
KC Sivaramakrishnan

Securing the foundations:

Hardware-assisted secure Unikernels

Security — A multi-dimensional challenge

Security — A multi-dimensional challenge

Today
• Operating Systems

‣ MirageOS — Small, safer, single-purpose OS

• Memory Safety

‣ OCaml — memory-safe programming

• Going beyond memory safety

‣ FIDES — Hardware-assisted intra-process isolation

Why do we need an operating system?

Firmware

Hypervisor

Kernel

Language Runtime

Shared Libraries

Configuration files

Application

Why do we need an operating system?
• The main goal of an OS is to support running

applications

‣ Stability: most applications are not yet written when
the system is deployed

‣ Scalability: do not rewrite everything for every new
hardware device

Firmware

Hypervisor

Kernel

Language Runtime

Shared Libraries

Configuration files

Application

Why do we need an operating system?
• The main goal of an OS is to support running

applications

‣ Stability: most applications are not yet written when
the system is deployed

‣ Scalability: do not rewrite everything for every new
hardware device

• OS does this by

‣ Providing abstraction over hardware — drivers!

‣ Resource management: files, users, CPU, memory,
network

Firmware

Hypervisor

Kernel

Language Runtime

Shared Libraries

Configuration files

Application

Why do we need an operating system?
• The main goal of an OS is to support running

applications

‣ Stability: most applications are not yet written when
the system is deployed

‣ Scalability: do not rewrite everything for every new
hardware device

• OS does this by

‣ Providing abstraction over hardware — drivers!

‣ Resource management: files, users, CPU, memory,
network

• Application code is a small % of the runtime
environment

Firmware

Hypervisor

Kernel

Language Runtime

Shared Libraries

Configuration files

Application

Kernel: A Core OS component
"True, Linux is monolithic, and I agree that microkernels are nicer...
As has been noted (not only by me), the Linux kernel is a minuscule

part of a complete system:

Full sources for Linux currently run to about 200kB compressed. And
all of that source is portable, except for this tiny kernel that you can

(provably: I did it) re-write totally from scratch in less than a year
without having /any/ prior knowledge."

– Linus Torvalds, 1992 Firmware

Hypervisor

Kernel

Language Runtime

Shared Libraries

Configuration files

Application

Drivers!

Linux Kernel

Linux 5.11 has 30.14 million lines of code, 60% drivers

Windows has 50 million lines of code

Code you
want to run

Code your
operating
system insists
you need!

OS Icebergs

How do we reduce the OS
complexity?

Ingredient 1:
Library OS

Library operating systems

Library operating systems
• Kernel functionality is broken up from its monolith into many individual

libraries.

‣ There is no ambient kernel; just function calls are left.

Library operating systems
• Kernel functionality is broken up from its monolith into many individual

libraries.

‣ There is no ambient kernel; just function calls are left.

• Device drivers, schedulers, networking, and storage stacks are directly
linked to the application

‣ Eliminate the need for an intermediary kernel layer.

‣ Applications select libraries they need with a small boot layer and jump straight into
the code.

Library operating systems
• Kernel functionality is broken up from its monolith into many individual

libraries.

‣ There is no ambient kernel; just function calls are left.

• Device drivers, schedulers, networking, and storage stacks are directly
linked to the application

‣ Eliminate the need for an intermediary kernel layer.

‣ Applications select libraries they need with a small boot layer and jump straight into
the code.

• Hardware is driven directly from the application, usually in a single address
space.

Kernel

Hardware

Process

Java VM

libc libssl libm

Jars Application

Kernel

Hardware

Process

Java VM

libc libssl libm

Jars Application

Eliminate separate address
spaces

Turn into a library

Kernel

Java VM

libc libssl libm

Jars Application

libsched libnet libfs

Hardware

Hardware

Kernel

Java VM

libc libssl libm

Jars Application

Application runs in a single
address space

libsched libnet libfs

Drive hardware directly from
application

Single calling convention

Library operating systems

In the 1990s, we had:

• Nemesis: Cambridge/Glasgow

• Exokernel: MIT

Neither succeeded outside of academia due to the device drivers needing to be
updated regularly to stay relevant.

