
Functional Abstractions for Practical
and Scalable Concurrent Programming

KC Sivaramakrishnan
Purdue University

Concurrent programming is (still) hard!

0

5

10

15

20

POPL '14 ASPLOS '14 POPL '13 PLDI '13

papers on Concurrency –
abstractions + verification + debugging

Concurrency bugs can be disastrous

Concurrency bugs can be disastrous
•  Data race disables alarm system
•  Effect

–  256 power stations go offline
–  ~7 hr major blackout
–  11 fatalities, $6 billion

2003 Northeast blackout[1]

[1] http://www.scientificamerican.com/article/2003-blackout-five-years-later/
[2] http://sunnyday.mit.edu/papers/therac.pdf
[3] http://www.cnbc.com/id/100587334

Concurrency bugs can be disastrous
•  Data race disables alarm system
•  Effect

–  256 power stations go offline
–  ~7 hr major blackout
–  11 fatalities, $6 billion

•  Data race b/w UI and controller
•  6 fatalities

2003 Northeast blackout[1]

Therac-25 incidents[2]

[1] http://www.scientificamerican.com/article/2003-blackout-five-years-later/
[2] http://sunnyday.mit.edu/papers/therac.pdf
[3] http://www.cnbc.com/id/100587334

Concurrency bugs can be disastrous
•  Data race disables alarm system
•  Effect

–  256 power stations go offline
–  ~7 hr major blackout
–  11 fatalities, $6 billion

•  Data race b/w UI and controller
•  6 fatalities

•  Race between validation and new
orders arrival

•  NASDAQ compensation = $62 million

2003 Northeast blackout[1]

Therac-25 incidents[2]

Facebook IPO @ NASDAQ[3]

[1] http://www.scientificamerican.com/article/2003-blackout-five-years-later/
[2] http://sunnyday.mit.edu/papers/therac.pdf
[3] http://www.cnbc.com/id/100587334

Safe and scalable
concurrent program

Safe and scalable
concurrent program

Fences, Locks,
Condition variables, etc.

Safe and scalable
concurrent program

Deadlock

Data race

Fences, Locks,
Condition variables, etc.

Atomicity
violations

Safe and scalable
concurrent program

Deadlock

Eventual
consistency

No cache
coherence

Data race

Weak memory
semantics

Fences, Locks,
Condition variables, etc.

Atomicity
violations

Stick to
Status Quo

Safe and scalable
concurrent program

Testing Stick to
Status Quo

Safe and scalable
concurrent program

Testing Verification Stick to
Status Quo

Safe and scalable
concurrent program

Testing Verification Stick to
Status Quo PL Support

Safe and scalable
concurrent program

Safe and scalable
concurrent program

Atomicity
violations

Deadlock

Eventual
consistency

Non-cache
coherence

Data race

Weak memory
semantics

Functional
programming
abstractions

Programming abstractions simplify
Concurrent Programming

Transactional
Memory

Multicore
Garbage

Collection

But, programming abstractions
introduce a level of indirection

Transactional
Memory

Multicore
Garbage

Collection

Slower than locks
under high contention

Stop-the-world GC
hinders scalability

Safety
&

Simplicity

Performance
&

Functionality

Always desirable to marry the two whenever possible!

Safety
&

Simplicity

Performance
&

Functionality

MultiMLton
Intel SCC

48-core Non-cache-coherent
Azul Vega 3

864-core CC-UMA Compute clouds

MultiMLton
Intel SCC

48-core Non-cache-coherent
Azul Vega 3

864-core CC-UMA Compute clouds

Language Design
Asynchronous CML [PLDI ’11]
Memoizing Communication [ICFP ’09]
Rx-CML – optimistic CML [PADL ’14]

Runtime Systems Parasitic threads [DAMP ’10, JFP ’14]
Thread-local GC [ISMM ’12, MARC ’12, JFP ’14]

MultiMLton
Intel SCC

48-core Non-cache-coherent
Azul Vega 3

864-core CC-UMA Compute clouds

Language Design
Asynchronous CML [PLDI ’11]
Memoizing Communication [ICFP ’09]
Rx-CML – optimistic CML [PADL ’14]

Runtime Systems Parasitic threads [DAMP ’10, JFP ’14]
Thread-local GC [ISMM ’12, MARC ’12, JFP ’14]

Sting (Java) Session type based protocol optimization
[Coordination ’10, SCP ’13]

Scheduler activations
for Haskell

Schedulers for Haskell threads as Haskell libraries
[In submission to OOPSLA ’14]

Language Design

Scheduler activations
for Haskell

Schedulers for Haskell threads as Haskell libraries
[In submission to OOPSLA ’14]

MultiMLton

Rx-CML – optimistic CML [PADL ’14]

Rx-CML : A Prescription for Safely
Relaxing Synchrony

Synchronous
communication

Asynchronous
distributed system

Garbage
collection

Memory
management

Transactional
memory

Shared memory
concurrency

Abstraction

Domain

Synchronous
communication

Asynchronous
distributed system

Synchronous communication =
 atomic { data transfer +
 synchronization }

Garbage
collection

Memory
management

Transactional
memory

Shared memory
concurrency

Abstraction

Domain

Synchronous
communication

Asynchronous
distributed system

Synchronous communication =
 atomic { data transfer +
 synchronization }

Garbage
collection

Memory
management

Transactional
memory

Shared memory
concurrency

Abstraction

Domain

synchrony latency

Can we discharge synchronous communications
asynchronously and ensure observable equivalence?

Can we discharge synchronous communications
asynchronously and ensure observable equivalence?

�CML: A Prescription for Safely Relaxing Synchrony

KC Sivaramakrishnan
Purdue University

chandras@cs.purdue.edu

Lukasz Ziarek
SUNY Buffalo

lziarek@buffalo.edu

Suresh Jagannathan
Purdue University

suresh@cs.purdue.edu

Abstract
One way to ease the burden of concurrent programming is to have
threads communicate synchronously via message-passing, making
explicit the program points where data is transferred from one
thread to another. In a language like Concurrent ML (CML), this
philosophy leads to strong guarantees on the ordering and visibility
of communicated data, simplifying program reasoning. The cost of
synchrony comes with a high price in performance, however, par-
ticularly in distributed environments where communication latency
is high. To ameliorate these costs, we might allow communication
to be asynchronous, having senders buffer data without waiting for
the availability of a matching receiver, thereby allowing execution
of the sender’s continuation to overlap data transmission. However,
while the use of asynchrony can help reclaim performance, it also
complicates program structure and understanding.

In this paper, we investigate an alternative semantics for CML
that implements sends asynchronously, but guarantees that the re-
sulting execution nonetheless exhibits behavior observably equiva-
lent to one in which all communication is performed synchronously.
Our goal is to retain the expressivity and simplicity of CML’s syn-
chronous operations in writing concurrent programs and reasoning
about them, but give implementations the flexibility to safely regain
performance using asynchronous communication.

We formalize the conditions under which this equivalence
holds, and present an implementation that builds a decentralized de-
pendence graph whose structure can be used to check the integrity
of an execution with respect to this equivalence. We integrate a no-
tion of speculation to allow ill-formed executions to be rolled-back
and re-executed, replacing offending asynchronous actions with
safe synchronous ones. Several realistic case studies deployed in a
cloud environment demonstrate the utility of our approach.

1. Introduction
Concurrent ML [20] (CML) provides an expressive concurrency
mechanism through its use of first-class composable synchronous
events. When synchronized, events allow threads to communicate
data via message-passing over first-class channels. Synchronous
communication simplifies program reasoning because every com-
munication action is also a synchronization point; thus, the contin-
uation of a message-send is guaranteed that the data being sent has
been successfully transmitted to a receiver. The cost of synchrony
comes at a high price in performance, however; recent proposals

[Copyright notice will appear here once ’preprint’ option is removed.]

therefore suggest the use of asynchronous variants of CML’s syn-
chronous events [30] to overcome this cost. While asynchronous
extensions can be used to gain performance, they sacrifice the sim-
plicity provided by synchronous communication in favor of a more
complex and sophisticated set of primitives.

One way to enhance performance without requiring new addi-
tions to the core set of event combinators CML supports, is to give
the underlying runtime the freedom to allow a sender to communi-
cate data asynchronously. In this way, the cost of synchronous com-
munication can be masked by allowing the sender’s continuation to
begin execution even if a matching receiver is not yet available. Be-
cause asynchrony is introduced only by the runtime, applications
do not have to be restructured to explicitly account for new be-
haviors introduced by this additional concurrency. Thus, we wish
to have the runtime enforce the equivalence: [[send (c, v)]]k ⌘
[[asend (c, v)]]k where k is a continuation, send is CML’s syn-
chronous send operation that communicates value v on channel c,
and asend is an asynchronous variant that buffers v on c and does
not synchronize on a matching receiver.

To illustrate, consider the following simple program:

send(c1,v1)
f()
send(c2,v2)

g()
recv(c1)

recv(c2)
h()

T1 T2 T3

Thread T1 performs a synchronous send on channel c1 that is re-
ceived by thread T2, after it computes g() . After the communica-
tion is performed, T1 evaluates f() , and then sends v2 on chan-
nel c2 , which is received by thread T3. Upon receipt, T3 evaluates
h() . Assuming f , g , and h perform no communication action of
their own, the synchronous communication on c1 by T1 could have
been safely converted into an asynchronous action in which v1 is
buffered, and read by T2 later upon evaluation of g() . The observ-
able behavior of the program in both cases (i.e., treating the initial
send synchronously or asynchronously) would be the same.

Unfortunately, naı̈vely replacing synchronous communication
with an asynchronous one is not usually meaning-preserving as the
example in Figure 1 illustrates. Under a synchronous evaluation
protocol, T2 would necessarily communicate first with T3, receiv-
ing v3 on channel c2 . It is then able to receive v1 from T1; finally,
T1 can communicate v2 to T3. If the send(c1,v1) operation by
T1 were replaced by asend(c1,v1) , the first receive on T2 has, in
addition to the first send on T3, a new potential matching opportu-
nity – the send of v2 on channel c2 . If the receive by T2 matches

send(c1,v1)
f()
send(c2,v2)

recv(c2)
g()
recv(c1)

send(c2,v3)
h()
recv(c2)

T1 T2 T3

Figure 1: Performing the first send in T1 asynchronously is not
meaning preserving with respect to synchronous evaluation.

1 2013/3/28

�CML: A Prescription for Safely Relaxing Synchrony

KC Sivaramakrishnan
Purdue University

chandras@cs.purdue.edu

Lukasz Ziarek
SUNY Buffalo

lziarek@buffalo.edu

Suresh Jagannathan
Purdue University

suresh@cs.purdue.edu

Abstract
One way to ease the burden of concurrent programming is to have
threads communicate synchronously via message-passing, making
explicit the program points where data is transferred from one
thread to another. In a language like Concurrent ML (CML), this
philosophy leads to strong guarantees on the ordering and visibility
of communicated data, simplifying program reasoning. The cost of
synchrony comes with a high price in performance, however, par-
ticularly in distributed environments where communication latency
is high. To ameliorate these costs, we might allow communication
to be asynchronous, having senders buffer data without waiting for
the availability of a matching receiver, thereby allowing execution
of the sender’s continuation to overlap data transmission. However,
while the use of asynchrony can help reclaim performance, it also
complicates program structure and understanding.

In this paper, we investigate an alternative semantics for CML
that implements sends asynchronously, but guarantees that the re-
sulting execution nonetheless exhibits behavior observably equiva-
lent to one in which all communication is performed synchronously.
Our goal is to retain the expressivity and simplicity of CML’s syn-
chronous operations in writing concurrent programs and reasoning
about them, but give implementations the flexibility to safely regain
performance using asynchronous communication.

We formalize the conditions under which this equivalence
holds, and present an implementation that builds a decentralized de-
pendence graph whose structure can be used to check the integrity
of an execution with respect to this equivalence. We integrate a no-
tion of speculation to allow ill-formed executions to be rolled-back
and re-executed, replacing offending asynchronous actions with
safe synchronous ones. Several realistic case studies deployed in a
cloud environment demonstrate the utility of our approach.

1. Introduction
Concurrent ML [20] (CML) provides an expressive concurrency
mechanism through its use of first-class composable synchronous
events. When synchronized, events allow threads to communicate
data via message-passing over first-class channels. Synchronous
communication simplifies program reasoning because every com-
munication action is also a synchronization point; thus, the contin-
uation of a message-send is guaranteed that the data being sent has
been successfully transmitted to a receiver. The cost of synchrony
comes at a high price in performance, however; recent proposals

[Copyright notice will appear here once ’preprint’ option is removed.]

therefore suggest the use of asynchronous variants of CML’s syn-
chronous events [30] to overcome this cost. While asynchronous
extensions can be used to gain performance, they sacrifice the sim-
plicity provided by synchronous communication in favor of a more
complex and sophisticated set of primitives.

One way to enhance performance without requiring new addi-
tions to the core set of event combinators CML supports, is to give
the underlying runtime the freedom to allow a sender to communi-
cate data asynchronously. In this way, the cost of synchronous com-
munication can be masked by allowing the sender’s continuation to
begin execution even if a matching receiver is not yet available. Be-
cause asynchrony is introduced only by the runtime, applications
do not have to be restructured to explicitly account for new be-
haviors introduced by this additional concurrency. Thus, we wish
to have the runtime enforce the equivalence: [[send (c, v)]]k ⌘
[[asend (c, v)]]k where k is a continuation, send is CML’s syn-
chronous send operation that communicates value v on channel c,
and asend is an asynchronous variant that buffers v on c and does
not synchronize on a matching receiver.

To illustrate, consider the following simple program:

send(c1,v1)
f()
send(c2,v2)

g()
recv(c1)

recv(c2)
h()

T1 T2 T3

Thread T1 performs a synchronous send on channel c1 that is re-
ceived by thread T2, after it computes g() . After the communica-
tion is performed, T1 evaluates f() , and then sends v2 on chan-
nel c2 , which is received by thread T3. Upon receipt, T3 evaluates
h() . Assuming f , g , and h perform no communication action of
their own, the synchronous communication on c1 by T1 could have
been safely converted into an asynchronous action in which v1 is
buffered, and read by T2 later upon evaluation of g() . The observ-
able behavior of the program in both cases (i.e., treating the initial
send synchronously or asynchronously) would be the same.

Unfortunately, naı̈vely replacing synchronous communication
with an asynchronous one is not usually meaning-preserving as the
example in Figure 1 illustrates. Under a synchronous evaluation
protocol, T2 would necessarily communicate first with T3, receiv-
ing v3 on channel c2 . It is then able to receive v1 from T1; finally,
T1 can communicate v2 to T3. If the send(c1,v1) operation by
T1 were replaced by asend(c1,v1) , the first receive on T2 has, in
addition to the first send on T3, a new potential matching opportu-
nity – the send of v2 on channel c2 . If the receive by T2 matches

send(c1,v1)
f()
send(c2,v2)

recv(c2)
g()
recv(c1)

send(c2,v3)
h()
recv(c2)

T1 T2 T3

Figure 1: Performing the first send in T1 asynchronously is not
meaning preserving with respect to synchronous evaluation.

