Towards smaller, safer, bespoke OSes
with Unikernels

KC Sivaramakrishnan

[T

: 3
MADRAS “=*

)l Tarides

In this talk...

Operating Programming

SYRICINE Languages

You are here!

Why do we need an operating system?

 The main goal of an OS is to support running
applications

» Stability: most applications are not yet written when the
system is deployed

» Scalability: do not rewrite everything for every new hardware
device

* OS does this by providing an abstraction over hardware

> Drivers for different hardware devices

> Resource management: files, users, CPU, memory,
network

* Application code is a small % of the runtime
environment

Application

Configuration files

Language Runtime
Shared Libraries
Kernel
Hypervisor

Firmware

Kernel: A Core OS component

“True, Linux is monolithic, and | agree that microkernels are nicer...
As has been noted (not only by me), the Linux kernel is a minuscule
part of a complete system:

Full sources for Linux currently run to about 200kB compressed. And
all of that source is portable, except for this tiny kernel that you can
(provably: | did it) re-write totally from scratch in less than a year
without having /any/ prior knowledge."

— Linus Torvalds, 1992

Application

Configuration files

Language Runtime
Shared Libraries
Kernel
Hypervisor

Firmware

Linux Kernel

Lines of code in the Linux kernel
Generated using https://github.com/udoprog/kernelstats

W arch/i386

W= arch/other

B arch/x86

EEm crypto, mm, sound

BN drivers/gpu

B drivers/media

B drivers/net

BN drivers/other

—fs

B net

=== other
20.0M A
15.0M A

D . l
10.0M
5.0M -
0.0M -
Q,‘;" PPN RN DA DD RD D AR PP T’;\b‘ﬁ%e‘?ﬂ‘p?@’@wgﬁ@?@9@?’3'-\@?’@9 DDAV D N A0 D ?9993’3'}3’79-’}?’393@9@39 Py DA DA DD
R R AR AR A R R EaE SR S I 2 R o g
U R G G G SRR R R (R W L (O (R (R R U R U U U U R

Linux 5.11 has 30.14 million lines of code, 60% drivers

Windows has 50 million lines of code

Monolithic OS Icebergs

Code you
want to run

Huge TCB =
Security concern

Code your
operating
system insists
you nheed!

How do we reduce the OS
complexity?

Here’s our take...

Ingredient 1:
Library OS

Library operating systems
* Kernel functionality is broken up from its monolith into many individual
libraries.
> There is no ambient kernel; just function calls are left.
* Device drivers, schedulers, networking, and storage stacks are directly
linked to the application
> Eliminate the need for an intermediary kernel layer.

> Applications select libraries they need with a small boot layer and jump straight into
the code.

 Hardware is driven directly from the application, usually in a single address
space.

Process

Eliminate separate address
spaces

Turn into a library

Hardware

11

Hardware

12

Application runs in a single
address space

Single calling convention

Drive hardware directly from
application

Hardware

13

Library operating systems: History

* |n the 90s, we had

> Nemesis: Cambridge/Glasgow

» Exokernel: MIT

* Neither succeeded outside of academia due to the device drivers needing to
be updated regularly to stay relevant.

 Became popular in niche areas (network appliances or high-frequency
trading).

14

Library operating systems: Pros & Cons

‘ Firmware ‘

Pros: application-level control of hardware, small attack surface,
high-performance.

Cons: There is no kernel protection internally, and device drivers all
need to be rewritten from a normal kernel.

Ingredient 2:
Virtualisation

16

Virtualisation

* In the 2000s, hardware vendors added extensions that allow the creation of
virtual versions of physical resources, such as servers, networks, and storage

devices.

* |t enables multiple virtual machines (VMSs), with their own operating systems,
to run In isolation, side-by-side, on the same physical hardware.

