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Big Picture

Cache Coherent Intel SCC

Cluster of Machines

v No change to * No cache coherence e Distributed programming
programming model * Message passing buffers  RCCE, MPI, TCP/IP

v" Automatic memory * Shared memory
management * Software Managed

Cache-Coherence (SMC)

Can we program SCC as a cache
coherent machine?
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No Cache-Coherence Software Managed Cache

(Caching disabled) (Release Consistency)
Shared Memory
(off chip)
Private Private Private Private
Memory Memory Memory Memory
Core O Corel Core 2 Core 47

Message Passing Buffers
(On die, 8KB per core)

How to provide an efficient cache

coherence layer?
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SMP Programming Model for SCC

* Desirable properties

Single address space

Cache coherence

Sequential consistency
Automatic memory management

Utilize MPB for inter-core
communication

e Abstraction Layer — MultiMLton

VM
1. Anew GC to provide coherent and
managed global address space
2. Mapping first-class channel

communication on to the MPB

Program

SCC
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Programming Model
 MultiMLton

— Safety, scalability, ready for future manycore processors

— Parallel extension of MLton — a whole-program, optimizing
Standard ML compiler

— Immutability is default, mutations are explicit

 ACML — first-class message passing language

send (c, v)

v € recv (c)

* Automatic memory management
PURDUE



Coherent and Managed Address Space
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Coherent and Managed Address Space

* Requirements
1. Single global address space
2. Memory consistency
3. Independent core-local GC

Thread-local GC!

Private-nursery GC
Local heap GC
On-the-fly GC

Thread-specific heap GC
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Thread-local GC for SCC

Cached Shared Heap
(Immutable Objects)
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| |
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| | | |

I I I I
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Private I Private Private

| | |

Memory I | Memory I Memory I
CoreO CoreO Core O

* Consistency preservation
— No inter-coherence-domain pointers!

* Independent collection of local heaps
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Uncached Shared Cached Shared Uncached Shared Cached Shared
Heap Heap Heap Heap

Local Heap Local Heap

Mutator needs
Read Barriers!
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Maintaining Consistency

* Local heap objects are not shared by definition

* Uncached shared heap is consistent by construction
Cached shared heap (CSH) uses SMC

— Invalidation and flush has to be managed by the runtime

— Unwise to invalidate before every CSH read and flush after
every CSH write

Solution
— Key observation: CSH only stores immutable objects!

PURDUE
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Ensuring Consistency (Reads)

« Maintain MAX_CSH_ADDR at each core
e Assume values at ADDR < MAX_CSH_ADDR are up-to-date

Up-to-date Stale Up-to-date Stale
A A A A
—

)@: r'ead(x)> r
] |

MAX_CSH_ADDR X Invalidate MAX_CSH_ADDR == X
before read —
smcAcquire()
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Ensuring Consistency (Reads)

* No need to invalidate before read (y) where
y < MAX_CSH_ADDR

e Why?
1. Bump pointer allocation
2. All objects in CSH are immutable

y < MAX_CSH_ADDR -> Cache invalidated after y was created

PURDUE
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Ensuring Consistency (Writes)

* Writes to shared heap occurs only during
globalization

* Flush cache after globalization

— smcRelease()

PURDUE
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Garbage Collection

* Local heaps are collected independently!

e Shared heaps are collected after stopping all

of the cores
— Proceeds in SPMD fashion

— Each core prepares the shared heap reachable set
independently

— One core collects the shared heap

e Sansom’s dual mode GC
— A good fit for SCC!
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GC Evaluation

8 MultiMLton benchmarks
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Memory Access profile

— 89% local heap, 10% cached shared heap, 1% uncached shared

heap

— Almost all accesses are cacheable!

48% faster
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ACML Channels on MPB
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ACML Channels on MPB

* Challenges

— First-class objects

— Multiple senders/receivers can share the same
channel

— Unbounded
— Synchronous and asynchronous

* Channel Implementation

datatype ‘a chan = { : (‘a * unit thread) Q.t,
: (‘a thread) Q.t}

PURDUE
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Specializing Channel Communication

 Mutable messages must be globalized
— Must maintain consistency

* Immutable messages can utilize MPB
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* Channel in shared heap, message is
immutable and in local heap

Shared Heap Shared Heap

tl: send(c V)

//
Local Heap LocaIHeap Local Heap Local Heap

Core O Corel Core O Corel
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Shared Heap Shared Heap

‘G
o0

t2: recv(c)

©

Local Heap Local Heap Local Heap

Local Heap

CoreO Core 1l Core 1 interrupts CoreO Corel
core 0 to initiate
transfer over MPB
o PURDUE
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Message Passing Evaluation
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* On 48-cores, MPB only 9% faster

* |nter-core interrupt are expensive
— Context switches + idling cores

50

— Polling is not an option due to user-level threading

21
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Conclusion

e Cache coherent runtime for ML on SCC

— Thread-local GC

* Single address space, Cache coherence, Concurrent
collections

* Most memory accesses are cacheable

— Channel communication over MPB
* Inter-core interrupts are expensive

PURDUE
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Questions?

*) MultiMLton

http://multimlton.cs.purdue.edu
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Read Barrier

pointer readBarrier (pointer p) {
(getHeader (p) == FORWARDED) {
//A globalized object
p = *(pointer*)p;
1f (p > MAX_CSH_ADDR) {
smcAcquire ();
MAX_CSH_ADDR = p;

}

Ps
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Write Barrier

val writeBarrier (Ref r, Val v) {
(1sObjptr (v) && 1sInSharedHeap (r) &&

isInLocalHeap (v)) {
v = globalize (v);

smcRelease ();

Vs
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 Channel in shared heap, message is mutable
and in local heap

Shared Heap Shared Heap

Globalize the
mutable

message

Local Heap Local Heap
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* Channel in Shared heap, Primitive-valued
message

Shared Heap

Shared Heap

Remembered
Set

Local Heap

Local Heap
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* Channel in shared heap, message in shared
heap

Shared Heap

Shared Heap

e 0 tl:send(c,v)
o 10

(c
o

Local Heap Local Heap Local Heap
Core O Corel Corel
Remembered
Set
PURDUE
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Shared Heap

(v (<)
t2:recv(c)
O d o

Shared Heap

(v
O

O
g

Local Heap Local Heap Local Heap Local Heap
Core O Corel Core O Corel
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