1 2013/3/28

Formalize:

Distributed Concurrent ML in MultiMLton +
Speculative execution framework

Implement:

Concurrent ML
val	
 spawn	
 	
 	
 	
 	
 	
 :	
 (unit	
 -­‐>	
 unit)	
 -­‐>	
 thread_id	

	

val	
 channel	
 	
 	
 	
 :	
 unit	
 -­‐>	
 ‘a	
 chan	

val	
 send	
 	
 	
 	
 	
 	
 	
 :	
 ‘a	
 chan	
 *	
 ‘a	
 -­‐>	
 unit	

val	
 recv	
 	
 	
 	
 	
 	
 	
 :	
 ‘a	
 chan	
 -­‐>	
 ‘a	

	

val	
 sendEvt	
 	
 	
 	
 :	
 ‘a	
 chan	
 *	
 ‘a	
 -­‐>	
 unit	
 event	

val	
 recvEvt	
 	
 	
 	
 :	
 ‘a	
 chan	
 -­‐>	
 ‘a	
 event	

val	
 sync	
 	
 	
 	
 	
 	
 	
 :	
 ‘a	
 event	
 -­‐>	
 ‘a	

val	
 never	
 	
 	
 	
 	
 	
 :	
 ‘a	
 event	

val	
 alwaysEvt	
 	
 :	
 ‘a	
 -­‐>	
 ‘a	
 event	

val	
 wrap	
 	
 	
 	
 	
 	
 	
 :	
 ‘a	
 event	
 -­‐>	
 (‘a	
 -­‐>	
 ‘b)	
 -­‐>	
 ‘b	
 event	

val	
 guard	
 	
 	
 	
 	
 	
 :	
 (unit	
 -­‐>	
 ‘a	
 event)	
 -­‐>	
 ‘a	
 event	

val	
 choose	
 	
 	
 	
 	
 :	
 ‘a	
 event	
 list	
 -­‐>	
 ‘a	
 event	

...	

Thread
creation

Synchronous
message passing

First-class events

�CML: A Prescription for Safely Relaxing Synchrony

KC Sivaramakrishnan
Purdue University

chandras@cs.purdue.edu

Lukasz Ziarek
SUNY Buffalo

lziarek@buffalo.edu

Suresh Jagannathan
Purdue University

suresh@cs.purdue.edu

Abstract
One way to ease the burden of concurrent programming is to have
threads communicate synchronously via message-passing, making
explicit the program points where data is transferred from one
thread to another. In a language like Concurrent ML (CML), this
philosophy leads to strong guarantees on the ordering and visibility
of communicated data, simplifying program reasoning. The cost of
synchrony comes with a high price in performance, however, par-
ticularly in distributed environments where communication latency
is high. To ameliorate these costs, we might allow communication
to be asynchronous, having senders buffer data without waiting for
the availability of a matching receiver, thereby allowing execution
of the sender’s continuation to overlap data transmission. However,
while the use of asynchrony can help reclaim performance, it also
complicates program structure and understanding.

In this paper, we investigate an alternative semantics for CML
that implements sends asynchronously, but guarantees that the re-
sulting execution nonetheless exhibits behavior observably equiva-
lent to one in which all communication is performed synchronously.
Our goal is to retain the expressivity and simplicity of CML’s syn-
chronous operations in writing concurrent programs and reasoning
about them, but give implementations the flexibility to safely regain
performance using asynchronous communication.

We formalize the conditions under which this equivalence
holds, and present an implementation that builds a decentralized de-
pendence graph whose structure can be used to check the integrity
of an execution with respect to this equivalence. We integrate a no-
tion of speculation to allow ill-formed executions to be rolled-back
and re-executed, replacing offending asynchronous actions with
safe synchronous ones. Several realistic case studies deployed in a
cloud environment demonstrate the utility of our approach.

1. Introduction
Concurrent ML [20] (CML) provides an expressive concurrency
mechanism through its use of first-class composable synchronous
events. When synchronized, events allow threads to communicate
data via message-passing over first-class channels. Synchronous
communication simplifies program reasoning because every com-
munication action is also a synchronization point; thus, the contin-
uation of a message-send is guaranteed that the data being sent has
been successfully transmitted to a receiver. The cost of synchrony
comes at a high price in performance, however; recent proposals

[Copyright notice will appear here once ’preprint’ option is removed.]

therefore suggest the use of asynchronous variants of CML’s syn-
chronous events [30] to overcome this cost. While asynchronous
extensions can be used to gain performance, they sacrifice the sim-
plicity provided by synchronous communication in favor of a more
complex and sophisticated set of primitives.

One way to enhance performance without requiring new addi-
tions to the core set of event combinators CML supports, is to give
the underlying runtime the freedom to allow a sender to communi-
cate data asynchronously. In this way, the cost of synchronous com-
munication can be masked by allowing the sender’s continuation to
begin execution even if a matching receiver is not yet available. Be-
cause asynchrony is introduced only by the runtime, applications
do not have to be restructured to explicitly account for new be-
haviors introduced by this additional concurrency. Thus, we wish
to have the runtime enforce the equivalence: [[send (c, v)]]k ⌘
[[asend (c, v)]]k where k is a continuation, send is CML’s syn-
chronous send operation that communicates value v on channel c,
and asend is an asynchronous variant that buffers v on c and does
not synchronize on a matching receiver.

To illustrate, consider the following simple program:

send(c1,v1)
f()
send(c2,v2)

g()
recv(c1)

recv(c2)
h()

T1 T2 T3

Thread T1 performs a synchronous send on channel c1 that is re-
ceived by thread T2, after it computes g() . After the communica-
tion is performed, T1 evaluates f() , and then sends v2 on chan-
nel c2 , which is received by thread T3. Upon receipt, T3 evaluates
h() . Assuming f , g , and h perform no communication action of
their own, the synchronous communication on c1 by T1 could have
been safely converted into an asynchronous action in which v1 is
buffered, and read by T2 later upon evaluation of g() . The observ-
able behavior of the program in both cases (i.e., treating the initial
send synchronously or asynchronously) would be the same.

Unfortunately, naı̈vely replacing synchronous communication
with an asynchronous one is not usually meaning-preserving as the
example in Figure 1 illustrates. Under a synchronous evaluation
protocol, T2 would necessarily communicate first with T3, receiv-
ing v3 on channel c2 . It is then able to receive v1 from T1; finally,
T1 can communicate v2 to T3. If the send(c1,v1) operation by
T1 were replaced by asend(c1,v1) , the first receive on T2 has, in
addition to the first send on T3, a new potential matching opportu-
nity – the send of v2 on channel c2 . If the receive by T2 matches

send(c1,v1)
f()
send(c2,v2)

recv(c2)
g()
recv(c1)

send(c2,v3)
h()
recv(c2)

T1 T2 T3

Figure 1: Performing the first send in T1 asynchronously is not
meaning preserving with respect to synchronous evaluation.

1 2013/3/28

T1 !

send(c1,v1) !

f() !

send(c2,v2) !

T2 !

recv(c2) !

g() !

recv(c1) !

T3 !

send(c2,v3) !

h() !

recv(c2) !

�CML: A Prescription for Safely Relaxing Synchrony

KC Sivaramakrishnan
Purdue University

chandras@cs.purdue.edu

Lukasz Ziarek
SUNY Buffalo

lziarek@buffalo.edu

Suresh Jagannathan
Purdue University

suresh@cs.purdue.edu

Abstract
One way to ease the burden of concurrent programming is to have
threads communicate synchronously via message-passing, making
explicit the program points where data is transferred from one
thread to another. In a language like Concurrent ML (CML), this
philosophy leads to strong guarantees on the ordering and visibility
of communicated data, simplifying program reasoning. The cost of
synchrony comes with a high price in performance, however, par-
ticularly in distributed environments where communication latency
is high. To ameliorate these costs, we might allow communication
to be asynchronous, having senders buffer data without waiting for
the availability of a matching receiver, thereby allowing execution
of the sender’s continuation to overlap data transmission. However,
while the use of asynchrony can help reclaim performance, it also
complicates program structure and understanding.

In this paper, we investigate an alternative semantics for CML
that implements sends asynchronously, but guarantees that the re-
sulting execution nonetheless exhibits behavior observably equiva-
lent to one in which all communication is performed synchronously.
Our goal is to retain the expressivity and simplicity of CML’s syn-
chronous operations in writing concurrent programs and reasoning
about them, but give implementations the flexibility to safely regain
performance using asynchronous communication.

We formalize the conditions under which this equivalence
holds, and present an implementation that builds a decentralized de-
pendence graph whose structure can be used to check the integrity
of an execution with respect to this equivalence. We integrate a no-
tion of speculation to allow ill-formed executions to be rolled-back
and re-executed, replacing offending asynchronous actions with
safe synchronous ones. Several realistic case studies deployed in a
cloud environment demonstrate the utility of our approach.

1. Introduction
Concurrent ML [20] (CML) provides an expressive concurrency
mechanism through its use of first-class composable synchronous
events. When synchronized, events allow threads to communicate
data via message-passing over first-class channels. Synchronous
communication simplifies program reasoning because every com-
munication action is also a synchronization point; thus, the contin-
uation of a message-send is guaranteed that the data being sent has
been successfully transmitted to a receiver. The cost of synchrony
comes at a high price in performance, however; recent proposals

[Copyright notice will appear here once ’preprint’ option is removed.]

therefore suggest the use of asynchronous variants of CML’s syn-
chronous events [30] to overcome this cost. While asynchronous
extensions can be used to gain performance, they sacrifice the sim-
plicity provided by synchronous communication in favor of a more
complex and sophisticated set of primitives.

One way to enhance performance without requiring new addi-
tions to the core set of event combinators CML supports, is to give
the underlying runtime the freedom to allow a sender to communi-
cate data asynchronously. In this way, the cost of synchronous com-
munication can be masked by allowing the sender’s continuation to
begin execution even if a matching receiver is not yet available. Be-
cause asynchrony is introduced only by the runtime, applications
do not have to be restructured to explicitly account for new be-
haviors introduced by this additional concurrency. Thus, we wish
to have the runtime enforce the equivalence: [[send (c, v)]]k ⌘
[[asend (c, v)]]k where k is a continuation, send is CML’s syn-
chronous send operation that communicates value v on channel c,
and asend is an asynchronous variant that buffers v on c and does
not synchronize on a matching receiver.

To illustrate, consider the following simple program:

send(c1,v1)
f()
send(c2,v2)

g()
recv(c1)

recv(c2)
h()

T1 T2 T3

Thread T1 performs a synchronous send on channel c1 that is re-
ceived by thread T2, after it computes g() . After the communica-
tion is performed, T1 evaluates f() , and then sends v2 on chan-
nel c2 , which is received by thread T3. Upon receipt, T3 evaluates
h() . Assuming f , g , and h perform no communication action of
their own, the synchronous communication on c1 by T1 could have
been safely converted into an asynchronous action in which v1 is
buffered, and read by T2 later upon evaluation of g() . The observ-
able behavior of the program in both cases (i.e., treating the initial
send synchronously or asynchronously) would be the same.

Unfortunately, naı̈vely replacing synchronous communication
with an asynchronous one is not usually meaning-preserving as the
example in Figure 1 illustrates. Under a synchronous evaluation
protocol, T2 would necessarily communicate first with T3, receiv-
ing v3 on channel c2 . It is then able to receive v1 from T1; finally,
T1 can communicate v2 to T3. If the send(c1,v1) operation by
T1 were replaced by asend(c1,v1) , the first receive on T2 has, in
addition to the first send on T3, a new potential matching opportu-
nity – the send of v2 on channel c2 . If the receive by T2 matches

send(c1,v1)
f()
send(c2,v2)

recv(c2)
g()
recv(c1)

send(c2,v3)
h()
recv(c2)

T1 T2 T3

Figure 1: Performing the first send in T1 asynchronously is not
meaning preserving with respect to synchronous evaluation.

1 2013/3/28

T1 !

send(c1,v1) !

f() !

send(c2,v2) !

T2 !

recv(c2) !

g() !

recv(c1) !

T3 !

send(c2,v3) !

h() !

recv(c2) !

A

�CML: A Prescription for Safely Relaxing Synchrony

KC Sivaramakrishnan
Purdue University

chandras@cs.purdue.edu

Lukasz Ziarek
SUNY Buffalo

lziarek@buffalo.edu

Suresh Jagannathan
Purdue University

suresh@cs.purdue.edu

Abstract
One way to ease the burden of concurrent programming is to have
threads communicate synchronously via message-passing, making
explicit the program points where data is transferred from one
thread to another. In a language like Concurrent ML (CML), this
philosophy leads to strong guarantees on the ordering and visibility
of communicated data, simplifying program reasoning. The cost of
synchrony comes with a high price in performance, however, par-
ticularly in distributed environments where communication latency
is high. To ameliorate these costs, we might allow communication
to be asynchronous, having senders buffer data without waiting for
the availability of a matching receiver, thereby allowing execution
of the sender’s continuation to overlap data transmission. However,
while the use of asynchrony can help reclaim performance, it also
complicates program structure and understanding.

In this paper, we investigate an alternative semantics for CML
that implements sends asynchronously, but guarantees that the re-
sulting execution nonetheless exhibits behavior observably equiva-
lent to one in which all communication is performed synchronously.
Our goal is to retain the expressivity and simplicity of CML’s syn-
chronous operations in writing concurrent programs and reasoning
about them, but give implementations the flexibility to safely regain
performance using asynchronous communication.

We formalize the conditions under which this equivalence
holds, and present an implementation that builds a decentralized de-
pendence graph whose structure can be used to check the integrity
of an execution with respect to this equivalence. We integrate a no-
tion of speculation to allow ill-formed executions to be rolled-back
and re-executed, replacing offending asynchronous actions with
safe synchronous ones. Several realistic case studies deployed in a
cloud environment demonstrate the utility of our approach.

1. Introduction
Concurrent ML [20] (CML) provides an expressive concurrency
mechanism through its use of first-class composable synchronous
events. When synchronized, events allow threads to communicate
data via message-passing over first-class channels. Synchronous
communication simplifies program reasoning because every com-
munication action is also a synchronization point; thus, the contin-
uation of a message-send is guaranteed that the data being sent has
been successfully transmitted to a receiver. The cost of synchrony
comes at a high price in performance, however; recent proposals

[Copyright notice will appear here once ’preprint’ option is removed.]

therefore suggest the use of asynchronous variants of CML’s syn-
chronous events [30] to overcome this cost. While asynchronous
extensions can be used to gain performance, they sacrifice the sim-
plicity provided by synchronous communication in favor of a more
complex and sophisticated set of primitives.