* Hypervisor (aka VMM) — creates and runs virtual machines

Xen and the Art of Virtualization

Paul Barham-*, Boris Dragovic, Keir Fraser, Steven Hand, Tim Harris,
Alex Ho, Rolf Neugebauert, lan Pratt, Andrew Warfield

University of Cambridge Computer Laboratory
15 JJ Thomson Avenue, Cambridge, UK, CB3 OFD
{firstname.lastname}@cl.cam.ac.uk

ABSTRACT 1. INTRODUCTION

Numerous systems have been designed which use virtualization to Modern computers are sufficiently powerful to use virtualization
subdivide the ample resources of a modern computer. Some require to present the illusion of many smaller virtual machines (VMs),
mmmnialinad hawdornwn ~w ~noant A lher memmsntio e nn pacrh riinnino a cenarate nnaratino cvetam inctance Thic hac lad tn

17

Linux KVM

Guest Userspace
Processes

Guest Kernel
(e.g. Linux Kernel)

QEMU-KVM

Userspace @ Userspace

Process Process

KVM (Module)

Hardware Support,
vitualization technologies for x86
(AMD-V/ Intel-VT)

Turns Linux into a Type 1 VMM
QEMU emulates CPUs and missing hardware
VirtlO — virtualisation of networks and disk device drivers

» Can take advantage of Linux Kernel’s vast driver support!

18

Library operating
systems

Cons: There is no kernel
protection internally, and deviee
i ! N "
from-anormal kernel:

Ingredient 3:
OCaml

19

Memory safety

Library operating systems

Cons: There is no kernel protection internally, and

kernel:

Microsoft: 70 percent of all security bugs Memory safety
a re memory Safety issues The Chromium project finds that around 70% of our serious security bugs are memory safety problems. Our next major project is to prevent such bugs at source.

Percentage of memory safety issues has been hovering at The problem
70 percent for the past 12 years.
Around 70% of our high severity security bugs are memory unsafety problems (that is, mistakes with C/C++ pointers). Half of those are use-after-free bugs.

Written by Catalin Cimpanu, Contributor
Feb. 11,2019 at 7:48 a.m. PT

High+, impacting stable

Security-related assert

We closely study the root cause trends of vulnerabilities & search for patterns
Use-after-free

/ related Other
% of memory safety vs. non-memory safety CVEs by patch year

Worried about the
Windows BitLocker
recovery bug? 6 things
you need to know

The Windows 10 clock is

ticking: 5 ways to save

your old PC in 2025 (most Other memory unsafety
are free)

Image: Matt Miller

20

Memory safety

Vulnerabilities by Cause

@ O0O0B Write

@ O0OB Read
UAF

@ Int Overflow

@ Other

.. 90% Of Android vulnerabilities are
memory safety issues

Fish in a Barrel

Thanks to Google's detailed technical data we can
provide total memory unsafety statistics for public Odays

80% of the exploited vulnerabilities of

2014 5/11 45% .
2015 22128 79% known 0-days were memory safety issues
2017 17]22 77%

2018 12112 100%
2019 9/10 90%

Total 87/108 81%

21

Memory safety

The Case for Memory Safe

Roadmaps

Why Both C-Suite Executives and Technical Experts
Need to Take Memory Safe Coding Seriously

Publication: December 2023

United States Cybersecurity and Infrastructure Security Agency
United States National Security Agency

United States Federal Bureau of Investigation

Australian Signals Directorate’s Australian Cyber Security Centre
Canadian Centre for Cyber Security

United Kingdom National Cyber Security Centre

New Zealand National Cyber Security Centre

Computer Emergency Response Team New Zealand

22

THE WHITE HOUSE

FEBRUARY 26, 2024

Press Release: Future Software Should Be

Memory Safe

» ONCD » BRIEFING ROOM » PRESS RELEASE

Leaders in Industry Support White House Call to
Address Root Cause of Many of the Worst Cyber Attacks

Read the full report here

fo

Memory safety and Programming Languages

* Unsafe languages

> G, C++, Assembly, Objective-C

« Safe languages
> With the help of a garbage collector (GC) — JavaScript, Python, Java, Go, OCamli, ...
> Without a GC — Rust

