
KC Sivaramakrishnan

Towards smaller, safer, bespoke OSes
with Unikernels

1

In this talk…

Operating
Systems

Programming
Languages

You are here!

2

Why do we need an operating system?
• The main goal of an OS is to support running

applications

‣ Stability: most applications are not yet written when the
system is deployed

‣ Scalability: do not rewrite everything for every new hardware
device

• OS does this by providing an abstraction over hardware

‣ Drivers for different hardware devices

‣ Resource management: files, users, CPU, memory,

network

• Application code is a small % of the runtime
environment

Firmware

Hypervisor

Kernel

Language Runtime

Shared Libraries

Configuration files

Application

3

Kernel: A Core OS component
"True, Linux is monolithic, and I agree that microkernels are nicer...
As has been noted (not only by me), the Linux kernel is a minuscule

part of a complete system:

Full sources for Linux currently run to about 200kB compressed. And
all of that source is portable, except for this tiny kernel that you can

(provably: I did it) re-write totally from scratch in less than a year
without having /any/ prior knowledge."

– Linus Torvalds, 1992 Firmware

Hypervisor

Kernel

Language Runtime

Shared Libraries

Configuration files

Application

4

Drivers!

Linux Kernel

Linux 5.11 has 30.14 million lines of code, 60% drivers

Windows has 50 million lines of code
5

Code you
want to run

Code your
operating
system insists
you need!

Monolithic OS Icebergs

Huge TCB ⟹
Security concern

6

How do we reduce the OS
complexity?

Here’s our take…

7

Ingredient 1:
Library OS

8

Library operating systems
• Kernel functionality is broken up from its monolith into many individual

libraries.

‣ There is no ambient kernel; just function calls are left.

• Device drivers, schedulers, networking, and storage stacks are directly
linked to the application

‣ Eliminate the need for an intermediary kernel layer.

‣ Applications select libraries they need with a small boot layer and jump straight into
the code.

• Hardware is driven directly from the application, usually in a single address
space.

9

Kernel

Hardware

Process

Java VM

libc libssl libm

Jars Application

10

Kernel

Hardware

Process

Java VM

libc libssl libm

Jars Application

Eliminate separate address
spaces

Turn into a library

11

Kernel

Java VM

libc libssl libm

Jars Application

libsched libnet libfs

Hardware

12

Hardware

Kernel

Java VM

libc libssl libm

Jars Application

Application runs in a single
address space

libsched libnet libfs

Drive hardware directly from
application

Single calling convention

13

Library operating systems: History
• In the 90s, we had

‣ Nemesis: Cambridge/Glasgow

‣ Exokernel: MIT

• Neither succeeded outside of academia due to the device drivers needing to
be updated regularly to stay relevant.

• Became popular in niche areas (network appliances or high-frequency
trading).

14

Library operating systems: Pros & Cons

Firmware

Kernel

Application

Pros: application-level control of hardware, small attack surface,
high-performance.

Cons: There is no kernel protection internally, and device drivers all
need to be rewritten from a normal kernel.

15

Ingredient 2:
Virtualisation

16

Virtualisation
• In the 2000s, hardware vendors added extensions that allow the creation of

virtual versions of physical resources, such as servers, networks, and storage
devices.

• It enables multiple virtual machines (VMs), with their own operating systems,
to run in isolation, side-by-side, on the same physical hardware.

• Hypervisor (aka VMM) — creates and runs virtual machines

17

Linux KVM

• Turns Linux into a Type 1 VMM

• QEMU emulates CPUs and missing hardware

• VirtIO — virtualisation of networks and disk device drivers

‣ Can take advantage of Linux Kernel’s vast driver support!

Cons: There is no kernel
protection internally, and device
drivers all need to be rewritten

from a normal kernel.

Library operating
systems

18

Ingredient 3:
OCaml

19

Memory safety

Cons: There is no kernel protection internally, and
device drivers all need to be rewritten from a normal

kernel.

Library operating systems

20

Memory safety

90% of Android vulnerabilities are
memory safety issues

80% of the exploited vulnerabilities of
known 0-days were memory safety issues

21

Memory safety

22

Memory safety and Programming Languages
• Unsafe languages

‣ C, C++, Assembly, Objective-C

• Safe languages

‣ With the help of a garbage collector (GC) — JavaScript, Python, Java, Go, OCaml, …

‣ Without a GC — Rust

• Unsafe parts of safe languages

‣ Unsafe Rust, unsafe package in Go, Obj in OCaml

Cons: There is no kernel protection
internally, and device drivers all need to be

rewritten from a normal kernel.

Library operating systems

23

industrial-strength, pragmatic, functional programming language

Higher-order functions

Hindley-Milner Type Inference

Powerful module system

Functional core with imperative and object-
oriented features

Native (x86, Arm, Power, RISC-V),
JavaScript, WebAssembly

Industry Projects

24

20% of Wall Street
trade goes through

OCaml

OCaml Performance
• GC is tuned for low-latency

‣ If your application can tolerate 1 ms latency, then
OCaml is a good fit

‣ 95% of code that we write fit this model

• GC is a tradeoff between space and time

• OCaml is typically 1.5x to 2x slower than C for
algorithmic workloads

‣ Python will be 10x to 100x slower than C

• Fast FFI to C for speed

25

OCaml eio

Rust Hyper

OCaml (Http/af + Lwt)

Go NetHttp
OCaml (cohttp + Lwt)

https://github.com/ocaml-multicore/eio

OCaml Performance — Web Server

26

https://github.com/ocaml-multicore/eio

MirageOS =
Library OS +
Virtualisation +
OCaml

27

MirageOS Unikernels
• MirageOS is a library OS and a compiler that can

build specialised images containing only the
runtime environment needed by the application

‣ Cut the complexity by designing the layers as

independent type-safe libraries.

