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Collaborative Apps



Network Partitions



Network Partitions — Google docs

Enabling offline sync for one account prevents other 
accounts from working offline



Local-first software

ver 1

ver 2

ver 3



Local-first software

ver 1

ver 2

ver 3



How do we build such applications?

Make data types aware of replication



CRDTs
• Conflict-free Replicated Data Types (CRDTs)

✦ Multiple replicas of the data types

• Supports local operations

• Share updates asynchronously and ensure convergence

✦ Strong eventual consistency

[1]  Nuno Preguica et al. “Confict-free Replicated Data Types”, arXiv:1805.06358

https://arxiv.org/abs/1805.06358


Grow-only Set

{ 1, 2 } { 1, 2 }

{ 1, 2, 3 } { 1, 2, 4 }

add(3) add(4)

{ 1, 2, 3, 4 }

∪

• Supports add and lookup operations 

A set with only add and lookup is monotonic



Include remove operation
• Let’s include remove operation

✦ No longer monotonic 

{ 1, 2 } { 1, 2 }

{ 2 }

rem(1)

{ 1, 2 }

∪
The effect of remove is lost



Two-phase set
• Represent the set with a pair of sets to track additions and 

removals — A * R

✦ Lookup is performed in A / R

✦ Merge is pair-wise union of A and R sets

{ 1, 2 } * { } { 1, 2 } * { }

{ 1, 2 } * { 1 }

rem(1)

{ 1, 2 } * { 1 }

∪ * ∪
lookup (1) false



Two-phase set — Observations
{ 1, 2 } * { } { 1, 2 } * { }

{ 1, 2 } * { 1 }

rem(1)

{ 1, 2 } * { 1 }

∪ * ∪
lookup (1) false

• Monotonic — Simulate remove with adds

• Remove-wins semantics 

• Reengineer the set implementation

• Tombstones — elements removed by adding to R set!

• Removed elements gone forever



Challenges with CRDTs
• Monotonicity forces reengineering of data structures from scratch

✦ Challenges proving correctness of even sequential operations

• Not space and time-efficient

✦ Tombstones affect time- and space-efficiency

• Little attention has been paid to composition of RDTs

✦ Parametric polymorphism for RDTs

✤ Like to compose 'a set with a counter to get counter set


✦ How to compose proofs of correctness?



Can we do better?

Sequential data types
+
Git



Distributed Version Control Systems

main

bugfix feature

merge

Lowest common 
ancestor (LCA)

3-way merge



Mergeable Replicated Data Types
• MRDTs — DVCS for data types rather than just text files

✦ Branches are replica states

• Sequential data type + 3-way merge = replicated data type!



Counter MRDT
module Counter : sig 

  type t

  val read : t -> int 

  val add  : t -> int -> t

  val mult : t -> int -> t

  val merge : lca:t -> v1:t -> v2:t -> t

end = struct

  type t = int 

  let read x = x 

  let add x d = x + d 

  let mult x n = x * n 

  let merge ~lca ~v1 ~v2 = 

    lca + (v1 - lca) + (v2 - lca)

end

7

8 21

+1 *3

22 22

22 = 7 + (8-7) + (21 -7)

+14+1

+1 +14



Set MRDT
let merge ~lca ~v1 ~v2 = 

  (lca ∩ v1 ∩ v2) (* common elements *)

  ∪ (v1 - lca)    (* added in v1 *)

  ∪ (v2 - lca)    (* added in v2 *)

{ 1, 2 } { 1, 2 }

{ 2 }

rem(1)

{ 1, 2 }

∪
The effect of remove is lost

isomorphic to counter 
merge if you squint



Set MRDT
let merge ~lca ~v1 ~v2 = 

  (lca ∩ v1 ∩ v2) (* common elements *)

  ∪ (v1 - lca)    (* added in v1 *)

  ∪ (v2 - lca)    (* added in v2 *)

{ 1, 2 }

{ 2 }

rem(1)

lca

v2

  {2} (* common *)

∪ {}  (* added in v1 *) 

∪ {}  (* added in v2 *)
 { 2 }

{ 1, 2 }v1

∅

✓ No tombstones
✓ Local operations are efficient
✓ Removed elements can be 
added back



??

Set MRDT — Add after Remove

{ 1, 2 }

{ 2 }

rem(1)

lca

v2{ 2 }

{ 1, 2 }

v1

∅

{ 1, 2 }

add(1)

{ 1, 2 }  {2} (* common *)

∪ {}  (* added in v1 *) 

∪ {1} (* added in v2 *)




MRDTs and Causal History
• How did we get away with no tombstones in MRDT set?

• Tombstones in CRDTs record history

• Git records the causal history in MRDTs!

✦ Presented via LCA in 3-way merge

• How does Git keep track of causal history efficiently?

Persistent Data Structures



Git store

Tag store Block store

Tags Commit

*

1

*

Tree
1

Blob *

• Branches / tags

• Mutable
• Stores the files under version control

• Immutable, append-only & content addressed

• hash → object



Block store and persistence

Added /test.txt

Added /new.txt

Modified /test.txt

Added original 

/text.txt at 

/bak/text.txt

Example from Pro Git book: https://git-scm.com/book/en/v2/Git-Internals-Git-Objects

fdf4fc

First Commit

cac0ca

Second Commit

1a410e

Third Commit

d8329f

Tree

0155eb

Tree

3c4e9c

Tree

83baae

“Version 1”

fa49b0

“New file”

1f7a7a

“Version 2”

bak
“new.txt”

“test.txt”

“test.txt”

“new.txt”

“test.txt”

https://git-scm.com/book/en/v2/Git-Internals-Git-Objects


Irmin store

Block storeTag store

Tags Commit

*

1

*

Tree
1 1

Blob *

Mutable Immutable, content-addressed

*

• A Git-like distributed database

• MRDTs are executed on top of Irmin

Persistent algebraic data types:

Stacks, Queues, Ropes, Balanced binary 

trees, etc.
Kaki et al, “Mergeable Replicated Data Types”, 
OOPSLA 2019



Commit DAG
• Commit nodes form a DAG

✦ Captures causal history ⇒ Happens-before 

relation

• MRDTs provide causal consistency 

✦ Strongest consistency level without 
coordination

• LCA discovered by traversing the 
commit DAG



Forgetting History
• Git remembers the entire history

✦ Useful if provenance is necessary

• If not, keeping entire history is wasteful

✦ Nodes will run out of storage quicker

• But, history needed for LCA in a 3-way merge

• How much history should we keep?