* Unsafe parts of safe languages

> Unsafe Rust, unsafe package in Go, Obj in OCaml

Library operating systems

Cone: Fhereisre-kerpel prstection
rternrallyand-device-driversallneedtobe
perpitterTrorsperras - kerme

23

_/\

OCaml

industrial-strength, pragmatic, functional programming language

Industry Projects
4 .
FACEBOOK /. Tarides Bloomberg

N [)
vy
yker & ahrefs [ESimCorp
\== Microsoft -'5 Tezos @JaneStreet i G ﬁ COMPCERT

J

J

Higher-order functions Functional core with imperative and object-

Hindley-Milner Type Inference SR IEELIER

Native (x86, Arm, Power, RISC-V),
JavaScript, WebAssembly

Powerful module system

24

OCaml Performance

 GC is tuned for low-latency

> If your application can tolerate 1 ms latency, then
OCaml is a good fit

> 95% of code that we write fit this model

* GC is a tradeoff between space and time

« OCaml is typically 1.5x to 2x slower than C for
algorithmic workloads

> Python will be 10x to 100x slower than C

 Fast FFI to C for speed

25

OCaml Performance — Web Server

200000

175000

Serviced requests/second

25000

O_

150000

125000

100000

75000

50000

httppaf _eio OCaml eio
—#— httppaf_lwt
——— httppaf effects Rust Hyper
—&— cohttp_lwt_unix

rust_hyper

nethttp _go

—3= gy OCaml (Http/af + Lwit)

. Go NetHttp
OCaml (cohttp + Lwt)

0 50000 100000 150000 200000 250000 300000 350000 400000
Load requests/second

https://github.com/ocaml-multicore/eio

26

https://github.com/ocaml-multicore/eio

MirageOS =
Library OS +
Virtualisation +

OCaml

27

MirageOS Unikernels

 MirageOS is a library OS and a compiler that can
build specialised images containing only the

runtime environment needed by the application Configuration Files
Application Binary

Mirage Compiler
application source code
configuration files
hardware architecture
whole-system optimisation

- Cut the complexity by designing the layers as
independent type-safe libraries.

Language Runtime

Parallel Threads
User Processes Application Code }

specialised
unikernel

* The MirageOS compiler transforms an application }——f}--—----—--—---
. . - g= . OS Kernel Mirage Runtime
manifest into a specialised image.

Hypervisor Hypervisor

> Rely on the OCaml compiler for modular static Hardware Hardware
analysis, dead-code elimination, etc.

* Rely on the OCaml runtime as the sole trusted
runtime environment (and selected C bindings)

28

Available Libraries

Network:
Ethernet, IP, UDP, TCP, HTTP 1.0/1.1/2.0, ALPN, DNS, ARP, DHCP,
SMTP, IRC, cap-n-proto, emails

Storage:
block device, Ramdisk, Qcow, B-trees, VHD, Zlib, Gzip, Lzo, Git, Tar,

FAT32
Data-structures:
LRU, Rabin’s fingerprint, bloom filters, adaptative radix trees,

discrete interval encoding trees

Security:
x.509, ASN1, TLS, SSH

Crypto:

hashes, checksums

Ciphers (AES, 3DES, RC4, ChaCha20/Poly1305)
AEAD primitives (AES-GCM, AES-CCM)

Public keys (RSA, DSA, DH)

Fortuna

29

 Reimplemented in OCaml

» TLS: “rigorous engineering”

> same pure code to generate test
oracles, verify oracle against real-world
TLS traces and the real implementation

> Use Fiat (Cog extraction) for crypto
primitives.

Not-quite-so-broken TLS: lessons in re-engineering a security protocol
specification and implementation

David Kaloper-Mersinjak', Hannes Mehnert', Anil Madhavapeddy and Peter Sewell
University of Cambridge Computer Laboratory
first.last@cl.cam.ac.uk

¥ These authors contributed equally to this work

What is a MirageOS Unikernel?