One way to enhance performance without requiring new addi-
tions to the core set of event combinators CML supports, is to give
the underlying runtime the freedom to allow a sender to communi-
cate data asynchronously. In this way, the cost of synchronous com-
munication can be masked by allowing the sender’s continuation to
begin execution even if a matching receiver is not yet available. Be-
cause asynchrony is introduced only by the runtime, applications
do not have to be restructured to explicitly account for new be-
haviors introduced by this additional concurrency. Thus, we wish
to have the runtime enforce the equivalence: [[send (c, v)]]k ⌘
[[asend (c, v)]]k where k is a continuation, send is CML’s syn-
chronous send operation that communicates value v on channel c,
and asend is an asynchronous variant that buffers v on c and does
not synchronize on a matching receiver.

To illustrate, consider the following simple program:

send(c1,v1)
f()
send(c2,v2)

g()
recv(c1)

recv(c2)
h()

T1 T2 T3

Thread T1 performs a synchronous send on channel c1 that is re-
ceived by thread T2, after it computes g() . After the communica-
tion is performed, T1 evaluates f() , and then sends v2 on chan-
nel c2 , which is received by thread T3. Upon receipt, T3 evaluates
h() . Assuming f , g , and h perform no communication action of
their own, the synchronous communication on c1 by T1 could have
been safely converted into an asynchronous action in which v1 is
buffered, and read by T2 later upon evaluation of g() . The observ-
able behavior of the program in both cases (i.e., treating the initial
send synchronously or asynchronously) would be the same.

Unfortunately, naı̈vely replacing synchronous communication
with an asynchronous one is not usually meaning-preserving as the
example in Figure 1 illustrates. Under a synchronous evaluation
protocol, T2 would necessarily communicate first with T3, receiv-
ing v3 on channel c2 . It is then able to receive v1 from T1; finally,
T1 can communicate v2 to T3. If the send(c1,v1) operation by
T1 were replaced by asend(c1,v1) , the first receive on T2 has, in
addition to the first send on T3, a new potential matching opportu-
nity – the send of v2 on channel c2 . If the receive by T2 matches

send(c1,v1)
f()
send(c2,v2)

recv(c2)
g()
recv(c1)

send(c2,v3)
h()
recv(c2)

T1 T2 T3

Figure 1: Performing the first send in T1 asynchronously is not
meaning preserving with respect to synchronous evaluation.

1 2013/3/28

T1 !

send(c1,v1) !

f() !

send(c2,v2) !

T2 !

recv(c2) !

g() !

recv(c1) !

T3 !

send(c2,v3) !

h() !

recv(c2) !

A

B

�CML: A Prescription for Safely Relaxing Synchrony

KC Sivaramakrishnan
Purdue University

chandras@cs.purdue.edu

Lukasz Ziarek
SUNY Buffalo

lziarek@buffalo.edu

Suresh Jagannathan
Purdue University

suresh@cs.purdue.edu

Abstract
One way to ease the burden of concurrent programming is to have
threads communicate synchronously via message-passing, making
explicit the program points where data is transferred from one
thread to another. In a language like Concurrent ML (CML), this
philosophy leads to strong guarantees on the ordering and visibility
of communicated data, simplifying program reasoning. The cost of
synchrony comes with a high price in performance, however, par-
ticularly in distributed environments where communication latency
is high. To ameliorate these costs, we might allow communication
to be asynchronous, having senders buffer data without waiting for
the availability of a matching receiver, thereby allowing execution
of the sender’s continuation to overlap data transmission. However,
while the use of asynchrony can help reclaim performance, it also
complicates program structure and understanding.

In this paper, we investigate an alternative semantics for CML
that implements sends asynchronously, but guarantees that the re-
sulting execution nonetheless exhibits behavior observably equiva-
lent to one in which all communication is performed synchronously.
Our goal is to retain the expressivity and simplicity of CML’s syn-
chronous operations in writing concurrent programs and reasoning
about them, but give implementations the flexibility to safely regain
performance using asynchronous communication.

We formalize the conditions under which this equivalence
holds, and present an implementation that builds a decentralized de-
pendence graph whose structure can be used to check the integrity
of an execution with respect to this equivalence. We integrate a no-
tion of speculation to allow ill-formed executions to be rolled-back
and re-executed, replacing offending asynchronous actions with
safe synchronous ones. Several realistic case studies deployed in a
cloud environment demonstrate the utility of our approach.

1. Introduction
Concurrent ML [20] (CML) provides an expressive concurrency
mechanism through its use of first-class composable synchronous
events. When synchronized, events allow threads to communicate
data via message-passing over first-class channels. Synchronous
communication simplifies program reasoning because every com-
munication action is also a synchronization point; thus, the contin-
uation of a message-send is guaranteed that the data being sent has
been successfully transmitted to a receiver. The cost of synchrony
comes at a high price in performance, however; recent proposals

[Copyright notice will appear here once ’preprint’ option is removed.]

therefore suggest the use of asynchronous variants of CML’s syn-
chronous events [30] to overcome this cost. While asynchronous
extensions can be used to gain performance, they sacrifice the sim-
plicity provided by synchronous communication in favor of a more
complex and sophisticated set of primitives.

One way to enhance performance without requiring new addi-
tions to the core set of event combinators CML supports, is to give
the underlying runtime the freedom to allow a sender to communi-
cate data asynchronously. In this way, the cost of synchronous com-
munication can be masked by allowing the sender’s continuation to
begin execution even if a matching receiver is not yet available. Be-
cause asynchrony is introduced only by the runtime, applications
do not have to be restructured to explicitly account for new be-
haviors introduced by this additional concurrency. Thus, we wish
to have the runtime enforce the equivalence: [[send (c, v)]]k ⌘
[[asend (c, v)]]k where k is a continuation, send is CML’s syn-
chronous send operation that communicates value v on channel c,
and asend is an asynchronous variant that buffers v on c and does
not synchronize on a matching receiver.

To illustrate, consider the following simple program:

send(c1,v1)
f()
send(c2,v2)

g()
recv(c1)

recv(c2)
h()

T1 T2 T3

Thread T1 performs a synchronous send on channel c1 that is re-
ceived by thread T2, after it computes g() . After the communica-
tion is performed, T1 evaluates f() , and then sends v2 on chan-
nel c2 , which is received by thread T3. Upon receipt, T3 evaluates
h() . Assuming f , g , and h perform no communication action of
their own, the synchronous communication on c1 by T1 could have
been safely converted into an asynchronous action in which v1 is
buffered, and read by T2 later upon evaluation of g() . The observ-
able behavior of the program in both cases (i.e., treating the initial
send synchronously or asynchronously) would be the same.

Unfortunately, naı̈vely replacing synchronous communication
with an asynchronous one is not usually meaning-preserving as the
example in Figure 1 illustrates. Under a synchronous evaluation
protocol, T2 would necessarily communicate first with T3, receiv-
ing v3 on channel c2 . It is then able to receive v1 from T1; finally,
T1 can communicate v2 to T3. If the send(c1,v1) operation by
T1 were replaced by asend(c1,v1) , the first receive on T2 has, in
addition to the first send on T3, a new potential matching opportu-
nity – the send of v2 on channel c2 . If the receive by T2 matches

send(c1,v1)
f()
send(c2,v2)

recv(c2)
g()
recv(c1)

send(c2,v3)
h()
recv(c2)

T1 T2 T3

Figure 1: Performing the first send in T1 asynchronously is not
meaning preserving with respect to synchronous evaluation.

1 2013/3/28

T1 !

send(c1,v1) !

f() !

send(c2,v2) !

T2 !

recv(c2) !

g() !

recv(c1) !

T3 !

send(c2,v3) !

h() !

recv(c2) !

A

B

C

T1 !

asend(c1,v1) !

f() !

send(c2,v2) !

T2 !

recv(c2) !

g() !

recv(c1) !

T3 !

send(c2,v3) !

h() !

recv(c2) !

�CML: A Prescription for Safely Relaxing Synchrony

KC Sivaramakrishnan
Purdue University

chandras@cs.purdue.edu

Lukasz Ziarek
SUNY Buffalo

lziarek@buffalo.edu

Suresh Jagannathan
Purdue University

suresh@cs.purdue.edu

Abstract
One way to ease the burden of concurrent programming is to have
threads communicate synchronously via message-passing, making
explicit the program points where data is transferred from one
thread to another. In a language like Concurrent ML (CML), this
philosophy leads to strong guarantees on the ordering and visibility
of communicated data, simplifying program reasoning. The cost of
synchrony comes with a high price in performance, however, par-
ticularly in distributed environments where communication latency
is high. To ameliorate these costs, we might allow communication
to be asynchronous, having senders buffer data without waiting for
the availability of a matching receiver, thereby allowing execution
of the sender’s continuation to overlap data transmission. However,
while the use of asynchrony can help reclaim performance, it also
complicates program structure and understanding.

In this paper, we investigate an alternative semantics for CML
that implements sends asynchronously, but guarantees that the re-
sulting execution nonetheless exhibits behavior observably equiva-
lent to one in which all communication is performed synchronously.
Our goal is to retain the expressivity and simplicity of CML’s syn-
chronous operations in writing concurrent programs and reasoning
about them, but give implementations the flexibility to safely regain
performance using asynchronous communication.

We formalize the conditions under which this equivalence
holds, and present an implementation that builds a decentralized de-
pendence graph whose structure can be used to check the integrity
of an execution with respect to this equivalence. We integrate a no-
tion of speculation to allow ill-formed executions to be rolled-back
and re-executed, replacing offending asynchronous actions with
safe synchronous ones. Several realistic case studies deployed in a
cloud environment demonstrate the utility of our approach.

1. Introduction
Concurrent ML [20] (CML) provides an expressive concurrency
mechanism through its use of first-class composable synchronous
events. When synchronized, events allow threads to communicate
data via message-passing over first-class channels. Synchronous
communication simplifies program reasoning because every com-
munication action is also a synchronization point; thus, the contin-
uation of a message-send is guaranteed that the data being sent has
been successfully transmitted to a receiver. The cost of synchrony
comes at a high price in performance, however; recent proposals

[Copyright notice will appear here once ’preprint’ option is removed.]

therefore suggest the use of asynchronous variants of CML’s syn-
chronous events [30] to overcome this cost. While asynchronous
extensions can be used to gain performance, they sacrifice the sim-
plicity provided by synchronous communication in favor of a more
complex and sophisticated set of primitives.

One way to enhance performance without requiring new addi-
tions to the core set of event combinators CML supports, is to give
the underlying runtime the freedom to allow a sender to communi-
cate data asynchronously. In this way, the cost of synchronous com-
munication can be masked by allowing the sender’s continuation to
begin execution even if a matching receiver is not yet available. Be-
cause asynchrony is introduced only by the runtime, applications
do not have to be restructured to explicitly account for new be-
haviors introduced by this additional concurrency. Thus, we wish
to have the runtime enforce the equivalence: [[send (c, v)]]k ⌘
[[asend (c, v)]]k where k is a continuation, send is CML’s syn-
chronous send operation that communicates value v on channel c,
and asend is an asynchronous variant that buffers v on c and does
not synchronize on a matching receiver.

To illustrate, consider the following simple program:

send(c1,v1)
f()
send(c2,v2)

g()
recv(c1)

recv(c2)
h()

T1 T2 T3

Thread T1 performs a synchronous send on channel c1 that is re-
ceived by thread T2, after it computes g() . After the communica-
tion is performed, T1 evaluates f() , and then sends v2 on chan-
nel c2 , which is received by thread T3. Upon receipt, T3 evaluates
h() . Assuming f , g , and h perform no communication action of
their own, the synchronous communication on c1 by T1 could have
been safely converted into an asynchronous action in which v1 is
buffered, and read by T2 later upon evaluation of g() . The observ-
able behavior of the program in both cases (i.e., treating the initial
send synchronously or asynchronously) would be the same.

Unfortunately, naı̈vely replacing synchronous communication
with an asynchronous one is not usually meaning-preserving as the
example in Figure 1 illustrates. Under a synchronous evaluation
protocol, T2 would necessarily communicate first with T3, receiv-
ing v3 on channel c2 . It is then able to receive v1 from T1; finally,
T1 can communicate v2 to T3. If the send(c1,v1) operation by
T1 were replaced by asend(c1,v1) , the first receive on T2 has, in
addition to the first send on T3, a new potential matching opportu-
nity – the send of v2 on channel c2 . If the receive by T2 matches

send(c1,v1)
f()
send(c2,v2)

recv(c2)
g()
recv(c1)

send(c2,v3)
h()
recv(c2)

T1 T2 T3

Figure 1: Performing the first send in T1 asynchronously is not
meaning preserving with respect to synchronous evaluation.

1 2013/3/28

T1 !

asend(c1,v1) !

f() !

send(c2,v2) !

T2 !

recv(c2) !

g() !

recv(c1) !

T3 !

send(c2,v3) !

h() !

recv(c2) !

A

�CML: A Prescription for Safely Relaxing Synchrony

KC Sivaramakrishnan
Purdue University

chandras@cs.purdue.edu

Lukasz Ziarek
SUNY Buffalo

lziarek@buffalo.edu

Suresh Jagannathan
Purdue University

suresh@cs.purdue.edu

Abstract
One way to ease the burden of concurrent programming is to have
threads communicate synchronously via message-passing, making
explicit the program points where data is transferred from one
thread to another. In a language like Concurrent ML (CML), this
philosophy leads to strong guarantees on the ordering and visibility
of communicated data, simplifying program reasoning. The cost of
synchrony comes with a high price in performance, however, par-
ticularly in distributed environments where communication latency
is high. To ameliorate these costs, we might allow communication
to be asynchronous, having senders buffer data without waiting for
the availability of a matching receiver, thereby allowing execution
of the sender’s continuation to overlap data transmission. However,
while the use of asynchrony can help reclaim performance, it also
complicates program structure and understanding.

In this paper, we investigate an alternative semantics for CML
that implements sends asynchronously, but guarantees that the re-
sulting execution nonetheless exhibits behavior observably equiva-
lent to one in which all communication is performed synchronously.
Our goal is to retain the expressivity and simplicity of CML’s syn-
chronous operations in writing concurrent programs and reasoning
about them, but give implementations the flexibility to safely regain
performance using asynchronous communication.

We formalize the conditions under which this equivalence
holds, and present an implementation that builds a decentralized de-
pendence graph whose structure can be used to check the integrity
of an execution with respect to this equivalence. We integrate a no-
tion of speculation to allow ill-formed executions to be rolled-back
and re-executed, replacing offending asynchronous actions with
safe synchronous ones. Several realistic case studies deployed in a
cloud environment demonstrate the utility of our approach.