Became popular in niche areas (network appliances or high-frequency trading).

Library operating systems

Firmware

Kernel

Application

Pros: application-level control of hardware, small attack surface,
high-performance.

Cons: There is no kernel protection internally, and device drivers all
need to be rewritten from a normal kernel.

Ingredient 2:
Virtualisation

Virtualisation
• In the 2000s, hardware vendors added extensions that allow the creation of

virtual versions of physical resources, such as servers, networks, and storage
devices.

• It enables multiple virtual machines (VMs), with their own operating systems,
to run in isolation, side-by-side, on the same physical hardware.

• Hypervisor (aka VMM) — creates and runs virtual machines

Virtualisation

• Type 1 — KVM (converts Linux to a type 1 hypervisor), VMware ESXi,
Microsoft Hyper-V, Citrix XenServer

• Type 2 — VirtualBox, VMware Workstation, Microsoft Virtual PC

Linux KVM

• Turns Linux into a Type 1 VMM

• QEMU emulates CPUs and missing hardware

• VirtIO — virtualisation of networks and disk device drivers

‣ Can take advantage of Linux Kernel’s vast driver support!

Cons: There is no kernel
protection internally, and device
drivers all need to be rewritten

from a normal kernel.

Library operating
systems

Ingredient 3:
OCaml

Memory safety

Cons: There is no kernel protection internally, and
device drivers all need to be rewritten from a normal

kernel.

Library operating systems

Memory safety

Cons: There is no kernel protection internally, and
device drivers all need to be rewritten from a normal

kernel.

Library operating systems

Memory safety

90% of Android vulnerabilities are
memory safety issues

80% of the exploited vulnerabilities of
known 0-days were memory safety issues

Memory safety

Memory safety and Programming Languages
• Unsafe languages

‣ C, C++, Assembly, Objective-C

Memory safety and Programming Languages
• Unsafe languages

‣ C, C++, Assembly, Objective-C

• Safe languages

‣ With the help of a garbage collector (GC) — JavaScript, Python, Java, Go, OCaml, …

‣ Without a GC — Rust

Memory safety and Programming Languages
• Unsafe languages

‣ C, C++, Assembly, Objective-C

• Safe languages

‣ With the help of a garbage collector (GC) — JavaScript, Python, Java, Go, OCaml, …

‣ Without a GC — Rust

• Unsafe parts of safe languages

‣ Unsafe Rust, unsafe package in Go, Obj in OCaml

Memory safety and Programming Languages
• Unsafe languages

‣ C, C++, Assembly, Objective-C

• Safe languages

‣ With the help of a garbage collector (GC) — JavaScript, Python, Java, Go, OCaml, …

‣ Without a GC — Rust

• Unsafe parts of safe languages

‣ Unsafe Rust, unsafe package in Go, Obj in OCaml

Cons: There is no kernel protection
internally, and device drivers all need to be

rewritten from a normal kernel.

Library operating systems

industrial-strength, pragmatic, functional programming language

industrial-strength, pragmatic, functional programming language

Industry Projects

industrial-strength, pragmatic, functional programming language

Higher-order functions

Hindley-Milner Type Inference

Powerful module system

Industry Projects

industrial-strength, pragmatic, functional programming language

Higher-order functions

Hindley-Milner Type Inference

Powerful module system

Functional core with imperative and object-
oriented features

Native (x86, Arm, Power, RISC-V),
JavaScript, WebAssembly

Industry Projects

OCaml Performance
• GC is tuned for low-latency

‣ If your application can tolerate 1 ms latency, then
OCaml is a good fit

‣ 95% of code that we write fit this model

OCaml Performance
• GC is tuned for low-latency

‣ If your application can tolerate 1 ms latency, then
OCaml is a good fit

‣ 95% of code that we write fit this model

• GC is a tradeoff between space and time

OCaml Performance
• GC is tuned for low-latency

‣ If your application can tolerate 1 ms latency, then
OCaml is a good fit

‣ 95% of code that we write fit this model

• GC is a tradeoff between space and time

• OCaml is typically 1.5x to 2x slower than C for
algorithmic workloads

‣ Python will be 10x to 100x slower than C

OCaml Performance
• GC is tuned for low-latency

‣ If your application can tolerate 1 ms latency, then
OCaml is a good fit

‣ 95% of code that we write fit this model

• GC is a tradeoff between space and time

• OCaml is typically 1.5x to 2x slower than C for
algorithmic workloads

‣ Python will be 10x to 100x slower than C

• Fast FFI to C for speed

OCaml eio

Rust Hyper

OCaml (Http/af + Lwt)

