial-strength, functional programming

language

★ Projects: MirageOS unikernel, Coq proof assistant, F* programming language

★ Companies: Facebook (Hack, Flow, Infer, Reason), Microsoft (Everest, F*),
JaneStreet (all trading & support systems), Docker (Docker for Mac &
Windows), Citrix (XenStore)

• No multicore support!

!2

Multicore OCaml
• OCaml is an industrial-strength, functional programming

language

★ Projects: MirageOS unikernel, Coq proof assistant, F* programming language

★ Companies: Facebook (Hack, Flow, Infer, Reason), Microsoft (Everest, F*),
JaneStreet (all trading & support systems), Docker (Docker for Mac &
Windows), Citrix (XenStore)

• No multicore support!

• Multicore OCaml

★ Native support for concurrency and parallelism in OCaml

★ Lead from OCaml Labs + (JaneStreet, Microsoft Research, INRIA).

!2

Modelling Memory

!3

Modelling Memory
• How do you reason about access to memory?

!3

Modelling Memory
• How do you reason about access to memory?

★ Spoiler: No single global sequentially consistent memory

!3

Modelling Memory
• How do you reason about access to memory?

★ Spoiler: No single global sequentially consistent memory

• Modern multicore processors reorder instructions for
performance

!3

Modelling Memory
• How do you reason about access to memory?

★ Spoiler: No single global sequentially consistent memory

• Modern multicore processors reorder instructions for
performance

Thread 1

r1 = b

Thread 2

r2 = a

Initially a = 0 && b =0

r1 == 0 && r2 ==0 ???

a = 1 b = 1

!3

Modelling Memory
• How do you reason about access to memory?

★ Spoiler: No single global sequentially consistent memory

• Modern multicore processors reorder instructions for
performance

Thread 1

r1 = b

Thread 2

r2 = a

Initially a = 0 && b =0

r1 == 0 && r2 ==0 ???

Allowed under x86, ARM, POWER

a = 1 b = 1

!3

Modelling Memory
• How do you reason about access to memory?

★ Spoiler: No single global sequentially consistent memory

• Modern multicore processors reorder instructions for
performance

Thread 1

r1 = b

Thread 2

r2 = a

Initially a = 0 && b =0

r1 == 0 && r2 ==0 ???

Allowed under x86, ARM, POWER

a = 1 b = 1

Write buffering

!3

Modelling Memory
• How do you reason about access to memory?

★ Spoiler: No single global sequentially consistent memory

• Modern multicore processors reorder instructions for
performance

Thread 1

r1 = b

Thread 2

r2 = a

Initially a = 0 && b =0

r1 == 0 && r2 ==0 ???

Allowed under x86, ARM, POWER

a = 1 b = 1

Write buffering

!4

Modelling Memory
• Compilers optimisations also reorder memory access

instructions

!5

Modelling Memory
• Compilers optimisations also reorder memory access

instructions

!5

Thread 1
r1 = a * 2

r2 = b + 1

r3 = a * 2

Thread 1

r1 = a * 2

r2 = b + 1

r3 = r1

CSE��!

Modelling Memory
• Compilers optimisations also reorder memory access

instructions

!5

Thread 1
r1 = a * 2

r2 = b + 1

r3 = a * 2

Thread 1

r1 = a * 2

r2 = b + 1

r3 = r1
Initially

&a == &b
&&

a = b = 1

CSE��!

Modelling Memory
• Compilers optimisations also reorder memory access

instructions

!5

Thread 1
r1 = a * 2

r2 = b + 1

r3 = a * 2

Thread 1

r1 = a * 2

r2 = b + 1

r3 = r1
Initially

&a == &b
&&

a = b = 1

Thread 2

b = 0

CSE��!

Modelling Memory
• Compilers optimisations also reorder memory access

instructions

!5

Thread 1
r1 = a * 2

r2 = b + 1

r3 = a * 2

Thread 1

r1 = a * 2

r2 = b + 1

r3 = r1
Initially

&a == &b
&&

a = b = 1

Thread 2

b = 0
r1 == 2 &&

r2 == 0 &&

r3 == 0

CSE��!

Modelling Memory
• Compilers optimisations also reorder memory access

instructions

!5

Thread 1
r1 = a * 2

r2 = b + 1

r3 = a * 2

Thread 1

r1 = a * 2

r2 = b + 1

r3 = r1
Initially

&a == &b
&&

a = b = 1

Thread 2

b = 0
r1 == 2 &&

r2 == 0 &&

r3 == 0

r1 == 2 &&

r2 == 0 &&

r3 == 2

CSE��!