1. Introduction
Concurrent ML [20] (CML) provides an expressive concurrency
mechanism through its use of first-class composable synchronous
events. When synchronized, events allow threads to communicate
data via message-passing over first-class channels. Synchronous
communication simplifies program reasoning because every com-
munication action is also a synchronization point; thus, the contin-
uation of a message-send is guaranteed that the data being sent has
been successfully transmitted to a receiver. The cost of synchrony
comes at a high price in performance, however; recent proposals

[Copyright notice will appear here once ’preprint’ option is removed.]

therefore suggest the use of asynchronous variants of CML’s syn-
chronous events [30] to overcome this cost. While asynchronous
extensions can be used to gain performance, they sacrifice the sim-
plicity provided by synchronous communication in favor of a more
complex and sophisticated set of primitives.

One way to enhance performance without requiring new addi-
tions to the core set of event combinators CML supports, is to give
the underlying runtime the freedom to allow a sender to communi-
cate data asynchronously. In this way, the cost of synchronous com-
munication can be masked by allowing the sender’s continuation to
begin execution even if a matching receiver is not yet available. Be-
cause asynchrony is introduced only by the runtime, applications
do not have to be restructured to explicitly account for new be-
haviors introduced by this additional concurrency. Thus, we wish
to have the runtime enforce the equivalence: [[send (c, v)]]k ⌘
[[asend (c, v)]]k where k is a continuation, send is CML’s syn-
chronous send operation that communicates value v on channel c,
and asend is an asynchronous variant that buffers v on c and does
not synchronize on a matching receiver.

To illustrate, consider the following simple program:

send(c1,v1)
f()
send(c2,v2)

g()
recv(c1)

recv(c2)
h()

T1 T2 T3

Thread T1 performs a synchronous send on channel c1 that is re-
ceived by thread T2, after it computes g() . After the communica-
tion is performed, T1 evaluates f() , and then sends v2 on chan-
nel c2 , which is received by thread T3. Upon receipt, T3 evaluates
h() . Assuming f , g , and h perform no communication action of
their own, the synchronous communication on c1 by T1 could have
been safely converted into an asynchronous action in which v1 is
buffered, and read by T2 later upon evaluation of g() . The observ-
able behavior of the program in both cases (i.e., treating the initial
send synchronously or asynchronously) would be the same.

Unfortunately, naı̈vely replacing synchronous communication
with an asynchronous one is not usually meaning-preserving as the
example in Figure 1 illustrates. Under a synchronous evaluation
protocol, T2 would necessarily communicate first with T3, receiv-
ing v3 on channel c2 . It is then able to receive v1 from T1; finally,
T1 can communicate v2 to T3. If the send(c1,v1) operation by
T1 were replaced by asend(c1,v1) , the first receive on T2 has, in
addition to the first send on T3, a new potential matching opportu-
nity – the send of v2 on channel c2 . If the receive by T2 matches

send(c1,v1)
f()
send(c2,v2)

recv(c2)
g()
recv(c1)

send(c2,v3)
h()
recv(c2)

T1 T2 T3

Figure 1: Performing the first send in T1 asynchronously is not
meaning preserving with respect to synchronous evaluation.

1 2013/3/28

T1 !

asend(c1,v1) !

f() !

send(c2,v2) !

T2 !

recv(c2) !

g() !

recv(c1) !

T3 !

send(c2,v3) !

h() !

recv(c2) !

B A

�CML: A Prescription for Safely Relaxing Synchrony

KC Sivaramakrishnan
Purdue University

chandras@cs.purdue.edu

Lukasz Ziarek
SUNY Buffalo

lziarek@buffalo.edu

Suresh Jagannathan
Purdue University

suresh@cs.purdue.edu

Abstract
One way to ease the burden of concurrent programming is to have
threads communicate synchronously via message-passing, making
explicit the program points where data is transferred from one
thread to another. In a language like Concurrent ML (CML), this
philosophy leads to strong guarantees on the ordering and visibility
of communicated data, simplifying program reasoning. The cost of
synchrony comes with a high price in performance, however, par-
ticularly in distributed environments where communication latency
is high. To ameliorate these costs, we might allow communication
to be asynchronous, having senders buffer data without waiting for
the availability of a matching receiver, thereby allowing execution
of the sender’s continuation to overlap data transmission. However,
while the use of asynchrony can help reclaim performance, it also
complicates program structure and understanding.

In this paper, we investigate an alternative semantics for CML
that implements sends asynchronously, but guarantees that the re-
sulting execution nonetheless exhibits behavior observably equiva-
lent to one in which all communication is performed synchronously.
Our goal is to retain the expressivity and simplicity of CML’s syn-
chronous operations in writing concurrent programs and reasoning
about them, but give implementations the flexibility to safely regain
performance using asynchronous communication.

We formalize the conditions under which this equivalence
holds, and present an implementation that builds a decentralized de-
pendence graph whose structure can be used to check the integrity
of an execution with respect to this equivalence. We integrate a no-
tion of speculation to allow ill-formed executions to be rolled-back
and re-executed, replacing offending asynchronous actions with
safe synchronous ones. Several realistic case studies deployed in a
cloud environment demonstrate the utility of our approach.

1. Introduction
Concurrent ML [20] (CML) provides an expressive concurrency
mechanism through its use of first-class composable synchronous
events. When synchronized, events allow threads to communicate
data via message-passing over first-class channels. Synchronous
communication simplifies program reasoning because every com-
munication action is also a synchronization point; thus, the contin-
uation of a message-send is guaranteed that the data being sent has
been successfully transmitted to a receiver. The cost of synchrony
comes at a high price in performance, however; recent proposals

[Copyright notice will appear here once ’preprint’ option is removed.]

therefore suggest the use of asynchronous variants of CML’s syn-
chronous events [30] to overcome this cost. While asynchronous
extensions can be used to gain performance, they sacrifice the sim-
plicity provided by synchronous communication in favor of a more
complex and sophisticated set of primitives.

One way to enhance performance without requiring new addi-
tions to the core set of event combinators CML supports, is to give
the underlying runtime the freedom to allow a sender to communi-
cate data asynchronously. In this way, the cost of synchronous com-
munication can be masked by allowing the sender’s continuation to
begin execution even if a matching receiver is not yet available. Be-
cause asynchrony is introduced only by the runtime, applications
do not have to be restructured to explicitly account for new be-
haviors introduced by this additional concurrency. Thus, we wish
to have the runtime enforce the equivalence: [[send (c, v)]]k ⌘
[[asend (c, v)]]k where k is a continuation, send is CML’s syn-
chronous send operation that communicates value v on channel c,
and asend is an asynchronous variant that buffers v on c and does
not synchronize on a matching receiver.

To illustrate, consider the following simple program:

send(c1,v1)
f()
send(c2,v2)

g()
recv(c1)

recv(c2)
h()

T1 T2 T3

Thread T1 performs a synchronous send on channel c1 that is re-
ceived by thread T2, after it computes g() . After the communica-
tion is performed, T1 evaluates f() , and then sends v2 on chan-
nel c2 , which is received by thread T3. Upon receipt, T3 evaluates
h() . Assuming f , g , and h perform no communication action of
their own, the synchronous communication on c1 by T1 could have
been safely converted into an asynchronous action in which v1 is
buffered, and read by T2 later upon evaluation of g() . The observ-
able behavior of the program in both cases (i.e., treating the initial
send synchronously or asynchronously) would be the same.

Unfortunately, naı̈vely replacing synchronous communication
with an asynchronous one is not usually meaning-preserving as the
example in Figure 1 illustrates. Under a synchronous evaluation
protocol, T2 would necessarily communicate first with T3, receiv-
ing v3 on channel c2 . It is then able to receive v1 from T1; finally,
T1 can communicate v2 to T3. If the send(c1,v1) operation by
T1 were replaced by asend(c1,v1) , the first receive on T2 has, in
addition to the first send on T3, a new potential matching opportu-
nity – the send of v2 on channel c2 . If the receive by T2 matches

send(c1,v1)
f()
send(c2,v2)

recv(c2)
g()
recv(c1)

send(c2,v3)
h()
recv(c2)

T1 T2 T3

Figure 1: Performing the first send in T1 asynchronously is not
meaning preserving with respect to synchronous evaluation.

1 2013/3/28

T1 !

asend(c1,v1) !

f() !

send(c2,v2) !

T2 !

recv(c2) !

g() !

recv(c1) !

T3 !

send(c2,v3) !

h() !

recv(c2) !

C

B A

✘

�CML: A Prescription for Safely Relaxing Synchrony

KC Sivaramakrishnan
Purdue University

chandras@cs.purdue.edu

Lukasz Ziarek
SUNY Buffalo

lziarek@buffalo.edu

Suresh Jagannathan
Purdue University

suresh@cs.purdue.edu

Abstract
One way to ease the burden of concurrent programming is to have
threads communicate synchronously via message-passing, making
explicit the program points where data is transferred from one
thread to another. In a language like Concurrent ML (CML), this
philosophy leads to strong guarantees on the ordering and visibility
of communicated data, simplifying program reasoning. The cost of
synchrony comes with a high price in performance, however, par-
ticularly in distributed environments where communication latency
is high. To ameliorate these costs, we might allow communication
to be asynchronous, having senders buffer data without waiting for
the availability of a matching receiver, thereby allowing execution
of the sender’s continuation to overlap data transmission. However,
while the use of asynchrony can help reclaim performance, it also
complicates program structure and understanding.

In this paper, we investigate an alternative semantics for CML
that implements sends asynchronously, but guarantees that the re-
sulting execution nonetheless exhibits behavior observably equiva-
lent to one in which all communication is performed synchronously.
Our goal is to retain the expressivity and simplicity of CML’s syn-
chronous operations in writing concurrent programs and reasoning
about them, but give implementations the flexibility to safely regain
performance using asynchronous communication.

We formalize the conditions under which this equivalence
holds, and present an implementation that builds a decentralized de-
pendence graph whose structure can be used to check the integrity
of an execution with respect to this equivalence. We integrate a no-
tion of speculation to allow ill-formed executions to be rolled-back
and re-executed, replacing offending asynchronous actions with
safe synchronous ones. Several realistic case studies deployed in a
cloud environment demonstrate the utility of our approach.

1. Introduction
Concurrent ML [20] (CML) provides an expressive concurrency
mechanism through its use of first-class composable synchronous
events. When synchronized, events allow threads to communicate
data via message-passing over first-class channels. Synchronous
communication simplifies program reasoning because every com-
munication action is also a synchronization point; thus, the contin-
uation of a message-send is guaranteed that the data being sent has
been successfully transmitted to a receiver. The cost of synchrony
comes at a high price in performance, however; recent proposals

[Copyright notice will appear here once ’preprint’ option is removed.]

therefore suggest the use of asynchronous variants of CML’s syn-
chronous events [30] to overcome this cost. While asynchronous
extensions can be used to gain performance, they sacrifice the sim-
plicity provided by synchronous communication in favor of a more
complex and sophisticated set of primitives.

One way to enhance performance without requiring new addi-
tions to the core set of event combinators CML supports, is to give
the underlying runtime the freedom to allow a sender to communi-
cate data asynchronously. In this way, the cost of synchronous com-
munication can be masked by allowing the sender’s continuation to
begin execution even if a matching receiver is not yet available. Be-
cause asynchrony is introduced only by the runtime, applications
do not have to be restructured to explicitly account for new be-
haviors introduced by this additional concurrency. Thus, we wish
to have the runtime enforce the equivalence: [[send (c, v)]]k ⌘
[[asend (c, v)]]k where k is a continuation, send is CML’s syn-
chronous send operation that communicates value v on channel c,
and asend is an asynchronous variant that buffers v on c and does
not synchronize on a matching receiver.

To illustrate, consider the following simple program:

send(c1,v1)
f()
send(c2,v2)

g()
recv(c1)

recv(c2)
h()

T1 T2 T3

Thread T1 performs a synchronous send on channel c1 that is re-
ceived by thread T2, after it computes g() . After the communica-
tion is performed, T1 evaluates f() , and then sends v2 on chan-
nel c2 , which is received by thread T3. Upon receipt, T3 evaluates
h() . Assuming f , g , and h perform no communication action of
their own, the synchronous communication on c1 by T1 could have
been safely converted into an asynchronous action in which v1 is
buffered, and read by T2 later upon evaluation of g() . The observ-
able behavior of the program in both cases (i.e., treating the initial
send synchronously or asynchronously) would be the same.

Unfortunately, naı̈vely replacing synchronous communication
with an asynchronous one is not usually meaning-preserving as the
example in Figure 1 illustrates. Under a synchronous evaluation
protocol, T2 would necessarily communicate first with T3, receiv-
ing v3 on channel c2 . It is then able to receive v1 from T1; finally,
T1 can communicate v2 to T3. If the send(c1,v1) operation by
T1 were replaced by asend(c1,v1) , the first receive on T2 has, in
addition to the first send on T3, a new potential matching opportu-
nity – the send of v2 on channel c2 . If the receive by T2 matches

send(c1,v1)
f()
send(c2,v2)

recv(c2)
g()
recv(c1)

send(c2,v3)
h()
recv(c2)

T1 T2 T3

Figure 1: Performing the first send in T1 asynchronously is not
meaning preserving with respect to synchronous evaluation.

1 2013/3/28

T1 !

asend(c1,v1) !

f() !

send(c2,v2) !

T2 !

recv(c2) !

g() !

recv(c1) !

T3 !

send(c2,v3) !

h() !

recv(c2) !

C

B A

✘

Cyclic dependence ⇒ divergent behavior

�CML: A Prescription for Safely Relaxing Synchrony

KC Sivaramakrishnan
Purdue University

chandras@cs.purdue.edu

Lukasz Ziarek
SUNY Buffalo

lziarek@buffalo.edu

Suresh Jagannathan
Purdue University

suresh@cs.purdue.edu

Abstract
One way to ease the burden of concurrent programming is to have
threads communicate synchronously via message-passing, making
explicit the program points where data is transferred from one
thread to another. In a language like Concurrent ML (CML), this
philosophy leads to strong guarantees on the ordering and visibility
of communicated data, simplifying program reasoning. The cost of
synchrony comes with a high price in performance, however, par-
ticularly in distributed environments where communication latency
is high. To ameliorate these costs, we might allow communication
to be asynchronous, having senders buffer data without waiting for
the availability of a matching receiver, thereby allowing execution
of the sender’s continuation to overlap data transmission. However,
while the use of asynchrony can help reclaim performance, it also
complicates program structure and understanding.

