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e No multicore support!

® Multicore OCaml
* Native support for and parallelism in OCaml

* Lead from OCaml Labs + (JaneStreet, Microsoft Research, INRIA).
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Modelling Memory

o Compilers optimisations also reorder memory access
Instructions

Thread 1 Thread 1
= * -
rl a 2 CSE rl = a * 2
r3 =a * 2 = b +1
r2 =b + 1 r3 = rl
Initially
&a == &b
& & :
o b =0
a b 1 rl == 2 && - rl == 2 &&
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Memory Model

Unambiguous specification of program outcomes
* More than just thread interleavings

Memory Model Desiderata

* Not too weak (good for programmers)

* Not too strong (good for hardware)

* Admits optimisations (good for compilers)

* Mathematically rigorous (good for verification)
Difficult to get right

*x C/C++1 1| memory model is flawed

* Java memory model is flawed

* Several papers every year in top PL conferences
proposing / fixing models
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Memory Model: Programmer’s view

e Data race

* Concurrent access to memory location, one of which is a write
e Sequential consistency (SC)
* No intra-thread reordering, only inter-thread interleaving

¢ DRF=SC:primary tool in concurrent programmers arsenal

* If a program has no races (under SC semantics), then the program has SC
semantics

*x  Well-synchronised programs do not have surprising behaviours

e Qur observation: DRF-SC is too weak for programmers
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o C/C++ (ClI) memory model offers DRF-SC, but..

* If a program has races (even benign), then the behaviour is undefined!

*x Most C/C++ programs have races => most C/C++ programs are
allowed to crash and burn

e Races on unrelated locations can affect behaviour

* We would like a memory model where data races are bounded in
space
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¢ |ava also offers DRF-SC

*x Unlike C++, type safety necessitates defined behaviour under races

* No data races in space, but allows races in time...

int a;
volatile bool flag;

Thread 1 Thread 2
a = 1; a = 2;
flag = true; if (flag) {
// no race here

rl = a;
r2 = a;

Races in the past }
affects future rl == 1 && r2 == 2 is allowed

10
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Java Memory Model

e Future data races can affect the past

Class C { int x; }

C g;
Thread 1 Thread 2
C c = new C(); _
C.X = 427*///////’/////////-g.x = 7;
g = C;
rl = c.x;

assert (r1 == 42) fails

®* We would like a memory model that bounds data races in time
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OCaml Memory Model: Goal

e [anguage memory models should specify behaviours under data
races

* Not because they are useful

* But to limit their damage

If | read a variable twice and there are no concurrent writes,
then both reads return the same value

14



OCaml MM: Contributions

e Memory Model Desiderata

*

Not too weak (good for
programmers)

Not too strong (good for
hardware)

Admits optimisations (good for
compilers)

Mathematically rigorous (good for
verification)

15

e OCaml Memory model

* Local version of DRF-SC — key
discovery

* Free on x86, 0.6% overhead on
ARM, 2.6% overhead on POWER

* Allows most common compiler
optimisations

* Simple operational and axiomatic
semantics + proved soundness
(optimization + to-hardware)
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Local DRF

e |f there are no data races,

* on some variables (space)
* in some interval (time)

* then the program has SC behaviour on those variables in that time interval

e Space = {all variables} && Time = whole execution => DRF-SC

Flag is atomic

Thread 1 Thread 2

msg = 1;

b = (Flag) A
Flag = 1; r = msqg;

Due to local DRF, despite the race on b, message-passing idiom still works!
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Formal Memory Model

e Most programmers can live with local DRF

* Experts demand more (concurrency libraries, high-performance code, etc.)

e Simple operational semantics that captures all of the allowed

behaviours
_ a:read H(t)
(READ-NA) H;F » H:F
e, if F(a) < t,t € dom(H)
g e
SILENT writ
( ) (S, Pli > (F,e)]) = (S, Pli> (F,e")]) (WriTk-NA) H:F —"Y » H[te> x];Fla t]

it F(a) < t, t ¢ dom(H)

: read

. jf’i o S(F): F £:¢h o p (READ-AT) (Fp,x); F RIS (Fp,x); FAUF
(MEMORY) ’ ’ A: write x
(S, Pli = (F,e)]y = (S[¢ + C'], P[i = (F', ¢")]) (WRITE-AT)  (Fp,y)i F » (FAUF,x);FoUF
(b) Machine steps (¢) Memory operations
P y op
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Visualising operational semantics

Non atomic Atomic

i 20

time

Histories \

Thread 1

read(B) -> 5 write (A,20)
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Performance Implication

e |ocal DRF prohibits certain hardware and software
optimisations

* Preserve load-to-store ordering

¢ No compiler optimisation that reorders load-to-store ordering
is allowed

rl = aj S rl = aj;
g b = c; Redund4git stordidlimination = c;

a =rl;

o

e ARM & POWER do not preserve load-to-store ordering

* Insert necessary synchronisation between every mutable load and store

*  What is the performance cost?

24
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Sl | PazI[BWLION
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(b) Performance on AArch64: The baseline is trunk OCaml (snapshot on 2017-09-18)

Free on x86, 2.6% on POWER
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Summary

e OCaml memory model

* Balances comprehensibility (Local DRF theorem) and Performance (free on
x86, 0.6% on ARMv8, 2.6% on POWER)

*x Allows common compiler optimisations

*x Compilation + Optimisations proved sound

® Proposed as the memory model for OCaml

* Also suitable for other safe languages (Swift, WebAssembly, JavaScript)
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