Modelling Memory
• Compilers optimisations also reorder memory access

instructions

!6

Thread 1
r1 = a * 2

r2 = b + 1

r3 = a * 2

Thread 1

r1 = a * 2

r2 = b + 1

r3 = r1

Thread 2

b = 0
r1 == 2 &&

r2 == 0 &&

r3 == 0

r1 == 2 &&

r2 == 0 &&

r3 == 2

Initially
&a == &b

&&
a = b = 1

CSE��!

Memory Model
• Unambiguous specification of program outcomes

★ More than just thread interleavings

!7

Memory model

OCaml compiler

Memory Model
• Unambiguous specification of program outcomes

★ More than just thread interleavings

• Memory Model Desiderata

★ Not too weak (good for programmers)

★ Not too strong (good for hardware)

★ Admits optimisations (good for compilers)

★ Mathematically rigorous (good for verification)

!7

Memory model

OCaml compiler

Memory Model
• Unambiguous specification of program outcomes

★ More than just thread interleavings

• Memory Model Desiderata

★ Not too weak (good for programmers)

★ Not too strong (good for hardware)

★ Admits optimisations (good for compilers)

★ Mathematically rigorous (good for verification)

• Difficult to get right

★ C/C++11 memory model is flawed

★ Java memory model is flawed

★ Several papers every year in top PL conferences
proposing / fixing models

!7

Memory model

OCaml compiler

Memory Model: Programmer’s view

!8

Memory Model: Programmer’s view

• Data race

★ Concurrent access to memory location, one of which is a write

!8

Memory Model: Programmer’s view

• Data race

★ Concurrent access to memory location, one of which is a write

• Sequential consistency (SC)

★ No intra-thread reordering, only inter-thread interleaving

!8

Memory Model: Programmer’s view

• Data race

★ Concurrent access to memory location, one of which is a write

• Sequential consistency (SC)

★ No intra-thread reordering, only inter-thread interleaving

• DRF-SC: primary tool in concurrent programmers arsenal

★ If a program has no races (under SC semantics), then the program has SC
semantics

★ Well-synchronised programs do not have surprising behaviours

!8

Memory Model: Programmer’s view

• Data race

★ Concurrent access to memory location, one of which is a write

• Sequential consistency (SC)

★ No intra-thread reordering, only inter-thread interleaving

• DRF-SC: primary tool in concurrent programmers arsenal

★ If a program has no races (under SC semantics), then the program has SC
semantics

★ Well-synchronised programs do not have surprising behaviours

• Our observation: DRF-SC is too weak for programmers

!8

C/C++ Memory Model
• C/C++ (C11) memory model offers DRF-SC, but..

!9

C/C++ Memory Model
• C/C++ (C11) memory model offers DRF-SC, but..

★ If a program has races (even benign), then the behaviour is undefined!

!9

C/C++ Memory Model
• C/C++ (C11) memory model offers DRF-SC, but..

★ If a program has races (even benign), then the behaviour is undefined!

★ Most C/C++ programs have races => most C/C++ programs are
allowed to crash and burn

!9

C/C++ Memory Model
• C/C++ (C11) memory model offers DRF-SC, but..

★ If a program has races (even benign), then the behaviour is undefined!

★ Most C/C++ programs have races => most C/C++ programs are
allowed to crash and burn

• Races on unrelated locations can affect behaviour

!9

C/C++ Memory Model
• C/C++ (C11) memory model offers DRF-SC, but..

★ If a program has races (even benign), then the behaviour is undefined!