In this paper, we investigate an alternative semantics for CML
that implements sends asynchronously, but guarantees that the re-
sulting execution nonetheless exhibits behavior observably equiva-
lent to one in which all communication is performed synchronously.
Our goal is to retain the expressivity and simplicity of CML’s syn-
chronous operations in writing concurrent programs and reasoning
about them, but give implementations the flexibility to safely regain
performance using asynchronous communication.

We formalize the conditions under which this equivalence
holds, and present an implementation that builds a decentralized de-
pendence graph whose structure can be used to check the integrity
of an execution with respect to this equivalence. We integrate a no-
tion of speculation to allow ill-formed executions to be rolled-back
and re-executed, replacing offending asynchronous actions with
safe synchronous ones. Several realistic case studies deployed in a
cloud environment demonstrate the utility of our approach.

1. Introduction
Concurrent ML [20] (CML) provides an expressive concurrency
mechanism through its use of first-class composable synchronous
events. When synchronized, events allow threads to communicate
data via message-passing over first-class channels. Synchronous
communication simplifies program reasoning because every com-
munication action is also a synchronization point; thus, the contin-
uation of a message-send is guaranteed that the data being sent has
been successfully transmitted to a receiver. The cost of synchrony
comes at a high price in performance, however; recent proposals

[Copyright notice will appear here once ’preprint’ option is removed.]

therefore suggest the use of asynchronous variants of CML’s syn-
chronous events [30] to overcome this cost. While asynchronous
extensions can be used to gain performance, they sacrifice the sim-
plicity provided by synchronous communication in favor of a more
complex and sophisticated set of primitives.

One way to enhance performance without requiring new addi-
tions to the core set of event combinators CML supports, is to give
the underlying runtime the freedom to allow a sender to communi-
cate data asynchronously. In this way, the cost of synchronous com-
munication can be masked by allowing the sender’s continuation to
begin execution even if a matching receiver is not yet available. Be-
cause asynchrony is introduced only by the runtime, applications
do not have to be restructured to explicitly account for new be-
haviors introduced by this additional concurrency. Thus, we wish
to have the runtime enforce the equivalence: [[send (c, v)]]k ⌘
[[asend (c, v)]]k where k is a continuation, send is CML’s syn-
chronous send operation that communicates value v on channel c,
and asend is an asynchronous variant that buffers v on c and does
not synchronize on a matching receiver.

To illustrate, consider the following simple program:

send(c1,v1)
f()
send(c2,v2)

g()
recv(c1)

recv(c2)
h()

T1 T2 T3

Thread T1 performs a synchronous send on channel c1 that is re-
ceived by thread T2, after it computes g() . After the communica-
tion is performed, T1 evaluates f() , and then sends v2 on chan-
nel c2 , which is received by thread T3. Upon receipt, T3 evaluates
h() . Assuming f , g , and h perform no communication action of
their own, the synchronous communication on c1 by T1 could have
been safely converted into an asynchronous action in which v1 is
buffered, and read by T2 later upon evaluation of g() . The observ-
able behavior of the program in both cases (i.e., treating the initial
send synchronously or asynchronously) would be the same.

Unfortunately, naı̈vely replacing synchronous communication
with an asynchronous one is not usually meaning-preserving as the
example in Figure 1 illustrates. Under a synchronous evaluation
protocol, T2 would necessarily communicate first with T3, receiv-
ing v3 on channel c2 . It is then able to receive v1 from T1; finally,
T1 can communicate v2 to T3. If the send(c1,v1) operation by
T1 were replaced by asend(c1,v1) , the first receive on T2 has, in
addition to the first send on T3, a new potential matching opportu-
nity – the send of v2 on channel c2 . If the receive by T2 matches

send(c1,v1)
f()
send(c2,v2)

recv(c2)
g()
recv(c1)

send(c2,v3)
h()
recv(c2)

T1 T2 T3

Figure 1: Performing the first send in T1 asynchronously is not
meaning preserving with respect to synchronous evaluation.

1 2013/3/28

Distributed group chat app

No central server & causal dependence → causal broadcast

Distributed group chat app

No central server & causal dependence → causal broadcast

if a matching receiver is not yet available. Because asynchrony is introduced only by
the runtime, applications do not have to be restructured to explicitly account for new
behaviors introduced by this additional concurrency. Thus, we wish to have the runtime
enforce the equivalence: [[send (c, v)]]k ⌘ [[asend (c, v)]]k where k is a continuation,
send is CML’s synchronous send operation that communicates value v on channel c,
and asend is an asynchronous variant that buffers v on c and does not synchronize with
matching receiver.

Motivation. To motivate the utility of safe relaxation of synchronous behavior, con-
sider the problem of building a distributed chat application. The application consists of
a number of participants, each of whom can broadcast a message to every other mem-
ber in the group. The invariant that must be observed is that any two messages sent by
a participant must appear in the same order to all members. Moreover, any message
Y broadcast in response to a previously received message X must always appear af-
ter message X to every member. Here, message Y is said to be causally dependent on
message X .

datatype ’a bchan = BCHAN of (’a chan list (* val *) * unit chan list (* ack *))

fun newBChan (n: int) (* number of participants *) =
BCHAN(tabulate(n,fn _ => channel ()), tabulate(n,fn _ => channel ()))

fun bsend (BCHAN (vcList , acList), v: ’a, id: int) : unit =
let

val _ = map (fn vc => if (vc = nth (vcList , id)) then () else send (vc, v))
vcList (* phase 1 -- Value distribution *)

val _ = map (fn ac => if (ac = nth (acList , id)) then () else recv ac)
acList (* phase 2 -- Acknowledgments *)

in ()
end

fun brecv (BCHAN (vcList , acList), id: int) : ’a=
let val v = recv (nth (vcList , id))

val _ = send (nth (acList , id), ())
in v
end

Fig. 1: Synchronous broadcast channel

Building such an application using a centralized server is straightforward, but hin-
ders scalability. In the absence of central mediation, a causal broadcast protocol [2] is
required. One possible encoding of causal broadcast using CML primitives is shown
in Figure 1. A broadcast operation involves two phases. In the first phase, values (i.e.,
messages) are synchronously communicated to all receivers (except to the sender). In
the second phase, the sender simulates a barrier by synchronously receiving acknowl-
edgments from all recipients.

The synchronous nature of the broadcast protocol along with the fact that the ac-
knowledgment phase occurs only after message distribution ensure that no member
can proceed immediately after receiving a message until all other members have also
received the message. This achieves the desired causal ordering between broadcast
messages since every member would have received a message before the subsequent
causally ordered message is generated. We can build a distributed group chat server
using the broadcast channel as shown below.

synchronously send values
prevent receivers from proceeding until
all members have received the value

Distributed group chat app: Performance

Distributed group chat app: Performance

Site A – US East

bsend(c,x)	

brecv(c)	

Site B – EU

brecv(c)	

bsend(c,y)	

Site C – US West

brecv(c)	

brecv(c)	

Distributed group chat app: Performance

Site A – US East

bsend(c,x)	

brecv(c)	

Site B – EU

brecv(c)	

bsend(c,y)	

Site C – US West

brecv(c)	

brecv(c)	

Distributed group chat app: Performance

Site A – US East

bsend(c,x)	

brecv(c)	

Site B – EU

brecv(c)	

bsend(c,y)	

Site C – US West

brecv(c)	

brecv(c)	

Distributed group chat app: Performance

display(X)

S

S

R

R

S

display(Y)

Participant 1
UI Daemon

display(Y)

S

S

R

R

R

S

display(X)

Participant 2
UI Daemon

R

S

display(Y)

Participant 3
UI Daemon

Time

X

X
ack

Y

ack

Y

ack

Figure 3: Incorrect execution due to unsafe relaxation of sends
during broadcast. Dotted arrow represents in-flight message.

message. This achieves the desired causal ordering between broad-
cast messages since every member would have received a message
before the subsequent causally ordered message is generated. We
can build a distributed group chat server using the broadcast chan-
nel as shown below.

1 (* bc -- broadcast chan *)
2 fun daemon id =
3 let val _ = display (brecv (bc, id))
4 in daemon id
5 end
6

7 fun newMessage (m, id) =
8 let val _ = display (m)
9 in bsend (bc, m, id)

10 end

Assume that there are n participants in the group, each with a
unique identifier id between 0 and n � 1. Each participant runs
a local daemon thread that waits for incoming messages on the
broadcast channel bc . On a reception of a message, the daemon
displays the message and continues waiting. The clients broadcast
a message using newMessage after displaying the message locally.
Observe that remote messages are only displayed after all other
participants have also received the message. In a geo-distributed
environment, where the communication latency is very high, this
protocol results in a poor user experience that degrades as the
number of participants increases.

Without making wholesale (ideally, zero!) changes to this rel-
atively simple protocol implementation, we would like to improve
responsiveness, while preserving correctness. One obvious way of
reducing latency overheads is to convert the synchronous sends in
bsend to an asynchronous variant that buffers the message, but does
not synchronize with a matching receiver. There are two opportu-
nities where asynchrony could be introduced, either during value
distribution or during acknowledgment reception. Unfortunately,
injecting asynchrony at either point is not guaranteed to preserve
causal ordering on the semantics of the program.

Consider the case where the value is distributed asynchronously.
Assume that there are three participants. Participant 1 first types
message X , which is seen by participant 2, who in turn types
the message Y after sending an acknowledgment. Since there is
a causal order between the message X and Y, participant 3 must
see X followed by Y. Figure 3 shows an execution where this is not
the case. In the figure, uninteresting messages have been elided for
clarity.

The key observation is that asynchrony can result in message
X sent by the participant 1 to participant 3 to be in-flight, while
the message Y sent by participant 2 reaches participant 3 out-of-
order, leading to a violation of the protocol’s invariants. Similarly,
it is easy to see that sending acknowledgments messages asyn-

chronously is also incorrect because it would allow a participant
that receives a message to proceed without assurance that all other
participants have received the same message, leading to a broken
causal dependence.

To quantify these issues, we implemented a group chat simula-
tor application using a distributed extension of the MLton Standard
ML compiler, using ZeroMQ [28] as the transport layer, and Con-
current ML as the source language. We launched three Amazon
EC2 instances, each simulating a participant in the group chat ap-
plication, with the same communication pattern described in the
discussion. In order to capture the geo-distributed nature of the
application, participants were placed in three different availability
zones – EU West (Ireland), US West (Oregon), and Asia Pacific
(Tokyo), resp.

During each run, participant 1 broadcasts a message X , fol-
lowed by participant 2 broadcasting Y . We consider the run to be
successful if the participants see the messages X , Y , in that order.
The experiment was repeated for 1K iterations. We record the time
between protocol initiation and the time at which each participant
gets the message Y . We consider the largest of the times at each
participant to be the running time. The results are presented below.

Execution Avg.time (ms) Errors
Sync 1540 0
Unsafe Async 520 7
Safe Async (�CML) 533 0

The Unsafe Async row describes the variant where both value
and acknowledgment distribution is performed asynchronously; it
is three times as fast as the synchronous variant. However, over the
total set of 1K runs, it produced seven erroneous executions.

The Safe Async row illustrates our implementation, �CML, that
detects erroneous executions on-the-fly and remediates them. The
results indicate that the cost of ensuring safe asynchronous execu-
tions is quite low for this application, incurring only roughly 2.5%
overhead above the unsafe version. Thus, in this application, we
can gain the performance benefits and responsiveness of the asyn-
chronous version, while retaining the simplicity of reasoning about
program behavior synchronously. Formalizing the mechanism by
which errors due to injecting asynchrony can be detected and re-
paired, without forgoing the benefits of asynchronous execution, is
the focus of the remainder of the paper.

3. Axiomatic Semantics
We introduce an axiomatic formalization for reasoning about
message-passing communication behavior that specifies the val-
ues that can be sent and received on channels; not surprisingly, our
formulation is similar in structure to axiomatic formalizations used
to describe, for example, relaxed memory models [7, 21, 23]. We
split the execution of a program into thread-local and inter-thread
actions. These actions abstract the relevant behaviors possible in
a CML execution, relaxed or otherwise. Relations that dictate the
sequential order in which a thread executes, or that specify a com-
munication match between a send and recv operation, define
dependencies that any sensible execution must respect.

A happens-before relation can be then given as the transitive
closure over the constructed dependencies built using program and
communication orderings that captures the set of possible inter-
leavings a program may exhibit. There may be more behaviors
that satisfy happens-before than realizable when executing a CML
program because the relation does not enforce temporal relation-
ships between communication actions that would manifest in a syn-
chronous execution. Therefore, to understand the validity of exe-
cutions, we define a well-formedness condition that imposes addi-
tional constraints on executions to ensure their observable effects
correspond to correct CML behavior.

3 2013/3/28

Site A – US East

bsend(c,x)	

brecv(c)	

Site B – EU

brecv(c)	

bsend(c,y)	

Site C – US West

brecv(c)	

brecv(c)	

Formalization
Reason axiomatically

Happens-before relation

We assume a set of T threads, C channels, and V values. The
set of inter-thread actions is provided below. Superscripts m and n
denote a unique identifier for the action.
ACTIONS:

A := b
t

(thread t starts)
| e

t

(thread t ends)
| jm

t

t0 (thread t detects thread t’ has terminated)
| fm

t

t0 (thread t creates a new thread t’)
| sm

t

c, v (thread t sends value v on channel c
| rm

t

c (thread t receives a value on channel c)
| pm

t

v (thread t outputs an observable value v)

c 2 C t, t0 2 T v 2 V m,n 2 N
Action b

t

signals the initiation of a new thread with identifier t;
action e

t

indicates that thread t has terminated. A join action, jm
t

t0,
defines an action that recognizes the point where thread t detects
that another thread t0 has completed. A thread creation action,
where thread t spawns a thread t0, is given by fm

t

t0. Observe that
there may be an arbitrary number of actions performed between
the point where a thread is created, and the point where it begins
execution. Action sm

t

c, v denotes the communication of data v on
channel c by thread t, and rm

t

c denotes the receipt of data from
channel c. An external action (e.g., printing) that emits value v is
denoted as pm

t

v. We can generalize these individuals actions into a
family of related actions:

ACTION CLASSES:
A

s

= {sm
t

c, v | t 2 T, v 2 V} (Sends)
A

r

= {rm
t

c | t 2 T} (Receives)
A

c

= A
s

[A
r

(Communication)
A

o

= {pm
t

v | t 2 T, v 2 V} (Observables)

Notation. Given an action class a, we write a to represent a list of
elements drawn from a. We write T (↵) to indicate the thread in
which action ↵ occurs, and write V (sm

t

c, v) to extract the value
v communicated by a send action. Given a set of actions A 2 2A,
A

x

= A\A
x

, where A
x

represents one of the action classes defined
above.

An interleaving is a total order on actions that reflects the oc-
currence of one action before another in global time. Interleavings
are derived from a preorder1 called happens-before [12] that relates
causal dependencies between actions.