Go NetHttp
OCaml (cohttp + Lwt)

https://github.com/ocaml-multicore/eio

OCaml Performance — Web Server

https://github.com/ocaml-multicore/eio

MirageOS =
Library OS +
Virtualisation +
OCaml

MirageOS Unikernels
• MirageOS is a library OS and a compiler that can

build specialised images containing only the
runtime environment needed by the application

‣ Cut the complexity by designing the layers as

independent type-safe libraries.

MirageOS Unikernels
• MirageOS is a library OS and a compiler that can

build specialised images containing only the
runtime environment needed by the application

‣ Cut the complexity by designing the layers as

independent type-safe libraries.

• The MirageOS compiler transforms an application
manifest into a specialised image.

‣ Rely on the OCaml compiler for modular static

analysis, dead-code elimination, etc.

MirageOS Unikernels
• MirageOS is a library OS and a compiler that can

build specialised images containing only the
runtime environment needed by the application

‣ Cut the complexity by designing the layers as

independent type-safe libraries.

• The MirageOS compiler transforms an application
manifest into a specialised image.

‣ Rely on the OCaml compiler for modular static

analysis, dead-code elimination, etc.

• Rely on the OCaml runtime as the sole trusted
runtime environment (and selected C bindings)

Available Libraries
Network:
 Ethernet, IP, UDP, TCP, HTTP 1.0/1.1/2.0, ALPN, DNS, ARP, DHCP,
SMTP, IRC, cap-n-proto, emails
Storage:
 block device, Ramdisk, Qcow, B-trees, VHD, Zlib, Gzip, Lzo, Git, Tar,
FAT32
Data-structures:
 LRU, Rabin’s fingerprint, bloom filters, adaptative radix trees,
discrete interval encoding trees
Security:
 x.509, ASN1, TLS, SSH
Crypto:
 hashes, checksums

Ciphers (AES, 3DES, RC4, ChaCha20/Poly1305)
AEAD primitives (AES-GCM, AES-CCM)
Public keys (RSA, DSA, DH)
Fortuna

• Reimplemented in OCaml

• TLS: “rigorous engineering”

‣ same pure code to generate test

oracles, verify oracle against real-world
TLS traces and the real implementation

‣ Use Fiat (Coq extraction) for crypto
primitives.

What is a MirageOS Unikernel?
• A statically compiled ELF binary

• Executed as a virtual machine

‣ Solo5 is the host system process (“tender”)

- Provides the platform-specific details for MirageOS
applications to interact with the underlying hardware
or virtualisation frameworks

‣ Supports — KVM, Xen, virtio, muen, Linux
Seccomp

• Can also be executed as a Unix process

‣ Useful for debugging and development

config.ml

multi-stage pipeline

mirage configure

unikernel.ml

imagedune build

main.ml

opam

Makefile

make

mirage_net_XXX.ml

mirage_tcpip.ml

…

MirageOS Compiler

Hello Unikernel — unikernel.ml

Hello unikernel — Unix backend

$ mirage configure -t unix
$ make
$./dist/hello
2024-11-25T17:04:16+05:30: [INFO] [application] hello