★ Most C/C++ programs have races => most C/C++ programs are
allowed to crash and burn

• Races on unrelated locations can affect behaviour

★ We would like a memory model where data races are bounded in
space

!9

• Java also offers DRF-SC

★ Unlike C++, type safety necessitates defined behaviour under races

!10

Java Memory Model

• Java also offers DRF-SC

★ Unlike C++, type safety necessitates defined behaviour under races

★ No data races in space, but allows races in time…

!10

Java Memory Model

• Java also offers DRF-SC

★ Unlike C++, type safety necessitates defined behaviour under races

★ No data races in space, but allows races in time…

!10

Java Memory Model

int a;
volatile bool flag;

• Java also offers DRF-SC

★ Unlike C++, type safety necessitates defined behaviour under races

★ No data races in space, but allows races in time…

!10

Java Memory Model

int a;
volatile bool flag;

Thread 1
a = 1;
flag = true;

• Java also offers DRF-SC

★ Unlike C++, type safety necessitates defined behaviour under races

★ No data races in space, but allows races in time…

!10

Java Memory Model

int a;
volatile bool flag;

Thread 1
a = 1;
flag = true;

Thread 2
a = 2;
if (flag) {
 // no race here
 r1 = a;
 r2 = a;
}

• Java also offers DRF-SC

★ Unlike C++, type safety necessitates defined behaviour under races

★ No data races in space, but allows races in time…

!10

Java Memory Model

int a;
volatile bool flag;

Thread 1
a = 1;
flag = true;

Thread 2
a = 2;
if (flag) {
 // no race here
 r1 = a;
 r2 = a;
}

r1 == 1 && r2 == 2 is allowed

• Java also offers DRF-SC

★ Unlike C++, type safety necessitates defined behaviour under races

★ No data races in space, but allows races in time…

!10

Java Memory Model

int a;
volatile bool flag;

Thread 1
a = 1;
flag = true;

Thread 2
a = 2;
if (flag) {
 // no race here
 r1 = a;
 r2 = a;
}

r1 == 1 && r2 == 2 is allowed
Races in the past

affects future

Java Memory Model
• Future data races can affect the past

!11

Java Memory Model
• Future data races can affect the past

!11

Class C { int x; }

Thread 1
C c = new C();
c.x = 42;
r1 = c.x;

Java Memory Model
• Future data races can affect the past

!11

Class C { int x; }

 Can assert (r1 == 42) fail?

Java Memory Model
• Future data races can affect the past

!12

Class C { int x; }
C g;

Thread 1
C c = new C();
c.x = 42;

r1 = c.x;
g = c;

Thread 2
g.x = 7;

 Can assert (r1 == 42) fail?

Java Memory Model
• Future data races can affect the past

!13

Class C { int x; }
C g;

Thread 1
C c = new C();
c.x = 42;

r1 = c.x;
g = c;

Thread 2
g.x = 7;

Java Memory Model
• Future data races can affect the past

!13

Class C { int x; }
C g;

Thread 1
C c = new C();
c.x = 42;

r1 = c.x;
g = c;

Thread 2
g.x = 7;

assert (r1 == 42) fails

Java Memory Model
• Future data races can affect the past

!13

Class C { int x; }
C g;

Thread 1
C c = new C();
c.x = 42;

r1 = c.x;
g = c;

Thread 2
g.x = 7;

assert (r1 == 42) fails

• We would like a memory model that bounds data races in time

OCaml Memory Model: Goal

!14

• Language memory models should specify behaviours under data
races

OCaml Memory Model: Goal

!14

• Language memory models should specify behaviours under data
races

★ Not because they are useful

OCaml Memory Model: Goal

!14

• Language memory models should specify behaviours under data
races

★ Not because they are useful

★ But to limit their damage

OCaml Memory Model: Goal

!14

• Language memory models should specify behaviours under data
races

★ Not because they are useful

★ But to limit their damage

OCaml Memory Model: Goal

!14

If I read a variable twice and there are no concurrent writes,
then both reads return the same value

OCaml MM: Contributions

!15

• Memory Model Desiderata

★ Not too weak (good for
programmers)

★ Not too strong (good for
hardware)

★ Admits optimisations (good for
compilers)

★ Mathematically rigorous (good for
verification)

• OCaml Memory model

★ Local version of DRF-SC — key
discovery

★ Free on x86, 0.6% overhead on
ARM, 2.6% overhead on POWER

★ Allows most common compiler
optimisations

★ Simple operational and axiomatic
semantics + proved soundness
(optimization + to-hardware)

Local DRF

!16

Local DRF
• If there are no data races,

!16

Local DRF
• If there are no data races,

★ on some variables (space)

!16

Local DRF
• If there are no data races,

★ on some variables (space)

★ in some interval (time)

!16

Local DRF
• If there are no data races,

★ on some variables (space)

★ in some interval (time)

★ then the program has SC behaviour on those variables in that time interval

!16

Local DRF
• If there are no data races,

★ on some variables (space)

★ in some interval (time)