Definition 1 (Axiomatic Execution). An axiomatic execution is
defined by the tuple E := hP,A,!

po

,Mi where:

• P is a program.
• A is a set of actions.
• !

po

✓ A ⇥ A is the program order, a disjoint union of the
sequential actions of each thread (which is a total order).

• M 2 (A
s

* A
r

) [(A
r

* A
s

) is a communication-match
function that maps each send and receive to its matching com-
munication action (i.e, if ↵ = M(↵0) then ↵0 = M(↵)). More-
over, a send and its matching receive must operate on the same
channel and operate in different threads (i.e., if M(sm

t

c, v) =
rn
t

0c0 or M(rn
t

0c0) = sm
t

c, v then t 6= t0 and c = c0).

Definition 2 (Communication Order). A communication order
is established between matching communication actions. If � =
M(↵), then ↵ !

co

� and � !
co

↵.

There is also an obvious ordering on thread creation and execu-
tion, as well as the visibility of thread termination by other threads:

1 A preorder is a reflexive transitive binary relation. Unlike partial orders,
preorders are not necessarily anti-symmetric, i.e. they may contain cycles.

bt1
po

po

po

po

po

po

po

po

po

po

po

po

po

po

ft1t2

ft1t3

st1c1, v2

pt11

et1

st1c2, v2

td

td

bt2

rt2c2

pt22

rt2c1

et2

co

co

co

bt3

st3c2, v3

pt33

rt2c2

et3

bt1
po

po

po

po

po

po

po

po

po

po

po
ft1t2

ft1t3

st1c1, v2

pt11

et1

st1c2, v2

td

td

bt2

rt2c2

pt22

rt2c1

et2

bt3

st3c2, v3

co

co

Figure 4: Two possible axiomatic executions from Figure 1. We
omit join actions for brevity.

Definition 3 (Thread Dependence). If ↵ = fm

t

t0 and � = b
t

0 or
↵ = e

t

and � = jm
t

0 t then ↵ !
td

� holds.

Definition 4 (Happens-before relation). The happens-before order
of an execution is the transitive closure of the union of program
order, thread dependence order, and actions related by communi-
cation and program order:

!
hb

= (!
po

[!
td

[
{(↵,�) | ↵ !

co

↵0 ^ ↵0 !
po

�} [
{(�,↵) | � !

po

↵0 ^ ↵0 !
co

↵})+

For any two actions ↵,� 2 A, if ↵ =
hb

�, then ↵ and � are said
to be concurrent actions.

Definition 5 (Happens-before Cycle). A cycle exists in a happens-
before relation if for any two actions ↵,� and ↵ !

hb

� !
hb

↵.

To illustrate these definitions, Figure 4 shows two axiomatic
executions of the program depicted in Figure 1. We assume thread
T1 spawns T2 and T3 , and we replace calls to f , g , and h found
in the original program, with an observable action, like a print
statement. The execution on the left imposes no causal dependence
between the observable actions in T2 or T3 ; thus, an interleaving
derived from this execution may permute the order in which these
statements execute. All interleavings derivable from this execution
correspond to valid CML behavior.

In contrast, the execution depicted on the right-hand side of
the figure, which corresponds to the erroneous execution discussed
in the introduction, exhibits a happens-before cycle between T1

and T2 . The cycle occurs because program order edges in T1 can
be traversed to reach the second send action, a communication
order edge can be traversed to then execute T2 via its program
order edges until control reaches the second receive, whereupon
a communication edge can be traversed again back to T1 . Such
cyclic dependences never manifest in any correct CML execution.
We must therefore strengthen our notion of executions to discard
those that contain such cycles.

To do so, we first note that the semantics as currently presented
is concerned only with actions that introduce some form of causal
dependence either within a thread (via program order) or across
threads (via thread dependence or communication order). However,
a real program also does computation, and reasoning about an
execution’s correctness will require us to specify these actions as
well. Indeed, to facilitate relating an operational definition of CML
that expresses our notion of a relaxed execution (see Section 4) with
the axiomatic semantics, we parameterize the latter with the ability
to reason about intra-thread behavior.

Intra-thread semantics. The intra-thread semantics of a thread
is abstracted in our formulation via a labeled transition system. Let
Stateintra denote the intra-thread state of a thread; its specific struc-

4 2013/3/28

Well-formed execution Obs (WF_Exec (P)) ∈ {Obs (Sync_Exec (P))}

Formalization
Reason axiomatically

Happens-before relation

We assume a set of T threads, C channels, and V values. The
set of inter-thread actions is provided below. Superscripts m and n
denote a unique identifier for the action.
ACTIONS:

A := b
t

(thread t starts)
| e

t

(thread t ends)
| jm

t

t0 (thread t detects thread t’ has terminated)
| fm

t

t0 (thread t creates a new thread t’)
| sm

t

c, v (thread t sends value v on channel c
| rm

t

c (thread t receives a value on channel c)
| pm

t

v (thread t outputs an observable value v)

c 2 C t, t0 2 T v 2 V m,n 2 N
Action b

t

signals the initiation of a new thread with identifier t;
action e

t

indicates that thread t has terminated. A join action, jm
t

t0,
defines an action that recognizes the point where thread t detects
that another thread t0 has completed. A thread creation action,
where thread t spawns a thread t0, is given by fm

t

t0. Observe that
there may be an arbitrary number of actions performed between
the point where a thread is created, and the point where it begins
execution. Action sm

t

c, v denotes the communication of data v on
channel c by thread t, and rm

t

c denotes the receipt of data from
channel c. An external action (e.g., printing) that emits value v is
denoted as pm

t

v. We can generalize these individuals actions into a
family of related actions:

ACTION CLASSES:
A

s

= {sm
t

c, v | t 2 T, v 2 V} (Sends)
A

r

= {rm
t

c | t 2 T} (Receives)
A

c

= A
s

[A
r

(Communication)
A

o

= {pm
t

v | t 2 T, v 2 V} (Observables)

Notation. Given an action class a, we write a to represent a list of
elements drawn from a. We write T (↵) to indicate the thread in
which action ↵ occurs, and write V (sm

t

c, v) to extract the value
v communicated by a send action. Given a set of actions A 2 2A,
A

x

= A\A
x

, where A
x

represents one of the action classes defined
above.

An interleaving is a total order on actions that reflects the oc-
currence of one action before another in global time. Interleavings
are derived from a preorder1 called happens-before [12] that relates
causal dependencies between actions.

Definition 1 (Axiomatic Execution). An axiomatic execution is
defined by the tuple E := hP,A,!

po

,Mi where:

• P is a program.
• A is a set of actions.
• !

po

✓ A ⇥ A is the program order, a disjoint union of the
sequential actions of each thread (which is a total order).

• M 2 (A
s

* A
r

) [(A
r

* A
s

) is a communication-match
function that maps each send and receive to its matching com-
munication action (i.e, if ↵ = M(↵0) then ↵0 = M(↵)). More-
over, a send and its matching receive must operate on the same
channel and operate in different threads (i.e., if M(sm

t

c, v) =
rn
t

0c0 or M(rn
t

0c0) = sm
t

c, v then t 6= t0 and c = c0).

Definition 2 (Communication Order). A communication order
is established between matching communication actions. If � =
M(↵), then ↵ !

co

� and � !
co

↵.

There is also an obvious ordering on thread creation and execu-
tion, as well as the visibility of thread termination by other threads:

1 A preorder is a reflexive transitive binary relation. Unlike partial orders,
preorders are not necessarily anti-symmetric, i.e. they may contain cycles.

bt1
po

po

po

po

po

po

po

po

po

po

po

po

po

po

ft1t2

ft1t3

st1c1, v2

pt11

et1

st1c2, v2

td

td

bt2

rt2c2

pt22

rt2c1

et2

co

co

co

bt3

st3c2, v3

pt33

rt2c2

et3

bt1
po

po

po

po

po

po

po

po

po

po

po
ft1t2

ft1t3

st1c1, v2

pt11

et1

st1c2, v2

td

td

bt2

rt2c2

pt22

rt2c1

et2

bt3

st3c2, v3

co

co

Figure 4: Two possible axiomatic executions from Figure 1. We
omit join actions for brevity.

Definition 3 (Thread Dependence). If ↵ = fm

t

t0 and � = b
t

0 or
↵ = e

t

and � = jm
t

0 t then ↵ !
td

� holds.

Definition 4 (Happens-before relation). The happens-before order
of an execution is the transitive closure of the union of program
order, thread dependence order, and actions related by communi-
cation and program order:

!
hb

= (!
po

[!
td

[
{(↵,�) | ↵ !

co

↵0 ^ ↵0 !
po

�} [
{(�,↵) | � !

po

↵0 ^ ↵0 !
co

↵})+

For any two actions ↵,� 2 A, if ↵ =
hb

�, then ↵ and � are said
to be concurrent actions.

Definition 5 (Happens-before Cycle). A cycle exists in a happens-
before relation if for any two actions ↵,� and ↵ !

hb

� !
hb

↵.

To illustrate these definitions, Figure 4 shows two axiomatic
executions of the program depicted in Figure 1. We assume thread
T1 spawns T2 and T3 , and we replace calls to f , g , and h found
in the original program, with an observable action, like a print
statement. The execution on the left imposes no causal dependence
between the observable actions in T2 or T3 ; thus, an interleaving
derived from this execution may permute the order in which these
statements execute. All interleavings derivable from this execution
correspond to valid CML behavior.

In contrast, the execution depicted on the right-hand side of
the figure, which corresponds to the erroneous execution discussed
in the introduction, exhibits a happens-before cycle between T1

and T2 . The cycle occurs because program order edges in T1 can
be traversed to reach the second send action, a communication
order edge can be traversed to then execute T2 via its program
order edges until control reaches the second receive, whereupon
a communication edge can be traversed again back to T1 . Such
cyclic dependences never manifest in any correct CML execution.
We must therefore strengthen our notion of executions to discard
those that contain such cycles.

To do so, we first note that the semantics as currently presented
is concerned only with actions that introduce some form of causal
dependence either within a thread (via program order) or across
threads (via thread dependence or communication order). However,
a real program also does computation, and reasoning about an
execution’s correctness will require us to specify these actions as
well. Indeed, to facilitate relating an operational definition of CML
that expresses our notion of a relaxed execution (see Section 4) with
the axiomatic semantics, we parameterize the latter with the ability
to reason about intra-thread behavior.

Intra-thread semantics. The intra-thread semantics of a thread
is abstracted in our formulation via a labeled transition system. Let
Stateintra denote the intra-thread state of a thread; its specific struc-

4 2013/3/28

Well-formed execution Obs (WF_Exec (P)) ∈ {Obs (Sync_Exec (P))}

All Executions

Well-formed
executions

Sync
Executions

•  No happens before cycle
•  Sensible intra-thread semantics
•  No outstanding speculative actions

Formalization
Reason axiomatically

Happens-before relation

We assume a set of T threads, C channels, and V values. The
set of inter-thread actions is provided below. Superscripts m and n
denote a unique identifier for the action.
ACTIONS:

A := b
t

(thread t starts)
| e

t

(thread t ends)
| jm

t

t0 (thread t detects thread t’ has terminated)
| fm

t

t0 (thread t creates a new thread t’)
| sm

t

c, v (thread t sends value v on channel c
| rm

t

c (thread t receives a value on channel c)
| pm

t

v (thread t outputs an observable value v)

c 2 C t, t0 2 T v 2 V m,n 2 N
Action b

t

signals the initiation of a new thread with identifier t;
action e

t

indicates that thread t has terminated. A join action, jm
t

t0,
defines an action that recognizes the point where thread t detects
that another thread t0 has completed. A thread creation action,
where thread t spawns a thread t0, is given by fm

t

t0. Observe that
there may be an arbitrary number of actions performed between
the point where a thread is created, and the point where it begins
execution. Action sm

t

c, v denotes the communication of data v on
channel c by thread t, and rm

t

c denotes the receipt of data from
channel c. An external action (e.g., printing) that emits value v is
denoted as pm

t

v. We can generalize these individuals actions into a
family of related actions:

ACTION CLASSES:
A

s

= {sm
t

c, v | t 2 T, v 2 V} (Sends)
A

r

= {rm
t

c | t 2 T} (Receives)
A

c

= A
s

[A
r

(Communication)
A

o

= {pm
t

v | t 2 T, v 2 V} (Observables)

Notation. Given an action class a, we write a to represent a list of
elements drawn from a. We write T (↵) to indicate the thread in
which action ↵ occurs, and write V (sm

t

c, v) to extract the value
v communicated by a send action. Given a set of actions A 2 2A,
A

x

= A\A
x

, where A
x

represents one of the action classes defined
above.

An interleaving is a total order on actions that reflects the oc-
currence of one action before another in global time. Interleavings
are derived from a preorder1 called happens-before [12] that relates
causal dependencies between actions.

Definition 1 (Axiomatic Execution). An axiomatic execution is
defined by the tuple E := hP,A,!

po

,Mi where:

• P is a program.
• A is a set of actions.
• !

po

✓ A ⇥ A is the program order, a disjoint union of the
sequential actions of each thread (which is a total order).

• M 2 (A
s

* A
r

) [(A
r

* A
s

) is a communication-match
function that maps each send and receive to its matching com-
munication action (i.e, if ↵ = M(↵0) then ↵0 = M(↵)). More-
over, a send and its matching receive must operate on the same
channel and operate in different threads (i.e., if M(sm

t

c, v) =
rn
t

0c0 or M(rn
t

0c0) = sm
t

c, v then t 6= t0 and c = c0).

Definition 2 (Communication Order). A communication order
is established between matching communication actions. If � =
M(↵), then ↵ !

co

� and � !
co

↵.

There is also an obvious ordering on thread creation and execu-
tion, as well as the visibility of thread termination by other threads:

1 A preorder is a reflexive transitive binary relation. Unlike partial orders,
preorders are not necessarily anti-symmetric, i.e. they may contain cycles.

bt1
po

po

po

po

po

po

po

po

po

po

po

po

po

po

ft1t2

ft1t3

st1c1, v2

pt11

et1

st1c2, v2

td

td

bt2

rt2c2

pt22

rt2c1

et2

co

co

co

bt3

st3c2, v3

pt33

rt2c2

et3

bt1
po

po

po

po

po

po

po

po

po

po

po
ft1t2

ft1t3

st1c1, v2

pt11

et1

st1c2, v2

td

td

bt2

rt2c2

pt22

rt2c1

et2

bt3

st3c2, v3

co

co

Figure 4: Two possible axiomatic executions from Figure 1. We
omit join actions for brevity.

Definition 3 (Thread Dependence). If ↵ = fm

t

t0 and � = b
t

0 or
↵ = e

t

and � = jm
t

0 t then ↵ !
td

� holds.