* A statically compiled ELF binary

e Executed as a virtual machine

» SoloS is the host system process (“tender”)

- Provides the platform-specific details for MirageOS “

applications to interact with the underlying hardware
or virtualisation frameworks MIRAGE OS

> Supports — KVM, Xen, virtio, muen, Linux
Seccomp

 Can also be executed as a Unix process

» Useful for debugging and development

30

MirageOS Compiler

multi-stage pipeline

mirage configure

make dune build M

31

Hello Unikernel — unikernel.ml

Lwt.Infix
Hello (Time : Mirage_time.S) struct
start _time
loop
0 Lwt.return_unit
n
Logs.1info f f "hello"

Time.sleep_ns (Duration.of_sec 1) >>=

loop 4
end

()

loop

32

n

|

Hello Unikernel — Unix backend

$ mirage configure -t unix

$ make
$./dist/hello

2024-11-25T17:04:16+05:30:
2024-11-25T17:04:17+05:30:
2024-11-25T17:04:18+05:30:
2024-11-25T17:04:19+05:30:

[INFO]
[INFO]
[INFO]
[INFO]

[application] hello
[application] hello
[application] hello
[application] hello

mirage runtime 9
Mirage runtime

_ A target ~ -
-7 ” P - I S T~ ~
- - P | T~ T =~
P A v S A Ry
struct end 8 cmdliner stdlib 6 mirage runtime 5 mirage logs make 4 unikernel hello 2
struct end Cmdliner_stdlib Mirage runtime Mirage logs.Make Unikernel.Hello

|
|

4
mirage bootvar 7
Mirage bootvar

33

l

pclock 3
Pclock

:

unix_os_time 1
Unix_os.Time

Hello Unikernel — solo5-hvt on kvm

$ mirage configure -t hvt
$ make
$ solo5-hvt —— dist/hello.hvt

| |
\ \ \

N | -\

o NC O)
/N__/ _|I__/ /

Solo5: Bindings version v0.9.0

Solo5: Memory map: 512 MB addressable:

Solo5: reserved @ (0x0 — Oxfffff)

Solo5: text @ (0x100000 — Ox1c4fff)

Solob5: rodata @ (0x1c5000 — Ox1f5fff)

Solo5: data @ (0x1f6000 — Ox289fff)

Solo5: heap >= 0x28a000 < stack < 0x20000000

[INFO]
[INFO]
[INFO]
[INFO]

2024-11-25T11:47:10-00:00.
2024-11-25T11:47:11-00:00:
2024-11-25T11:47:12-00:00:
2024-11-25T11:47:13-00:00:
Solo5: solo5 exit(@) called

[application] hello
[application] hello
[application] hello
[application] hello

: User :: User

. space ::@ space

! process ! process ‘:
Linux Kernel

mirage runtime 9
Mirage runtime
- target ~ -

- I

- - | ~ =~

struct end 8
struct end

A - A/ V A -
cmdliner_stdlib 6 mirage runtime 5 mirage logs make 4
Cmdliner_stdlib Mirage runtime Mirage logs.Make

unikernel hello 2
Unikernel. Hello

y

l

mirage bootvar 7
Mirage bootvar

pclock 3
Pclock

34

l

solo5 os time 1
Solo5 os.Time

mirage.io website

* A full-fledged https server

* Uses TLS encryption

Make
(Random : Mirage_crypto_rng_mirage.S)
(Certificate : Mirage_kv.RO)
(Key : Mirage_kv.RO)
(Tcp : Tcpip.Tcp.S with type i1paddr = Ipaddr.t)
(Connect : Connect.S)
(HTTP_server : Paf_mirage.S)
struct

35

A

MIRAGE OS

000>

A programming framework for
building type-safe, modular
systems

Get Started () Seeon Github Q@ see Paper

MirageOS is a library operating system that constructs unikernels

for secure, high-performance network applications across a
variety of cloud computing and mobile platforms.