★ then the program has SC behaviour on those variables in that time interval

• Space = {all variables} && Time = whole execution => DRF-SC

!16

Local DRF
• If there are no data races,

★ on some variables (space)

★ in some interval (time)

★ then the program has SC behaviour on those variables in that time interval

• Space = {all variables} && Time = whole execution => DRF-SC

!16

Thread 1
msg = 1;
b = 0;
Flag = 1;

Thread 2
b = 1;
if (Flag) {
 r = msg;
}

Flag is atomic

Local DRF
• If there are no data races,

★ on some variables (space)

★ in some interval (time)

★ then the program has SC behaviour on those variables in that time interval

• Space = {all variables} && Time = whole execution => DRF-SC

!16

Thread 1
msg = 1;
b = 0;
Flag = 1;

Thread 2
b = 1;
if (Flag) {
 r = msg;
}

Flag is atomic

Local DRF
• If there are no data races,

★ on some variables (space)

★ in some interval (time)

★ then the program has SC behaviour on those variables in that time interval

• Space = {all variables} && Time = whole execution => DRF-SC

!16

Thread 1
msg = 1;
b = 0;
Flag = 1;

Thread 2
b = 1;
if (Flag) {
 r = msg;
}

Flag is atomic

Due to local DRF, despite the race on b, message-passing idiom still works!

Formal Memory Model

!17

Formal Memory Model

!17

• Most programmers can live with local DRF

★ Experts demand more (concurrency libraries, high-performance code, etc.)

Formal Memory Model

!17

• Most programmers can live with local DRF

★ Experts demand more (concurrency libraries, high-performance code, etc.)

• Simple operational semantics that captures all of the allowed
behaviours

Formal Memory Model

!17

• Most programmers can live with local DRF

★ Experts demand more (concurrency libraries, high-performance code, etc.)

• Simple operational semantics that captures all of the allowed
behaviours

Visualising operational semantics

!18

Non atomic

a

b

c

1 2

3 4

5 6 7

Histories time��!

5

Visualising operational semantics

!18

Non atomic

a

b

c

1 2

3 4

5 6 7

Thread 1 Thread 2

Histories time��!

5

Visualising operational semantics

!18

Non atomic

a

b

c

1 2

3 4

5 6 7

Thread 1 Thread 2

Histories

read(b)

time��!

5

Visualising operational semantics

!18

Non atomic

a

b

c

1 2

3 4

5 6 7

Thread 1 Thread 2

Histories

read(b) -> 3/4/5

time��!

5

Visualising operational semantics

!18

Non atomic

a

b

c

1 2

3 4

5 6 7

Thread 1 Thread 2

Histories

read(b) -> 3/4/5 write(c,10)

time��!

5

Visualising operational semantics

!19

Non atomic

a

b

c

1 2

3 4

5 6 7

Thread 1 Thread 2

Histories

read(b) -> 3/4/5 write(c,10)

10

time��!

5

Visualising operational semantics

!19

Non atomic

a

b

c

1 2

3 4

5 6 7

Thread 1 Thread 2

Histories

read(b) -> 3/4/5 write(c,10)

10

time��!

Atomic

A

B

10

5
5

Visualising operational semantics

!19

Non atomic

a

b

c

1 2

3 4

5 6 7

Thread 1 Thread 2

Histories

read(b) -> 3/4/5 write(c,10)

10

time��!

Atomic

A

B

10

5
5

Visualising operational semantics

!20

Non atomic

a

b

c

1 2

3 4

5 6 7

Thread 1 Thread 2

Histories

read(B)

10

time��!

Atomic

A

B

10

5
5

Visualising operational semantics

!20

Non atomic

a

b

c

1 2

3 4

5 6 7

Thread 1 Thread 2

Histories

read(B)

10

time��!

Atomic

A

B

10

5

-> 5

5

Visualising operational semantics

!21

Non atomic

a

b

c

1 2

3 4

5 6 7

Thread 1 Thread 2

Histories

read(B)

10

time��!

Atomic

A

B

10

5

-> 5

5

Visualising operational semantics

!21

Non atomic

a

b

c

1 2

3 4

5 6 7

Thread 1 Thread 2

Histories

read(B)

10

time��!

Atomic

A

B

10

5

-> 5 write (A,20)

5

Visualising operational semantics

!22

Non atomic

a

b

c

1 2

3 4

5 6 7

Thread 1 Thread 2

Histories

read(B)

10

time��!