2024-11-25T17:04:17+05:30: [INFO] [application] hello

2024-11-25T17:04:18+05:30: [INFO] [application] hello

2024-11-25T17:04:19+05:30: [INFO] [application] hello

Hello unikernel — solo5-hvt on kvm
$ mirage configure -t hvt
$ make
$ solo5-hvt -- dist/hello.hvt
 | ___|
 __| _ \ | _ \ __ \
__ \ (| | (|) |
____/___/ _|___/____/
Solo5: Bindings version v0.9.0
Solo5: Memory map: 512 MB addressable:
Solo5: reserved @ (0x0 - 0xfffff)
Solo5: text @ (0x100000 - 0x1c4fff)
Solo5: rodata @ (0x1c5000 - 0x1f5fff)
Solo5: data @ (0x1f6000 - 0x289fff)
Solo5: heap >= 0x28a000 < stack < 0x20000000
2024-11-25T11:47:10-00:00: [INFO] [application] hello
2024-11-25T11:47:11-00:00: [INFO] [application] hello
2024-11-25T11:47:12-00:00: [INFO] [application] hello
2024-11-25T11:47:13-00:00: [INFO] [application] hello
Solo5: solo5_exit(0) called

Hello
Unikernel

Solo5

Linux Kernel
kvm.ko

User
space

process

User
space

process

mirage.io website
• A full-fledged https server

• Uses TLS encryption

http://mirage.io

mirage.io website
$ mirage configure -t unix --net=host

http://mirage.io

mirage.io website
$ mirage configure -t unix --net=direct

http://mirage.io

mirage.io website
$ mirage configure -t unix --net=direct

http://mirage.io

MirageOS Compiler
• Remove dead code and inline code across traditionally opaque layer

‣ Resulting images usually have a size of a few MiB.

‣ Our HTTPS web server which runs mirage.io is only 10 MiB!

http://mirage.io

MirageOS Compiler
• Remove dead code and inline code across traditionally opaque layer

‣ Resulting images usually have a size of a few MiB.

‣ Our HTTPS web server which runs mirage.io is only 10 MiB!

• Configuration can be partially evaluated at compile-time

‣ Extreme specialisation enables a boot time of a few ms.

http://mirage.io

MirageOS Compiler
• Remove dead code and inline code across traditionally opaque layer

‣ Resulting images usually have a size of a few MiB.

‣ Our HTTPS web server which runs mirage.io is only 10 MiB!

• Configuration can be partially evaluated at compile-time

‣ Extreme specialisation enables a boot time of a few ms.

• If something (e.g. networking) is not used, it will not be available at runtime

‣ Minimal runtime environments use a few MiB of RAM.

http://mirage.io

MirageOS Compiler
• Remove dead code and inline code across traditionally opaque layer

‣ Resulting images usually have a size of a few MiB.

‣ Our HTTPS web server which runs mirage.io is only 10 MiB!

• Configuration can be partially evaluated at compile-time

‣ Extreme specialisation enables a boot time of a few ms.

• If something (e.g. networking) is not used, it will not be available at runtime

‣ Minimal runtime environments use a few MiB of RAM.

• The kernel and user space share the same address space

‣ Many runtime checks are removed, so static analysis is critical.

http://mirage.io

MirageOS Usecases

Bitcoin Piñata
• https://hannes.robur.coop/Posts/Pinata

• 1.1 MB Unikernel, which ran from 2015 to 2018

• Hold the key to 10 bitcoins (peak worth $165k)

‣ Now worth ~$1M

• A successful authenticated TLS session reveals the
private Bitcoin key

• 500,000 accesses to the Piñata website, more than
150,000 attempts at connecting to the Piñata bounty

• The bitcoins were safe!

https://hannes.robur.coop/Posts/Pinata

Nitrokey NetHSM
• NitroKey is developing NetHSM, a new HSM solution to

manage cryptographic keys securely.

• The software implementation should be easy to customise and
offer superior security

‣ It should also be easily auditable by anyone to eliminate
backdoors.

• The NetHSM should meet high-performance requirements,
allowing its use in low-power hardware security devices and
highly efficient cloud-based solutions.

• They chose to use MirageOS running on the Muen micro-kernel

https://www.nitrokey.com/products/nethsm

Docker for Mac

• Normally Docker use Linux namespaces and other Linux features

• On macOS

• Docker daemon runs in a light Linux VM (using
hypervisor.framework)

• Docker client is a Mac application

• MirageOS libraries are used to translate semantics differences
between platforms:

• volumes: FUSE format + fsevent/inotify

• network: Linux ethernet packets to MacOS network syscalls

MirageOS libraries used by millions of users

MirageOS Challenges
• Rewrite your applications in OCaml!