http://mirage.io

mirage.io website

$ mirage configure -t unix ——net=host

mirage runtime 22
Mirage runtime
_ target -~
T : : Tl
- - - g N T~ =~
Sl E— —4 : v \ I N
struct end 21 cmdliner_stdlib_ 19 mirage runtime 18 | unikernel make 16
struct end Cmdliner_stdlib Mirage runtime ‘\ Unikernel.Make
: \
\
Y | -,
mirage bootvar 20 : static_certificates 15 static keys 14 connect make 13 paf mirage make 5
Mirage bootvar | Static_certificates Static_keys Connect.Make Paf mirage.Make
1
]

, s

1
tepip_stack direct tcpvavo 4 mimic_happy eyeballs make 12
! Tepip_stack direct. TCPV4V6 Mimic_happy eyeballs.Make

!
I /
dns_client mirage make 11
Dns_client mirage.Make

l

mirage crypto_rng mirage make 10 pclock 9 happy_eyeballs_mirage make 8
Mirage crypto rmg mirage.Make Pclock Happy eyeballs_mirage.Make

N ——

mirage logs make 17
Mirage logs.Make

unix_os time 7 mclock 6 tepip_stack socket v4vo 3
Unix_os.Time Mclock Tepip_stack socket.V4V6
7/ N
/7 N
» 4
udpv4v6_socket 2 tcpv4vo_socket 1
Udpv4vo_socket Tepv4vo socket

36

http://mirage.io

mirage.io website

$ mirage configure -t unix ——net=direct

mirage_runtime_ 29
Mirage_runtime

B target

T
i N
! N

v

struct_end__ 28
struct end

cmdliner_stdlib__26
Cmdliner_stdlib

mirage_runtime__ 25
Mirage runtime

Y

mirage bootvar__ 27
Mirage bootvar

unikernel_make_ 23
Unikernel. Make

connect_make 20
Connect.Make

paf_mirage make 15
Paf mirage.Make

static_certificates_ 22
Static_certificates

Static_keys

static_keys 21

N,

N tepip_stack_direct_tcpv4vo 14 mimic_happy_eyeballs_make 19
AN Tepip_stack_direct. TCPV4V6 Mimic_happy_eyeballs.Make
N \

mirage_logs_make 24
Mirage logs.Make

dns_client_mirage_make 18
Dns_client_mirage.Make

y

A

pelock 17
Pclock

happy_eyeballs_mirage _make 16
Happy_eyeballs_mirage.Make

tepip_stack direct_makev4v6 13
Tepip_stack_direct. MakeV4V6

udp_make 11
Udp.Make

tep_flow_make 10
Tep.Flow.Make

l

icmpv4_make 12
Iecmpv4.Make

tepip_stack_direct_ipv4v6_ 9
Tepip_stack_direct.IPV4V6

\

ethernet_make 5
Ethernet.Make

<

netif 4
37 Netif

static_ipv4_make_ 8 ipv6_make 6
Static_ipv4.Make Ipv6.Make
mirage_crypto_rng_mirage make 3 arp_make 7
Mirage_crypto_rng_mirage.Make Arp.Make
unix_os_time__ 2 mclock 1
Unix_os.Time Mclock

http://mirage.io

mirage.io website

$ mirage configure -t unix ——net=direct

Tepip_stack direct. MakeV4V6

tepip_stack direct makev4ve 13

icmpv4 make 12
Icmpv4.Make

\

\

udp make 11
Udp.Make

tcp flow make 10
Tep.Flow.Make

J

tepip_stack direct ipvdve 9
Tepip stack direct.IPV4V6

ethernet make 5
Ethernet.Make

¢

netif 4
Netif

static_ipv4 make 8 ipv6_make 6
Static_ipv4.Make Ipv6.Make
mirage crypto rng mirage make 3 arp_make 7
Mirage crypto rng mirage.Make Arp.Make
mclock 1

unix_os_time 2
Unix_os.Time

38

Mclock

http://mirage.io

MirageOS Compiler

« Remove dead code and inline code across traditionally opague layer
> Resulting images usually have a size of a few MiB.