Definition 4 (Happens-before relation). The happens-before order
of an execution is the transitive closure of the union of program
order, thread dependence order, and actions related by communi-
cation and program order:

!
hb

= (!
po

[!
td

[
{(↵,�) | ↵ !

co

↵0 ^ ↵0 !
po

�} [
{(�,↵) | � !

po

↵0 ^ ↵0 !
co

↵})+

For any two actions ↵,� 2 A, if ↵ =
hb

�, then ↵ and � are said
to be concurrent actions.

Definition 5 (Happens-before Cycle). A cycle exists in a happens-
before relation if for any two actions ↵,� and ↵ !

hb

� !
hb

↵.

To illustrate these definitions, Figure 4 shows two axiomatic
executions of the program depicted in Figure 1. We assume thread
T1 spawns T2 and T3 , and we replace calls to f , g , and h found
in the original program, with an observable action, like a print
statement. The execution on the left imposes no causal dependence
between the observable actions in T2 or T3 ; thus, an interleaving
derived from this execution may permute the order in which these
statements execute. All interleavings derivable from this execution
correspond to valid CML behavior.

In contrast, the execution depicted on the right-hand side of
the figure, which corresponds to the erroneous execution discussed
in the introduction, exhibits a happens-before cycle between T1

and T2 . The cycle occurs because program order edges in T1 can
be traversed to reach the second send action, a communication
order edge can be traversed to then execute T2 via its program
order edges until control reaches the second receive, whereupon
a communication edge can be traversed again back to T1 . Such
cyclic dependences never manifest in any correct CML execution.
We must therefore strengthen our notion of executions to discard
those that contain such cycles.

To do so, we first note that the semantics as currently presented
is concerned only with actions that introduce some form of causal
dependence either within a thread (via program order) or across
threads (via thread dependence or communication order). However,
a real program also does computation, and reasoning about an
execution’s correctness will require us to specify these actions as
well. Indeed, to facilitate relating an operational definition of CML
that expresses our notion of a relaxed execution (see Section 4) with
the axiomatic semantics, we parameterize the latter with the ability
to reason about intra-thread behavior.

Intra-thread semantics. The intra-thread semantics of a thread
is abstracted in our formulation via a labeled transition system. Let
Stateintra denote the intra-thread state of a thread; its specific struc-

4 2013/3/28

Well-formed execution Obs (WF_Exec (P)) ∈ {Obs (Sync_Exec (P))}

All Executions

Well-formed
executions

Sync
Executions

•  No happens before cycle
•  Sensible intra-thread semantics
•  No outstanding speculative actions

Recipe for
implementation	

Implementation & Results

Implementation & Results
•  Dependence graph ≡ Axiomatic execution

–  WF Check before observable actions
–  Ill-formed? Rollback and re-execute non-speculatively – Progress!

•  WF Check, checkpoint, rollback are uncoordinated!
•  Replicated channel consistency through speculative execution
•  Benchmark: Optimistic OLTP & P2P Collaborative editing

In the absence of contention, the involvement of the lock server adds unnecessary
overhead. By communicating with lockChan asynchronously, we can allow the client
(the thread performing the transaction), to concurrently proceed with obtaining other
locks or executing the transaction. However, the transactional guarantees are lost in
this case. Under �CML such serializability violation shows up as a cycle in the happens-
before dependence graph. �CML rejects such executions, causing the transaction to abort,
and re-execute non-speculatively.

For our evaluation, we implemented a distributed version of this program (vacation)
taken from the STAMP benchmark suite [4]. To adapt the benchmark for a distributed
environment, we partitioned resources into 16 shards, each protected by a lock server.
The workload was setup for moderate contention, and each transaction involves 10 op-
erations. The shards were spread across 16 EC2 M1 large instances within the same
EC2 availability zone. The clients were instantiated from all of the different regions
on M1 small instances to simulate the latencies involved in a real web-application. A
benchmark run involved 10K transactions, spread equally across all of the available
clients. Each benchmark run was repeated 5 times.

0 10 20 30 40 50
Clients

24

25

26

27

28

29

210

T
im

e
 (

S
e
cs

)

Rx

Sync

Fig. 4: Performance comparison
on distributed vacation (OLTP)
benchmark. Lower is better.

The performance results are presented in the
Figure 4. The number of clients concurrently is-
suing transaction requests was increased from 1
to 48. �CML is the speculative version, while Sync
is the synchronous, non-speculative variant. The
1-client Sync version took 1220 seconds to com-
plete. For comparison, we extended the original
C version with a similar shared distribution struc-
ture. This run was 1.3X faster than the CML base-
line. The benchmark execution under �CML scales
much better than the Sync version due to opti-
mistic transactions. With 48 clients, �CML version
was 5.8X faster than then Sync version. Under
�CML, the number of transaction conflicts does increase with the number of clients. With
48 clients, 9% of the transactions executed under �CML were tagged as conflicting and
re-executed non-speculatively. This does not, however, adversely affect scalability.

4.2 Collaborative Editing

Our next case study is a real-time, decentralized collaborative editing tool. Typically,
such commercial offerings such as Google Docs, Apache Wave, EtherPad, etc,utilize a
centralized server to coordinate between the authors. Not only does the server eventu-
ally become a bottleneck, but service providers also need to store a copy of the docu-
ment, along with other personal information, which is undesirable. We consider a fully
decentralized solution, in which authors works on a local copy of the shared document
for responsiveness, with updates from other authors added incrementally to the working
copy. Although replicas are allowed to diverge, they are expected to converge eventu-
ally. This convergence is achieved through operational transformation [22]. Dealing
with operational transformation in the absence of a centralized server is tricky [16], and
commercial collaborative editing services like Google Wave impose additional restric-

tions with respect to the frequency of remote updates [24] in order to build a tractable
implementation.

We simplify the design by performing causal atomic broadcast when sending up-
dates to the replicas. Causal atomic broadcast ensures that the updates are applied on
all replicas in the same global order, providing a semblance of a single centralized
server. Implemented naı̈vely, i.e., performing the broadcast synchronously, however, is
an expensive operation, requiring coordination among all replicas for every broadcast
operation compromising responsiveness. Our relaxed execution model overcomes this
inefficiency. The key advantage of our system is that the causal atomic broadcast is
performed speculatively, allowing client threads to remain responsive.

We use a collaborative editing benchmark generator described in [14] to generate
a random trace of operations, based on parameters such as trace length, percentage of
insertions, deletions, number of replicas, local operation delay, etc. Our benchmarking
trace contains 30K operations, 85%(15%) of which are insertions(deletions), and 20%
of which are concurrent operations. We insert a 25 ms delay between two consecutive
local operations to simulate user-interaction. Updates from each replica is causal atomi-
cally broadcasted every 250 ms. Each replica is represented by a �CML instance placed in
widely distributed Amazon EC2 availability zones chosen to capture the geo-distributed
nature of collaborative editing. The average inter-instance latency was 173 ms, with a
standard deviation of 71.5. Results are reported as the average of five runs.

2 3 4 5 6
Authors

0

1

2

3

4

5

6

7

T
im

e
 (

X
 1

0
0

0
 S

e
cs

) Rx

Sync

Fig. 5: Performance comparison on
collaborative editing benchmark.
Lower is better.

We consider the time taken by a collaborative
editing session to be the time between the first
operation generation and the completion of the
last broadcast operation, at which point the doc-
uments at every replica would have converged.
Figure 5 shows results with respect to total run-
ning time. Sync represents an ordinary CML exe-
cution, while �CML represents our new implemen-
tation. With 2-authors, �CML version took 485 sec-
onds to complete, and was 37% faster than the
synchronous version. As we increase the number
of concurrent authors, the number of communi-
cation actions per broadcast operation increases.
Hence, we expect the benchmark run to take longer to complete. The non-speculative
version scales poorly due to the increasing number of synchronizations involved in the
broadcast operations. Indeed, Sync is 7.6X slower than �CML when there are six concur-
rent authors. Not surprisingly, �CML also takes longer to complete a run as we increase
the number of concurrent authors. This is because of increasing communication actions
per broadcast as well as increase in mis-speculations. However, with six authors, it only
takes 1.67X longer to complete the session when compared to having just two authors,
and illustrates the utility of speculative communication.

5 Related Work
Causal-ordering of messages is considered an important building block [2] for dis-
tributed applications. Similar to our formulation, Charron-Bost et al. [5] develop an
axiomatic formulation for causal-ordered communication primitives, although their fo-

OLTP Collaborative Editing
With 48 clients - 5.8X faster than sync

 1.4X slower than async
With 6 authors - 7.6X faster than sync

2.3X slower than async

Scheduler Activations in Haskell

How to write schedulers for Haskell threads as
Haskell libraries?

How to write schedulers for Haskell threads as
Haskell libraries in GHC?

How to write schedulers for Haskell threads as
Haskell libraries in GHC?

Scheduler

MVar

STM

GC

Async
Exception Safe FFI

Interrupts

Blackholes

Concurrent Haskell Application

RTS - C

Haskell

How to write schedulers for Haskell threads as
Haskell libraries in GHC?

Scheduler

MVar

STM

GC

Async
Exception Safe FFI

Interrupts

Blackholes

Concurrent Haskell Application

RTS - C

Haskell

How to write schedulers for Haskell threads as
Haskell libraries in GHC?

Scheduler

MVar

STM

GC

Async
Exception Safe FFI

Interrupts

Blackholes

Concurrent Haskell Application

RTS - C

Haskell

Lang Dev	

How to write schedulers for Haskell threads as
Haskell libraries in GHC?

Scheduler

MVar

STM

GC

Async
Exception Safe FFI

Interrupts

Blackholes

Concurrent Haskell Application

RTS - C

Haskell

Lang Dev	

App Dev	

User-level Scheduler

MVar

STM

GC
Async

Exception

Safe FFI Interrupts Blackholes

Concurrent Haskell Application

RTS - C

Haskell Lang Dev	

App Dev	

User-level Scheduler

MVar

STM

GC
Async

Exception

Safe FFI Interrupts Blackholes

Concurrent Haskell Application

RTS - C

Haskell Lang Dev	

App Dev	

Scheduler
activations!

Lang Dev	

App Dev	

Concurrency Substrate

MVar

STM

GC
Async

Exception

Safe FFI Interrupts Blackholes

Concurrent Haskell Application

RTS - C

Haskell

User-level Scheduler

Lang Dev	

App Dev	

Concurrency Substrate

MVar

STM

GC
Async

Exception

Safe FFI Interrupts Blackholes

Concurrent Haskell Application

RTS - C

Haskell

User-level Scheduler

EnQ and DeQ
Activations

Lang Dev	

App Dev	

Concurrency Substrate

MVar

STM

GC
Async

Exception

Safe FFI Interrupts Blackholes

Concurrent Haskell Application

RTS - C

Haskell

User-level Scheduler

EnQ and DeQ
Activations

Concurrency Substrate

MVar

STM

GC
Async

Exception

Safe FFI Interrupts Blackholes

Concurrent Haskell Application

RTS - C

Haskell

User-level Scheduler

EnQ and DeQ
Activations Lang Dev	

App Dev	

STM	

Appendix
Semantics of local state manipulation

HEC transitions H;⇥ =) H0;⇥0

(SETDEQUEUEACT)

hs,E[setDequeueAct M], (b,u,r)i;⇥ =)
hs,E[return()], (M,u,r)i;⇥

(SETENQUEUEACT)

hs,E[setEnqueueAct M], (b,u,r)i;⇥ =)
hs,E[return()], (b,M,r)i;⇥

STM transitions s;M ;D;⇥ ⇣ M 0;⇥0

(GETAUXSELF)

s;P[getAux s];D;⇥ ⇣ P[return aux(D)];⇥

(SETAUXSELF)

s;E[setAux s M];D;⇥ ⇣ E[return()];⇥[aux(D) 7! M]

(INVOKEDEQUEUEACTSELF)

s;P[dequeueAct s];D;⇥ ⇣ P[deq(D) s];⇥

(INVOKEENQUEUEACTSELF)

s;P[enqueueAct s];D;⇥ ⇣ P[enq(D) s];⇥

(GETAUXOTHER)

s;P[getAux s0];D;⇥[s0 7! (M 0, D0)] ⇣
P[return aux(D0)];⇥[s0 7! (M 0, D0)]

(SETAUXOTHER)

s;E[setAux s0 M];D;⇥[s0 7! (M 0, D0)] ⇣
E[return()];⇥[s0 7! (M 0, D0)][aux(D0) 7! M]

(INVOKEDEQUEUEACTOTHER)

s;P[dequeueAct s0];D;⇥[s0 7!(M 0, D0)] ⇣
P[deq(D0) s0];⇥[s0 7! (M 0, D0)]

(INVOKEENQUEUEACTOTHER)

s;P[enqueueAct s0];D;⇥[s0 7! (M 0, D0)] ⇣
P[enq(D0) s0];⇥[s0 7! (M 0, D0)]

Figure 15. Operational semantics for manipulating activa-
tions and auxiliary state.

In our formalisation, we represent local state D as a tuple
with two terms and a name (M,N, r) (Figure 5), where
M , N and r are dequeue activation, enqueue activation,

and a TVar representing auxiliary storage, respectively. For
perspicuity, we define accessor functions as shown below.

deq(M, ,) = M enq(,M,) = M aux(, , r) = r

The precise semantics of activations and stack-local state
manipulation is given in Figure 15. Our semantics models
the auxiliary field in the SCont-local state as a TVar. It
is initialised to a dynamic unit value toDyn () when an
new SCont is created (rule NEWSCONT in Figure 8). The
rules SETAUXSELF and SETAUXOTHER update the aux
state of a SCont by writing to the TVar. There are two cases,
depending on whether the SCont is running in the current
HEC, or is passive in the heap. The aux-state is typically
used to store scheduler accounting information, and is most
likely to be updated in the activations, being invoked by
some other SCont or the RTS. This is the reason why we
model aux-state as a TVar and allow it to be modified by
some other SCont. If the target of the setAux is running
in another HEC, no rule applies, and we raise a runtime
exception. This is reasonable: one HEC should not be poking
into another running HEC’s state. The rules for getAux also
have two cases.

An SCont’s activations can be invoked using the dequeueAct
and enqueueAct primitives. Invoking an SCont’s own ac-
tivation is straight-forward; the activation is fetched from
the local state and applied to the current SCont (rules
INVOKEDEQUEUEACTSELF and INVOKEDEQUEUEAC-
TOTHER). We do allow activations of an SCont other than
the current SCont to be invoked (rule INVOKEDEQUEUE-
ACTOTHER and INOKEENQUEUEACTOTHER). Notice that
in order to invoke the activations of other SConts, the SCont
must be passive on the heap, and currently not running.

