A Coherent and Managed Runtime
for ML on the SCC

KC Sivaramakrishnan Lukasz Ziarek Suresh Jagannathan
Purdue University SUNY Buffalo Purdue University

PURDUE

Big Picture

Cache Coherent Intel SCC

Cluster of Machines

v No change to * No cache coherence e Distributed programming
programming model * Message passing buffers RCCE, MPI, TCP/IP

v" Automatic memory * Shared memory
management * Software Managed

Cache-Coherence (SMC)

Can we program SCC as a cache
coherent machine?

PURDUE

2 UNIVERSITY

No Cache-Coherence Software Managed Cache

(Caching disabled) (Release Consistency)
Shared Memory
(off chip)
Private Private Private Private
Memory Memory Memory Memory
Core O Corel Core 2 Core 47

Message Passing Buffers
(On die, 8KB per core)

How to provide an efficient cache

coherence layer?
PURDUE

3 UNIVERSITY

SMP Programming Model for SCC

* Desirable properties

Single address space

Cache coherence

Sequential consistency
Automatic memory management

Utilize MPB for inter-core
communication

e Abstraction Layer — MultiMLton

VM
1. Anew GC to provide coherent and
managed global address space
2. Mapping first-class channel

communication on to the MPB

Program

SCC

PURDUE

Programming Model
 MultiMLton

— Safety, scalability, ready for future manycore processors

— Parallel extension of MLton — a whole-program, optimizing
Standard ML compiler

— Immutability is default, mutations are explicit

 ACML — first-class message passing language

send (c, v)

v € recv (c)

* Automatic memory management
PURDUE

Coherent and Managed Address Space

PURDUE

Coherent and Managed Address Space

* Requirements
1. Single global address space
2. Memory consistency
3. Independent core-local GC

Thread-local GC!

Private-nursery GC
Local heap GC
On-the-fly GC

Thread-specific heap GC

PURDUE

Thread-local GC for SCC

Cached Shared Heap
(Immutable Objects)

I
I
|
: Heap
|
I
I

| |

| |

| |

| | | |

I I I I

. I 1 . | . |

Private I Private Private

| | |

Memory I | Memory I Memory I
CoreO CoreO Core O

* Consistency preservation
— No inter-coherence-domain pointers!

* Independent collection of local heaps

PURDUE

8 UNIVERSITY

Uncached Shared Cached Shared Uncached Shared Cached Shared
Heap Heap Heap Heap

Local Heap Local Heap

Mutator needs
Read Barriers!

PURDUE

9 UNIVERSITY

Maintaining Consistency

* Local heap objects are not shared by definition

* Uncached shared heap is consistent by construction
Cached shared heap (CSH) uses SMC

— Invalidation and flush has to be managed by the runtime

— Unwise to invalidate before every CSH read and flush after
every CSH write

Solution
— Key observation: CSH only stores immutable objects!

PURDUE

10

Ensuring Consistency (Reads)

« Maintain MAX_CSH_ADDR at each core
e Assume values at ADDR < MAX_CSH_ADDR are up-to-date

Up-to-date Stale Up-to-date Stale
A A A A
—

)@: r'ead(x)> r
] |

MAX_CSH_ADDR X Invalidate MAX_CSH_ADDR == X
before read —
smcAcquire()

11

Ensuring Consistency (Reads)

* No need to invalidate before read (y) where
y < MAX_CSH_ADDR

e Why?
1. Bump pointer allocation
2. All objects in CSH are immutable

y < MAX_CSH_ADDR -> Cache invalidated after y was created

PURDUE

12

Ensuring Consistency (Writes)

* Writes to shared heap occurs only during
globalization

* Flush cache after globalization

— smcRelease()

PURDUE

13

Garbage Collection

* Local heaps are collected independently!

e Shared heaps are collected after stopping all

of the cores
— Proceeds in SPMD fashion

— Each core prepares the shared heap reachable set
independently

— One core collects the shared heap

e Sansom’s dual mode GC
— A good fit for SCC!

o PURDUE

GC Evaluation

8 MultiMLton benchmarks

35 : 1
30 ®—® Partitioned
H-#8 Single
250 O
. : :
3200 e L e
o ‘ ‘
8_ 154 R ,,,,,,,,,,,,,, S
n] ‘]
9 e —
s A —
olE ; ; ; ;
0 10 20 30 40 50
Cores

Memory Access profile

— 89% local heap, 10% cached shared heap, 1% uncached shared

heap

— Almost all accesses are cacheable!

48% faster

PURDUE

15

ACML Channels on MPB

PURDUE

ACML Channels on MPB

* Challenges

— First-class objects

— Multiple senders/receivers can share the same
channel

— Unbounded
— Synchronous and asynchronous

* Channel Implementation

datatype ‘a chan = { : (‘a * unit thread) Q.t,
: (‘a thread) Q.t}

PURDUE

17

Specializing Channel Communication

 Mutable messages must be globalized
— Must maintain consistency

* Immutable messages can utilize MPB

PURDUE

* Channel in shared heap, message is
immutable and in local heap

Shared Heap Shared Heap

tl: send(c V)

//
Local Heap LocaIHeap Local Heap Local Heap

Core O Corel Core O Corel

PURDUE

19 UNIVERSITY

Shared Heap Shared Heap

‘G
o0

t2: recv(c)

©

Local Heap Local Heap Local Heap

Local Heap

CoreO Core 1l Core 1 interrupts CoreO Corel
core 0 to initiate
transfer over MPB
o PURDUE

UNIVERSITY

Message Passing Evaluation

35 f 1 1 1 J
&0 siv |

m-m meB |

0 10 20 30 40
Cores

* On 48-cores, MPB only 9% faster

* |nter-core interrupt are expensive
— Context switches + idling cores

50

— Polling is not an option due to user-level threading

21

PURDUE

Conclusion

e Cache coherent runtime for ML on SCC

— Thread-local GC

* Single address space, Cache coherence, Concurrent
collections

* Most memory accesses are cacheable

— Channel communication over MPB
* Inter-core interrupts are expensive

PURDUE

22

Questions?

*) MultiMLton

http://multimlton.cs.purdue.edu

PURDUE

23

Read Barrier

pointer readBarrier (pointer p) {
(getHeader (p) == FORWARDED) {
//A globalized object
p = *(pointer*)p;
1f (p > MAX_CSH_ADDR) {
smcAcquire ();
MAX_CSH_ADDR = p;

}

Ps

.o PURDUE

Write Barrier

val writeBarrier (Ref r, Val v) {
(1sObjptr (v) && 1sInSharedHeap (r) &&

isInLocalHeap (v)) {
v = globalize (v);

smcRelease ();

Vs

PURDUE

25

 Channel in shared heap, message is mutable
and in local heap

Shared Heap Shared Heap

Globalize the
mutable

message

Local Heap Local Heap

PURDUE

26 UNIVERSITY

* Channel in Shared heap, Primitive-valued
message

Shared Heap

Shared Heap

Remembered
Set

Local Heap

Local Heap

PURDUE

27 UNIVERSITY

* Channel in shared heap, message in shared
heap

Shared Heap

Shared Heap

e 0 tl:send(c,v)
o 10

(c
o

Local Heap Local Heap Local Heap
Core O Corel Corel
Remembered
Set
PURDUE

28 UNIVERSITY

Shared Heap

(v (<)
t2:recv(c)
O d o

Shared Heap

(v
O

O
g

Local Heap Local Heap Local Heap Local Heap
Core O Corel Core O Corel

29 UNIVERSITY