> Our HTTPS web server which runs mirage.io is only 10 MiB!

* Configuration can be partially evaluated at compile-time

> Extreme specialisation enables a boot time of a few ms.

 If something (e.g. networking) is not used, it will not be available at runtime

» Minimal runtime environments use a few MiB of RAM.

 The kernel and user space share the same address space

> Many runtime checks are removed, so static safety is critical.

39

http://mirage.io

MirageOS Usecases

Bitcoin Pinata

* https://hannes.robur.coop/Posts/Pinata

1.1 MB Unikernel, which ran from 2015 to 2018

* Hold the key to 10 bitcoins (peak worth $165k)
> Now worth ~$1M

A successful authenticated TLS session reveals the
private Bitcoin key

* 500,000 accesses to the Pinata website, more than
150,000 attempts at connecting to the Pinata bounty

* The bitcoins were safel!

41

https://hannes.robur.coop/Posts/Pinata

Nitrokey NetHSM

* NitroKey is developing NetHSM, a new HSM
solution to manage cryptographic keys securely.

* Aim for high-performance, low-power,
customizability and high-security

- Open-source — auditable by anyone RS T T, S

https://www.nitrokey.com/products/nethsm

* They chose to use MirageOS running on the Muen
micro-kernel

42

Docker for Mac

MirageOS libraries used by millions of users

- Normally Docker use Linux namespaces and other Linux features

- On macOS

+ Docker daemon runs in a light Linux VM (using
hypervisor.framework)

- Docker client is a Mac application

- MirageQOS libraries are used to translate semantics differences
between platforms:

- volumes:

- network:

FUSE format + fsevent/inotify

Linux ethernet packets to MacOS network syscalls

43

Copyright (c)
Copyright (c)
Copyright (c)
Copyright (c)
Copyright (c)
Copyright (c)
Copyright (c)
Copyright (c)
Copyright (c)
Copyright (c)
Copyright (c)
Copyright (c)
Copyright (c)
Copyright (c)
Copyright (c)
Copyright (c)
Copyright (c)
Copyright (c)
Copyright (c)
Copyright (c)
Copyright (c)
Copyright (c)

Permission to

Docker

Community Edition

Version 17.12.0-ce-mac45 (21669)
Channel: edge
dfde464b63

OSS-LICENSES v

Done

Anil Madhavapeddy <anil@recoil.org>
Balraj Singh <balrajsingh@ieee.org>
Citrix Inc

David Scott <dave@recoil.org>

Docker Inc

Drup <drupyog@zoho.com>

Gabor Pali <pali.gabor@gmail.com>
Hannes Mehnert <hannes@mehnert.org>
Haris Rotsos <cr4@9@cam.ac.uk>

Kia <sadieperkins@riseup.net>

Luke Dunstan <LukeDunstan8l@gmail.com>
Magnus Skjegstad <magnus@skjegstad.com>
Mindy Preston <meetup@yomimono.org>
Nicolas Ojeda Bar <n.oje.bar@gmail.com>
Richard Mortier <mort@cantab.net>
Thomas Gazagnaire <thomas@gazagnaire.org>
Thomas Leonard <talex5@gmail.com>

pawy. <david@numm.org>

use, copy, modify, and distribute this software for any

purpose with or without fee is hereby granted, provided that the above
copyright notice and this permission notice appear in all copies.

THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
WITH REGARD TO THIS 1 SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

End tcpip.999/LICENSE

Replace

MirageOS

Al

MIRAGE OS

Operating Prog ramming A programming framework for

building type-safe, modular
systems

C) See on Github Q@ sSee Paper l

SYRICINE Languages

MirageOS is a library operating system that constructs unikernels

for secure, high-performance network applications across a
variety of cloud computing and mobile platforms.

You were here!

https://mirage.io

44