Atomic

A

B

20

5

-> 5 write (A,20)

5

Formalizing Local DRF

!23

Trace

Formalizing Local DRF

!23

Trace

Machine state =
State of all threads +

Heap

Formalizing Local DRF

!23

Trace

Machine state =
State of all threads +

Heap

Memory
access

Formalizing Local DRF

!23

Trace

Machine state =
State of all threads +

Heap

Memory
access

• Pick a set of L of locations

Formalizing Local DRF

!23

Trace

Machine state =
State of all threads +

Heap

Memory
access

• Pick a set of L of locations Space

Formalizing Local DRF

!23

Trace

Machine state =
State of all threads +

Heap

Memory
access

• Pick a set of L of locations

• Pick a machine state M where there are no ongoing races in L

★ M is said to be L-stable

Space

Formalizing Local DRF

!23

Trace

Machine state =
State of all threads +

Heap

Memory
access

• Pick a set of L of locations

• Pick a machine state M where there are no ongoing races in L

★ M is said to be L-stable

• Local DRF Theorem

★ Starting from an L-stable state M, until the next race on any location in L
under SC semantics, the program has SC semantics

Space

Formalizing Local DRF

!23

Trace

Machine state =
State of all threads +

Heap

Memory
access

• Pick a set of L of locations

• Pick a machine state M where there are no ongoing races in L

★ M is said to be L-stable

• Local DRF Theorem

★ Starting from an L-stable state M, until the next race on any location in L
under SC semantics, the program has SC semantics

Space

Time

• Local DRF prohibits certain hardware and software
optimisations

★ Preserve load-to-store ordering

Performance Implication

!24

• Local DRF prohibits certain hardware and software
optimisations

★ Preserve load-to-store ordering

• No compiler optimisation that reorders load-to-store ordering
is allowed

Performance Implication

!24

• Local DRF prohibits certain hardware and software
optimisations

★ Preserve load-to-store ordering

• No compiler optimisation that reorders load-to-store ordering
is allowed

Performance Implication

!24

r1 = a;
b = c;
a = r1;

Redundant store elimination���������������!
r1 = a;
b = c;
;

• Local DRF prohibits certain hardware and software
optimisations

★ Preserve load-to-store ordering

• No compiler optimisation that reorders load-to-store ordering
is allowed

Performance Implication

!24

r1 = a;
b = c;
a = r1;

Redundant store elimination���������������!
r1 = a;
b = c;
;

• Local DRF prohibits certain hardware and software
optimisations

★ Preserve load-to-store ordering

• No compiler optimisation that reorders load-to-store ordering
is allowed

Performance Implication

!24

r1 = a;
b = c;
a = r1;

Redundant store elimination���������������!
r1 = a;
b = c;
;

• Local DRF prohibits certain hardware and software
optimisations

★ Preserve load-to-store ordering

• No compiler optimisation that reorders load-to-store ordering
is allowed

Performance Implication

!24

r1 = a;
b = c;
a = r1;

Redundant store elimination���������������!
r1 = a;
b = c;
;

• Local DRF prohibits certain hardware and software
optimisations

★ Preserve load-to-store ordering

• No compiler optimisation that reorders load-to-store ordering
is allowed

• ARM & POWER do not preserve load-to-store ordering

★ Insert necessary synchronisation between every mutable load and store

★ What is the performance cost?

Performance Implication

!24

r1 = a;
b = c;
a = r1;

Redundant store elimination���������������!
r1 = a;
b = c;
;

Performance

!25

Performance

!25

0.6% overhead on AArch64 (ARMv8)

Performance

!25

0.6% overhead on AArch64 (ARMv8) Free on x86, 2.6% on POWER

Summary
• OCaml memory model

★ Balances comprehensibility (Local DRF theorem) and Performance (free on
x86, 0.6% on ARMv8, 2.6% on POWER)

★ Allows common compiler optimisations

★ Compilation + Optimisations proved sound

!26

Summary
• OCaml memory model

★ Balances comprehensibility (Local DRF theorem) and Performance (free on
x86, 0.6% on ARMv8, 2.6% on POWER)

★ Allows common compiler optimisations

★ Compilation + Optimisations proved sound

• Proposed as the memory model for OCaml

★ Also suitable for other safe languages (Swift, WebAssembly, JavaScript)

!26