• No inter-unikernel isolation

‣ No separate kernel vs user space

‣ No separation between different bits of
the user space (no process abstraction)

• Linking external C libraries

‣ Legacy C code is unavoidable — crypto,

drivers, sqlite, …

‣ may have memory vulnerabilities, may
harm Unikernel safety

OCaml (safe) + C
(unsafe) code

MirageOS Challenges
• Rewrite your applications in OCaml!

• No inter-unikernel isolation

‣ No separate kernel vs user space

‣ No separation between different bits of
the user space (no process abstraction)

• Linking external C libraries

‣ Legacy C code is unavoidable — crypto,

drivers, sqlite, …

‣ may have memory vulnerabilities, may
harm Unikernel safety

OCaml (safe) + C
(unsafe) code

Can we provide fault isolation
within Unikernels?

Compartments / SFI — overview
• Compartments offer intra-process isolation

‣ Functions mapped to compartments

‣ Restrict control flow and data access across security
boundaries

Compartments / SFI — overview
• Compartments offer intra-process isolation

‣ Functions mapped to compartments

‣ Restrict control flow and data access across security
boundaries

• Control flow restricted by

‣ Whitelisted PC ranges

‣ Shadow stack to prevent ROP attacks

Compartments / SFI — overview
• Compartments offer intra-process isolation

‣ Functions mapped to compartments

‣ Restrict control flow and data access across security
boundaries

• Control flow restricted by

‣ Whitelisted PC ranges

‣ Shadow stack to prevent ROP attacks

• Data access restricted by

‣ VMM tricks (or) fat pointers (or) capabilities (à la CHERI)

FIDES — Secure compartments
• Security-hardened Shakti RISC-V processor + MirageOS unikernels

‣ https://gitlab.com/shaktiproject

https://gitlab.com/shaktiproject

FIDES — Secure compartments
• Security-hardened Shakti RISC-V processor + MirageOS unikernels

‣ https://gitlab.com/shaktiproject

• Intra-process compartments

- Vulnerabilities in C do not affect OCaml

Access Matrix

https://gitlab.com/shaktiproject

FIDES — Secure compartments
• Security-hardened Shakti RISC-V processor + MirageOS unikernels

‣ https://gitlab.com/shaktiproject

• Intra-process compartments

- Vulnerabilities in C do not affect OCaml

• Compartment access matrix defined at link time

- Run unmodified OCaml and C code

Access Matrix

https://gitlab.com/shaktiproject

FIDES — Secure compartments
• Security-hardened Shakti RISC-V processor + MirageOS unikernels

‣ https://gitlab.com/shaktiproject

• Intra-process compartments

- Vulnerabilities in C do not affect OCaml

• Compartment access matrix defined at link time

- Run unmodified OCaml and C code

• Small extension to hardware and software

‣ Two new instructions added to RISC-V ISA: Val and Checkcap

‣ Modification to LLVM and OCaml compiler to emit these instructions

Access Matrix

https://gitlab.com/shaktiproject

Threat model
• Source code is untrusted

‣ Inline assembly and use of Obj.magic trusted

• All code is compiled with FIDES C and OCaml compiler

‣ Compiler instrumentation added by FIDES is correct

‣ OCaml runtime is trusted

• Binary executable cannot be tampered with

• Hardware attacks rowhammer, fault attacks, side-channels are out of scope

FIDES Guarantees
• Control-flow integrity

‣ The control flow in every execution of the program respects the
compartment access matrix

• Memory safety

‣ No memory errors; all references point to valid memory

‣ Pointers cannot be forged

FIDES — Challenges and opportunities
• OCaml offers memory safety

‣ Hardware-accelerated fat pointers only for C code

- Fine-grained data compartments

- No fat pointers for OCaml code

‣ Pay attention to FFI boundaries

FIDES — Challenges and opportunities
• OCaml offers memory safety

‣ Hardware-accelerated fat pointers only for C code

- Fine-grained data compartments

- No fat pointers for OCaml code

‣ Pay attention to FFI boundaries

• FIDES code compartment must now handle FP features!

