
KC Sivaramakrishnan
kcsrk@cse.iitm.ac.in

Memory safety
& Programming Languages

1

Memory Safety
• A system is memory safe when it is

devoid of memory-related errors

‣ Buffer overflows

‣ Use-after-free

‣ Out-of-bounds access

‣ Null pointer deference

‣ …

• Memory unsafety leads to undefined
behaviours
‣ Opens doors to security vulnerabilities

2

¬Memory Safety ⟹ ¬Security

3

90% of Android vulnerabilities are
memory safety issues

80% of the exploited vulnerabilities of
known 0-days were memory safety issues

4

¬Memory Safety ⟹ ¬Security

Memory Safety Recommendations

5

1.Use memory-safe languages (primary)

2.Formally verify software (support)

3.Use secure hardware (support)

Memory Safety and Programming Languages
• Unsafe languages

‣ C, C++, Assembly, Objective-C

• Safe languages

‣ With the help of a garbage collector (GC) —

JavaScript, Python, Java, Go, OCaml, …

‣ Without a GC — Rust

• Unsafe parts of safe languages

‣ Unsafe Rust, unsafe package in Go, Obj in

OCaml

6

Safe-by-construction
programming language

industrial-strength, pragmatic, functional programming language

Functional core with imperative and object-
oriented features

Native (x86, Arm, Power, RISC-V),
JavaScript, WebAssembly

Industry Projects

7

20% of Wall Street
trade goes through

OCaml

OCaml eio

Rust Hyper

OCaml (Http/af + Lwt)

Go NetHttp
OCaml (cohttp + Lwt)

https://github.com/ocaml-multicore/eio

OCaml Performance — Web Server

8

https://github.com/ocaml-multicore/eio

How far can we push this?

9

How about an entire OS?

Code you
want to run

Code your
operating
system insists
you need!

Why? Monolithic OS Icebergs

Huge TCB ⟹
Security concern

10

Written in
memory-unsafe

languages

MirageOS Unikernels
• MirageOS is a library OS to build specialised Unikernels

containing only what is needed by the application

‣ Cut the complexity by designing the layers as

independent memory-safe libraries.

• Rely on the OCaml for memory safety, modular static
analysis, dead-code elimination, etc.

• Used in

‣ Docker for Mac and Windows

‣ NetHSM — hardware security modules

‣ SpaceOS

• See mirage.io

11

http://mirage.io

Available Libraries
Network:
 Ethernet, IP, UDP, TCP, HTTP 1.0/1.1/2.0, ALPN, DNS, ARP, DHCP,
SMTP, IRC, cap-n-proto, emails
Storage:
 block device, Ramdisk, Qcow, B-trees, VHD, Zlib, Gzip, Lzo, Git, Tar,
FAT32
Data-structures:
 LRU, Rabin’s fingerprint, bloom filters, adaptative radix trees,
discrete interval encoding trees
Security:
 x.509, ASN1, TLS, SSH
Crypto:
 hashes, checksums

Ciphers (AES, 3DES, RC4, ChaCha20/Poly1305)
AEAD primitives (AES-GCM, AES-CCM)
Public keys (RSA, DSA, DH)
Fortuna

• Reimplemented in OCaml

• TLS: “rigorous engineering”

‣ same pure code to generate test

oracles, verify oracle against real-world
TLS traces and the real implementation

‣ Use Fiat (Coq extraction) for crypto
primitives.

12

Bitcoin Piñata
• https://hannes.robur.coop/Posts/Pinata

• 1.1 MB Unikernel, which ran from 2015 to 2018

• Hold the key to 10 bitcoins (peak worth $165k)

‣ Now worth ~$1M

• A successful authenticated TLS session reveals the
private Bitcoin key

• 500,000 accesses to the Piñata website, more than
150,000 attempts at connecting to the Piñata bounty

• The bitcoins were safe!
13

https://hannes.robur.coop/Posts/Pinata

ocaml.org

14

mirage.io

http://OCaml.org
http://mirage.io