• Any commits older than the latest commit “K” known by all replicas 
can be GCed

Dubey et al, “Banyan: Coordination-free Distributed 
Transactions over Mergeable Types”, APLAS 2020

Dubey, “Banyan: Coordination-free Distributed 
Transactions over Mergeable Types”, MS Thesis, IIT Madras



MRDTs = Sequential data types + 3-way merge

Does this make proving MRDTs correct easier?



????

28

{1}

{1} { }

{ } { }

add(1) rem(1)

• Our set is not add-wins set!

• Convergence is not sufficient; Intent is not preserved

• add-wins when there is a concurrent add and remove of the 
same element

• Also known as Observed-Removed set (OR-set)

Is our set an add-wins set?

let merge ~lca ~v1 ~v2 = 

  (lca ∩ v1 ∩ v2) (* common elements *)

  ∪ (v1 - lca)    (* added in v1 *)

  ∪ (v2 - lca)    (* added in v2 *)

   { } (* common elements *) 

∪ { } (* added in v1 *)

∪ { } (* added in v2 *)

= { } ∪ { } ∪ { }

= { } (expected {1})



Concretising Intent
• A formal specification language to capture the intent of the 

MRDT

✦ Must be rich enough to capture distributed execution

• Even simple data types attract enormous complexity when made 
distributed

• Mechanization to bridge the gap between spec and impl



Peepul — Certified MRDTs
• F* library implementing and proving MRDTs

★ F* — proof-oriented, solver-aided PL

• Specification language is event-based

★ Burckhardt et al. “Replicated Data Types: Specification, Verification and Optimality”, 
POPL 2014

• Replication-aware simulation to connect specification with implementation

• Space- and time-efficient implementations

★ 1st certified implementation of a O(1) replicated queue with O(n) merge.

• Composition of MRDTs and their proofs!

• Extracted OCaml RDTs are compatible with Irmin

30



Fixing Add-wins Set
• Discriminate duplicate additions by associating a unique id

31

{ (a,1) }

{ (a,1);

  (a,2) } { }

{ (a,2) } { (a,2) }

add(a) rem(a)

{ } ∪       (* common *) 

{ (a,2) } ∪ (* added left *) 

{ }         (* added right *)

= { (a,2) }



MRDT Implementation

32

{ (a,1) }

{ (a,1);

  (a,2) } { }

{ (a,2) } { (a,2) }

add(a) rem(a)

Unique Lamport Timestamp

t′￼)
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Specifying Add-wins Set
Abstract state

= { a }

add(a)

add(a) rem(a)

rd

visvis

vis vis

{ (a,1) }

{ (a,1);

  (a,2) } { }

{ (a,2) } { (a,2) }

add(a) rem(a)



Simulation Relation
• Connects the abstract state with the concrete state

• For the add-wins set,

• The main verification effort is to show that the relation above is 
indeed a simulation relation

★ Shown separately for operations and merge function

★ Proof by induction on the execution trace

34



Verifying operations

Concrete

Abstract



Verifying Merge function



Verifying Merge function



Verifying Merge function

Union



Verification effort

39



40

Composing RDTs is HARD!



Composing IRC-style chat
• Build IRC-style group chat

★ Send and read messages in channels

• Represent application state as a map MRDT

★ String (channel name) keys → mergeable log MRDT values

★ Mergeable log — message + timestamp; merge ordered by timestamp

• Goal: 

★ map and log proved correct separately

★ Use the proof of underlying RDTs to prove chat application 
correctness

41
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Generic Map MRDT
Implementation

Simulation Relation

Merge uses the merge of the 
underlying value type!

Simulation relation appeals to the 
value type’s simulation relation!

The values in the MRDT map are MRDTs



• IRC app state is constructed by instantiating generic map with 
mergeable log

• The proof of correctness of the chat application directly follows 
from the composition.

★ See paper for details!

43

Composing IRC-style chat

Soundarapandian et al, “Certified Mergeable 
Replicated Data Types”, PLDI 2022



Verification is still too hard!

44



Queue MRDT — Implementation
• Two-list queue + merge function

• “At least once” semantics for dequeue

• Each element e enqueued is (e, t) where t is the unique Lamport 
timestamp

Timestamps not 
shown for simplicity



Queue MRDT — Specification

• Extremely hard to write specs over event-based structures

• Simulation relations are harder



Better Specification
• Sequential data type + constraints as the specification for MRDT

✦ Constraints — ordering, commutativity, duplication, …

✦ MRDT behaviour = constrained linearisation + Sequential DT

Op1 Op2 Order

add(a) rem(a) Op2, Op1

rem(a) add(a) Op1, Op2

add(_) add(_) Any

rem(_) rem(_) Any

add(a) rem(b) Any

rem(a) add(b) Any

Add-wins set 
ordering 

constraint



Summary
• MRDT simplify the construction of RDTs

✦ Sequential data types + 3-way merge functions

• Persistent data structures to efficiently record causal history

• 3-way merge function is a pathway to verifying MRDTs