‣ Higher-order functions, tail calls, exceptions

Remote Voting Machine (RVM)
• Aim to address voter absenteeism amongst

migrant voters

‣ 300 million people don’t vote

• Enable migrant voters to be able to vote from
a different constituency

• Voting machine is more complex!

‣ “Discussion on improving voter participation of

domestic migrants using remote voting”,
Election Commission of India, 2022

Display

Public Ballot Display

https://old.eci.gov.in/files/file/14714-letter-to-political-parties-on-discussion-on-improving-voter-participation-of-domestic-migrant-using-remote-voting/?do=download&r=41122&confirm=1&t=1&csrfKey=140839132565185d855c75d167ae7bf7
https://old.eci.gov.in/files/file/14714-letter-to-political-parties-on-discussion-on-improving-voter-participation-of-domestic-migrant-using-remote-voting/?do=download&r=41122&confirm=1&t=1&csrfKey=140839132565185d855c75d167ae7bf7

Compartments for RVM

OCaml
Stdlib (C5) Crypto (C3)

Vote
Handler (C2)UI (C4)

Result table

Main (C1)

indicates call is allowed

Compartments for RVM

OCaml
Stdlib (C5) Crypto (C3)

Vote
Handler (C2)UI (C4)

Result table

Main (C1)

indicates call is allowed

Has C
code

Has C
code

Compartments for RVM

OCaml
Stdlib (C5) Crypto (C3)

Vote
Handler (C2)UI (C4)

Result table

Main (C1)

indicates call is allowed

Highly secure

Has C
code

Has C
code

Higher-order functions

OCaml
Stdlib (C5) Crypto (C3)

Vote
Handler (C2)UI (C4)

Result table

Main (C1)

indicates call is allowed

Higher-order functions

OCaml
Stdlib (C5) Crypto (C3)

Vote
Handler (C2)UI (C4)

Result table

Main (C1)

indicates call is allowed

Higher-order functions

OCaml
Stdlib (C5) Crypto (C3)

Vote
Handler (C2)UI (C4)

Result table

Main (C1)

indicates call is allowed

C5 is not allowed to call C2

Higher-order functions — Idea 1

OCaml
Stdlib (C5) Crypto (C3)

Vote
Handler (C2)UI (C4)

Result table

Main (C1)

indicates call is allowed

Higher-order functions — Idea 1

OCaml
Stdlib (C5) Crypto (C3)

Vote
Handler (C2)UI (C4)

Result table

Main (C1)

indicates call is allowed

Higher-order functions — Idea 1

OCaml
Stdlib (C5) Crypto (C3)

Vote
Handler (C2)UI (C4)

Result table

Main (C1)

indicates call is allowed

“Confused Deputy” attack

Higher-order functions — Idea 2

OCaml
Stdlib (C5) Crypto (C3)

Vote
Handler (C2)UI (C4)

Result table

Main (C1)

indicates call is allowed

OCaml
Stdlib (C5)

Higher-order functions — Idea 2

OCaml
Stdlib (C5) Crypto (C3)

Vote
Handler (C2)UI (C4)

Result table

Main (C1)

indicates call is allowed

OCaml
Stdlib (C5)

Limited compartment resource
Shared state?

Fluid compartments

Crypto (C3)

Vote
Handler (C2)UI (C4)

Result table

Main (C1)

indicates call is allowed

OCaml
Stdlib (C5)

A fluid compartment inherits the
policies of the caller

Shadow stack
• Stores the return addresses for inter-compartment calls

• Inaccessible from user-code

‣ Maintained and validated by hardware

Shadow stack
• Stores the return addresses for inter-compartment calls

• Inaccessible from user-code

‣ Maintained and validated by hardware

 foo():
 ...
 bar()
 after_bar:
 ...

 bar():
 checkcap
 ...
 baz()
 after_baz:
 ...

 baz():
 checkcap
 ...

C1 C2 C3

pc

Shadow stack
• Stores the return addresses for inter-compartment calls

• Inaccessible from user-code

‣ Maintained and validated by hardware

 foo():
 ...
 bar()
 after_bar:
 ...

 bar():
 checkcap
 ...
 baz()
 after_baz:
 ...

 baz():
 checkcap
 ...