• The MirageOS compiler transforms an application
manifest into a specialised image.

‣ Rely on the OCaml compiler for modular static

analysis, dead-code elimination, etc.

• Rely on the OCaml runtime as the sole trusted
runtime environment (and selected C bindings)

28

Available Libraries
Network:
 Ethernet, IP, UDP, TCP, HTTP 1.0/1.1/2.0, ALPN, DNS, ARP, DHCP,
SMTP, IRC, cap-n-proto, emails
Storage:
 block device, Ramdisk, Qcow, B-trees, VHD, Zlib, Gzip, Lzo, Git, Tar,
FAT32
Data-structures:
 LRU, Rabin’s fingerprint, bloom filters, adaptative radix trees,
discrete interval encoding trees
Security:
 x.509, ASN1, TLS, SSH
Crypto:
 hashes, checksums

Ciphers (AES, 3DES, RC4, ChaCha20/Poly1305)
AEAD primitives (AES-GCM, AES-CCM)
Public keys (RSA, DSA, DH)
Fortuna

• Reimplemented in OCaml

• TLS: “rigorous engineering”

‣ same pure code to generate test

oracles, verify oracle against real-world
TLS traces and the real implementation

‣ Use Fiat (Coq extraction) for crypto
primitives.

29

What is a MirageOS Unikernel?
• A statically compiled ELF binary

• Executed as a virtual machine

‣ Solo5 is the host system process (“tender”)

- Provides the platform-specific details for MirageOS
applications to interact with the underlying hardware
or virtualisation frameworks

‣ Supports — KVM, Xen, virtio, muen, Linux
Seccomp

• Can also be executed as a Unix process

‣ Useful for debugging and development

30

config.ml

multi-stage pipeline

mirage configure

unikernel.ml

imagedune build

main.ml

opam

Makefile

make

mirage_net_XXX.ml

mirage_tcpip.ml

…

MirageOS Compiler

31

Hello Unikernel — unikernel.ml

32

Hello Unikernel — Unix backend

$ mirage configure -t unix
$ make
$./dist/hello
2024-11-25T17:04:16+05:30: [INFO] [application] hello

2024-11-25T17:04:17+05:30: [INFO] [application] hello

2024-11-25T17:04:18+05:30: [INFO] [application] hello

2024-11-25T17:04:19+05:30: [INFO] [application] hello

33

Hello Unikernel — solo5-hvt on kvm
$ mirage configure -t hvt
$ make
$ solo5-hvt -- dist/hello.hvt
 | ___|
 __| _ \ | _ \ __ \
__ \ (| | (|) |
____/___/ _|___/____/
Solo5: Bindings version v0.9.0
Solo5: Memory map: 512 MB addressable:
Solo5: reserved @ (0x0 - 0xfffff)
Solo5: text @ (0x100000 - 0x1c4fff)
Solo5: rodata @ (0x1c5000 - 0x1f5fff)
Solo5: data @ (0x1f6000 - 0x289fff)
Solo5: heap >= 0x28a000 < stack < 0x20000000
2024-11-25T11:47:10-00:00: [INFO] [application] hello
2024-11-25T11:47:11-00:00: [INFO] [application] hello
2024-11-25T11:47:12-00:00: [INFO] [application] hello
2024-11-25T11:47:13-00:00: [INFO] [application] hello
Solo5: solo5_exit(0) called

Hello
Unikernel

Solo5

Linux Kernel
kvm.ko

User
space

process

User
space

process

34

mirage.io website
• A full-fledged https server

• Uses TLS encryption

35

http://mirage.io

mirage.io website
$ mirage configure -t unix --net=host

36

http://mirage.io

mirage.io website
$ mirage configure -t unix --net=direct

37

http://mirage.io

mirage.io website
$ mirage configure -t unix --net=direct

38

http://mirage.io

MirageOS Compiler
• Remove dead code and inline code across traditionally opaque layer

‣ Resulting images usually have a size of a few MiB.

‣ Our HTTPS web server which runs mirage.io is only 10 MiB!

• Configuration can be partially evaluated at compile-time

‣ Extreme specialisation enables a boot time of a few ms.

• If something (e.g. networking) is not used, it will not be available at runtime

‣ Minimal runtime environments use a few MiB of RAM.

• The kernel and user space share the same address space

‣ Many runtime checks are removed, so static safety is critical.

39

http://mirage.io

MirageOS Usecases

40

Bitcoin Piñata
• https://hannes.robur.coop/Posts/Pinata

• 1.1 MB Unikernel, which ran from 2015 to 2018

• Hold the key to 10 bitcoins (peak worth $165k)

‣ Now worth ~$1M

• A successful authenticated TLS session reveals the
private Bitcoin key

• 500,000 accesses to the Piñata website, more than
150,000 attempts at connecting to the Piñata bounty

• The bitcoins were safe!
41

https://hannes.robur.coop/Posts/Pinata

Nitrokey NetHSM
• NitroKey is developing NetHSM, a new HSM

solution to manage cryptographic keys securely.

• Aim for high-performance, low-power,
customizability and high-security

‣ Open-source ⟹ auditable by anyone

• They chose to use MirageOS running on the Muen
micro-kernel

https://www.nitrokey.com/products/nethsm

42

Docker for Mac

• Normally Docker use Linux namespaces and other Linux features

• On macOS

• Docker daemon runs in a light Linux VM (using
hypervisor.framework)

• Docker client is a Mac application

• MirageOS libraries are used to translate semantics differences
between platforms:

• volumes: FUSE format + fsevent/inotify

• network: Linux ethernet packets to MacOS network syscalls

MirageOS libraries used by millions of users

43

MirageOS

Operating
Systems

Programming
Languages

You were here!
https://mirage.io

44