C1 C2 C3

...

after_baz

...

Shadow stack

after_bar

...

pc

Non-call-return control flow
• Typical compartment schemes handle only call-return sequence

Non-call-return control flow
• Typical compartment schemes handle only call-return sequence

• OCaml has several non-call-return control-flow operations

‣ Tail calls, exceptions, effect handlers!

‣ Need to manage the shadow stack carefully

Exceptions and shadow stacks

exn_pc
prev_exn_ptr

sp

exn_ptr

Exceptions and shadow stacks

exn_pc
prev_exn_ptr

sp

exn_ptr raise

sp

exn_ptr

Exceptions and shadow stacks

• Exceptions may be thrown across compartments

‣ Need to unwind shadow stack appropriately

‣ Challenge: Detect when intra-compartment exceptions are raised

exn_pc
prev_exn_ptr

sp

exn_ptr raise

sp

exn_ptr

Exceptions and shadow stacks

• Exceptions may be thrown across compartments

‣ Need to unwind shadow stack appropriately

‣ Challenge: Detect when intra-compartment exceptions are raised

• Solution: Security monitor (SM) updates last exn_pc to a special routine

exn_pc
prev_exn_ptr

sp

exn_ptr raise

sp

exn_ptr

Fat pointers

Base Bound Cookie Pointer

32 bits

Word size = 64 bits

Fat pointer

Fat pointers

Base Bound Cookie Pointer

32 bits

Word size = 64 bits

Cookie …

base bound

Memory regionFat pointer
Fresh cookie at
malloc and free

Fat pointers

Base Bound Cookie Pointer

32 bits

Word size = 64 bits

Cookie …

base bound

Memory regionFat pointer
Fresh cookie at
malloc and free

• Fat pointers into the stack have frame scope

‣ Each frame has a cookie freshened at call and return

Fat pointers

Base Bound Cookie Pointer

32 bits

Word size = 64 bits

Cookie …

base bound

Memory regionFat pointer
Fresh cookie at
malloc and free

• Fat pointers into the stack have frame scope

‣ Each frame has a cookie freshened at call and return

• val instruction validates fat pointer before access

Fat pointers

Base Bound Cookie Pointer

32 bits

Word size = 64 bits

Cookie …

base bound

Memory regionFat pointer
Fresh cookie at
malloc and free

• Fat pointers into the stack have frame scope

‣ Each frame has a cookie freshened at call and return

• val instruction validates fat pointer before access

• OCaml does not use fat pointers

‣ At FFI, use OCaml object header info to create fat pointer

‣ Use a special cookie that skips temporal validation

Evaluation
• Compiler changes

‣ ~300 lines for OCaml, ~2300 lines for LLVM

• Protyped on Xilinx Artix-7 AC701 FPGA

‣ 38.2K LUTs (+6.1% over base)

‣ 17.4K registers (+6.0% over base)

• Performance on voting application

‣ 4% increase in code size

‣ 23% increase in instruction cycle count

OCaml
Stdlib (C5) Crypto (C3)

Vote
Handler (C2)UI (C4)

Result table

Main (C1)

Highly secure

Has C code

Has C code

Limitations
• Features: Effect handlers, parallelism

Limitations
• Features: Effect handlers, parallelism

• OCaml runtime is trusted

‣ WIP: Verified garbage collector for OCaml

Limitations
• Features: Effect handlers, parallelism

• OCaml runtime is trusted

‣ WIP: Verified garbage collector for OCaml

• Data compartments are too weak

‣ Objects shared across compartments remain accessible forever

‣ Revocation through ownership and borrowing à la Rust

- modal types in OCaml

Limitations
• Features: Effect handlers, parallelism

• OCaml runtime is trusted

‣ WIP: Verified garbage collector for OCaml

• Data compartments are too weak

‣ Objects shared across compartments remain accessible forever

‣ Revocation through ownership and borrowing à la Rust

- modal types in OCaml

• Hardware is exotic

‣ Arm MTE for fat pointers in C?

Security — A multi-dimensional challenge