We allow an SCont to modify its own activations, and
potentially migrate to another ULS. In addition, updating
own activations allows initial thread evaluating the main
IO computation to initialise its activations, and participate
in user-level scheduling. In the common use case, once an
SCont’s activations are initialised, we don’t expect it to
change. Hence, we do not store the activations in a TVar,
but rather directly in the underlying TSO object field. The
avoids the overheads of transactional access of activations.

data SCont
newSCont :: IO () -> IO SCont
switch :: (SCont -> STM SCont) -> IO ()
runOnIdleHEC :: SCont -> IO ()

type DequeueAct = SCont -> STM SCont
type EnqueueAct = SCont -> STM ()

-- read activations
dequeueAct :: DequeueAct
enqueueAct :: EnqueueAct
-- update activations
setDequeueAct :: DequeueAct -> IO ()
setEnqueueAct :: EnqueueAct -> IO ()

-- update activations
getAux :: SCont -> STM Dynamic
setAux :: SCont -> Dynamic -> STM ()

16 2014/3/20

Concurrency Substrate API

Appendix
Semantics of local state manipulation

HEC transitions H;⇥ =) H0;⇥0

(SETDEQUEUEACT)

hs,E[setDequeueAct M], (b,u,r)i;⇥ =)
hs,E[return()], (M,u,r)i;⇥

(SETENQUEUEACT)

hs,E[setEnqueueAct M], (b,u,r)i;⇥ =)
hs,E[return()], (b,M,r)i;⇥

STM transitions s;M ;D;⇥ ⇣ M 0;⇥0

(GETAUXSELF)

s;P[getAux s];D;⇥ ⇣ P[return aux(D)];⇥

(SETAUXSELF)

s;E[setAux s M];D;⇥ ⇣ E[return()];⇥[aux(D) 7! M]

(INVOKEDEQUEUEACTSELF)

s;P[dequeueAct s];D;⇥ ⇣ P[deq(D) s];⇥

(INVOKEENQUEUEACTSELF)

s;P[enqueueAct s];D;⇥ ⇣ P[enq(D) s];⇥

(GETAUXOTHER)

s;P[getAux s0];D;⇥[s0 7! (M 0, D0)] ⇣
P[return aux(D0)];⇥[s0 7! (M 0, D0)]

(SETAUXOTHER)

s;E[setAux s0 M];D;⇥[s0 7! (M 0, D0)] ⇣
E[return()];⇥[s0 7! (M 0, D0)][aux(D0) 7! M]

(INVOKEDEQUEUEACTOTHER)

s;P[dequeueAct s0];D;⇥[s0 7!(M 0, D0)] ⇣
P[deq(D0) s0];⇥[s0 7! (M 0, D0)]

(INVOKEENQUEUEACTOTHER)

s;P[enqueueAct s0];D;⇥[s0 7! (M 0, D0)] ⇣
P[enq(D0) s0];⇥[s0 7! (M 0, D0)]

Figure 15. Operational semantics for manipulating activa-
tions and auxiliary state.

In our formalisation, we represent local state D as a tuple
with two terms and a name (M,N, r) (Figure 5), where
M , N and r are dequeue activation, enqueue activation,

and a TVar representing auxiliary storage, respectively. For
perspicuity, we define accessor functions as shown below.

deq(M, ,) = M enq(,M,) = M aux(, , r) = r

The precise semantics of activations and stack-local state
manipulation is given in Figure 15. Our semantics models
the auxiliary field in the SCont-local state as a TVar. It
is initialised to a dynamic unit value toDyn () when an
new SCont is created (rule NEWSCONT in Figure 8). The
rules SETAUXSELF and SETAUXOTHER update the aux
state of a SCont by writing to the TVar. There are two cases,
depending on whether the SCont is running in the current
HEC, or is passive in the heap. The aux-state is typically
used to store scheduler accounting information, and is most
likely to be updated in the activations, being invoked by
some other SCont or the RTS. This is the reason why we
model aux-state as a TVar and allow it to be modified by
some other SCont. If the target of the setAux is running
in another HEC, no rule applies, and we raise a runtime
exception. This is reasonable: one HEC should not be poking
into another running HEC’s state. The rules for getAux also
have two cases.

An SCont’s activations can be invoked using the dequeueAct
and enqueueAct primitives. Invoking an SCont’s own ac-
tivation is straight-forward; the activation is fetched from
the local state and applied to the current SCont (rules
INVOKEDEQUEUEACTSELF and INVOKEDEQUEUEAC-
TOTHER). We do allow activations of an SCont other than
the current SCont to be invoked (rule INVOKEDEQUEUE-
ACTOTHER and INOKEENQUEUEACTOTHER). Notice that
in order to invoke the activations of other SConts, the SCont
must be passive on the heap, and currently not running.

We allow an SCont to modify its own activations, and
potentially migrate to another ULS. In addition, updating
own activations allows initial thread evaluating the main
IO computation to initialise its activations, and participate
in user-level scheduling. In the common use case, once an
SCont’s activations are initialised, we don’t expect it to
change. Hence, we do not store the activations in a TVar,
but rather directly in the underlying TSO object field. The
avoids the overheads of transactional access of activations.

data SCont
newSCont :: IO () -> IO SCont
switch :: (SCont -> STM SCont) -> IO ()
runOnIdleHEC :: SCont -> IO ()

type DequeueAct = SCont -> STM SCont
type EnqueueAct = SCont -> STM ()

-- read activations
dequeueAct :: DequeueAct
enqueueAct :: EnqueueAct
-- update activations
setDequeueAct :: DequeueAct -> IO ()
setEnqueueAct :: EnqueueAct -> IO ()

-- update activations
getAux :: SCont -> STM Dynamic
setAux :: SCont -> Dynamic -> STM ()

16 2014/3/20

Appendix
Semantics of local state manipulation

HEC transitions H;⇥ =) H0;⇥0

(SETDEQUEUEACT)

hs,E[setDequeueAct M], (b,u,r)i;⇥ =)
hs,E[return()], (M,u,r)i;⇥

(SETENQUEUEACT)

hs,E[setEnqueueAct M], (b,u,r)i;⇥ =)
hs,E[return()], (b,M,r)i;⇥

STM transitions s;M ;D;⇥ ⇣ M 0;⇥0

(GETAUXSELF)

s;P[getAux s];D;⇥ ⇣ P[return aux(D)];⇥

(SETAUXSELF)

s;E[setAux s M];D;⇥ ⇣ E[return()];⇥[aux(D) 7! M]

(INVOKEDEQUEUEACTSELF)

s;P[dequeueAct s];D;⇥ ⇣ P[deq(D) s];⇥

(INVOKEENQUEUEACTSELF)

s;P[enqueueAct s];D;⇥ ⇣ P[enq(D) s];⇥

(GETAUXOTHER)

s;P[getAux s0];D;⇥[s0 7! (M 0, D0)] ⇣
P[return aux(D0)];⇥[s0 7! (M 0, D0)]

(SETAUXOTHER)

s;E[setAux s0 M];D;⇥[s0 7! (M 0, D0)] ⇣
E[return()];⇥[s0 7! (M 0, D0)][aux(D0) 7! M]

(INVOKEDEQUEUEACTOTHER)

s;P[dequeueAct s0];D;⇥[s0 7!(M 0, D0)] ⇣
P[deq(D0) s0];⇥[s0 7! (M 0, D0)]

(INVOKEENQUEUEACTOTHER)

s;P[enqueueAct s0];D;⇥[s0 7! (M 0, D0)] ⇣
P[enq(D0) s0];⇥[s0 7! (M 0, D0)]

Figure 15. Operational semantics for manipulating activa-
tions and auxiliary state.

In our formalisation, we represent local state D as a tuple
with two terms and a name (M,N, r) (Figure 5), where
M , N and r are dequeue activation, enqueue activation,

and a TVar representing auxiliary storage, respectively. For
perspicuity, we define accessor functions as shown below.

deq(M, ,) = M enq(,M,) = M aux(, , r) = r

The precise semantics of activations and stack-local state
manipulation is given in Figure 15. Our semantics models
the auxiliary field in the SCont-local state as a TVar. It
is initialised to a dynamic unit value toDyn () when an
new SCont is created (rule NEWSCONT in Figure 8). The
rules SETAUXSELF and SETAUXOTHER update the aux
state of a SCont by writing to the TVar. There are two cases,
depending on whether the SCont is running in the current
HEC, or is passive in the heap. The aux-state is typically
used to store scheduler accounting information, and is most
likely to be updated in the activations, being invoked by
some other SCont or the RTS. This is the reason why we
model aux-state as a TVar and allow it to be modified by
some other SCont. If the target of the setAux is running
in another HEC, no rule applies, and we raise a runtime
exception. This is reasonable: one HEC should not be poking
into another running HEC’s state. The rules for getAux also
have two cases.

An SCont’s activations can be invoked using the dequeueAct
and enqueueAct primitives. Invoking an SCont’s own ac-
tivation is straight-forward; the activation is fetched from
the local state and applied to the current SCont (rules
INVOKEDEQUEUEACTSELF and INVOKEDEQUEUEAC-
TOTHER). We do allow activations of an SCont other than
the current SCont to be invoked (rule INVOKEDEQUEUE-
ACTOTHER and INOKEENQUEUEACTOTHER). Notice that
in order to invoke the activations of other SConts, the SCont
must be passive on the heap, and currently not running.

We allow an SCont to modify its own activations, and
potentially migrate to another ULS. In addition, updating
own activations allows initial thread evaluating the main
IO computation to initialise its activations, and participate
in user-level scheduling. In the common use case, once an
SCont’s activations are initialised, we don’t expect it to
change. Hence, we do not store the activations in a TVar,
but rather directly in the underlying TSO object field. The
avoids the overheads of transactional access of activations.

data SCont
newSCont :: IO () -> IO SCont
switch :: (SCont -> STM SCont) -> IO ()
runOnIdleHEC :: SCont -> IO ()

type DequeueAct = SCont -> STM SCont
type EnqueueAct = SCont -> STM ()

-- read activations
dequeueAct :: DequeueAct
enqueueAct :: EnqueueAct
-- update activations
setDequeueAct :: DequeueAct -> IO ()
setEnqueueAct :: EnqueueAct -> IO ()

-- update activations
getAux :: SCont -> STM Dynamic
setAux :: SCont -> Dynamic -> STM ()

16 2014/3/20

Concurrency Substrate API

Appendix
Semantics of local state manipulation

HEC transitions H;⇥ =) H0;⇥0

(SETDEQUEUEACT)

hs,E[setDequeueAct M], (b,u,r)i;⇥ =)
hs,E[return()], (M,u,r)i;⇥

(SETENQUEUEACT)

hs,E[setEnqueueAct M], (b,u,r)i;⇥ =)
hs,E[return()], (b,M,r)i;⇥

STM transitions s;M ;D;⇥ ⇣ M 0;⇥0

(GETAUXSELF)

s;P[getAux s];D;⇥ ⇣ P[return aux(D)];⇥

(SETAUXSELF)

s;E[setAux s M];D;⇥ ⇣ E[return()];⇥[aux(D) 7! M]

(INVOKEDEQUEUEACTSELF)

s;P[dequeueAct s];D;⇥ ⇣ P[deq(D) s];⇥

(INVOKEENQUEUEACTSELF)

s;P[enqueueAct s];D;⇥ ⇣ P[enq(D) s];⇥

(GETAUXOTHER)

s;P[getAux s0];D;⇥[s0 7! (M 0, D0)] ⇣
P[return aux(D0)];⇥[s0 7! (M 0, D0)]

(SETAUXOTHER)

s;E[setAux s0 M];D;⇥[s0 7! (M 0, D0)] ⇣
E[return()];⇥[s0 7! (M 0, D0)][aux(D0) 7! M]

(INVOKEDEQUEUEACTOTHER)

s;P[dequeueAct s0];D;⇥[s0 7!(M 0, D0)] ⇣
P[deq(D0) s0];⇥[s0 7! (M 0, D0)]

(INVOKEENQUEUEACTOTHER)

s;P[enqueueAct s0];D;⇥[s0 7! (M 0, D0)] ⇣
P[enq(D0) s0];⇥[s0 7! (M 0, D0)]

Figure 15. Operational semantics for manipulating activa-
tions and auxiliary state.

In our formalisation, we represent local state D as a tuple
with two terms and a name (M,N, r) (Figure 5), where
M , N and r are dequeue activation, enqueue activation,

and a TVar representing auxiliary storage, respectively. For
perspicuity, we define accessor functions as shown below.

deq(M, ,) = M enq(,M,) = M aux(, , r) = r

The precise semantics of activations and stack-local state
manipulation is given in Figure 15. Our semantics models
the auxiliary field in the SCont-local state as a TVar. It
is initialised to a dynamic unit value toDyn () when an
new SCont is created (rule NEWSCONT in Figure 8). The
rules SETAUXSELF and SETAUXOTHER update the aux
state of a SCont by writing to the TVar. There are two cases,
depending on whether the SCont is running in the current
HEC, or is passive in the heap. The aux-state is typically
used to store scheduler accounting information, and is most
likely to be updated in the activations, being invoked by
some other SCont or the RTS. This is the reason why we
model aux-state as a TVar and allow it to be modified by
some other SCont. If the target of the setAux is running
in another HEC, no rule applies, and we raise a runtime
exception. This is reasonable: one HEC should not be poking
into another running HEC’s state. The rules for getAux also
have two cases.

An SCont’s activations can be invoked using the dequeueAct
and enqueueAct primitives. Invoking an SCont’s own ac-
tivation is straight-forward; the activation is fetched from
the local state and applied to the current SCont (rules
INVOKEDEQUEUEACTSELF and INVOKEDEQUEUEAC-
TOTHER). We do allow activations of an SCont other than
the current SCont to be invoked (rule INVOKEDEQUEUE-
ACTOTHER and INOKEENQUEUEACTOTHER). Notice that
in order to invoke the activations of other SConts, the SCont
must be passive on the heap, and currently not running.

We allow an SCont to modify its own activations, and
potentially migrate to another ULS. In addition, updating
own activations allows initial thread evaluating the main
IO computation to initialise its activations, and participate
in user-level scheduling. In the common use case, once an
SCont’s activations are initialised, we don’t expect it to
change. Hence, we do not store the activations in a TVar,
but rather directly in the underlying TSO object field. The
avoids the overheads of transactional access of activations.

data SCont
newSCont :: IO () -> IO SCont
switch :: (SCont -> STM SCont) -> IO ()
runOnIdleHEC :: SCont -> IO ()

type DequeueAct = SCont -> STM SCont
type EnqueueAct = SCont -> STM ()

-- read activations
dequeueAct :: DequeueAct
enqueueAct :: EnqueueAct
-- update activations
setDequeueAct :: DequeueAct -> IO ()
setEnqueueAct :: EnqueueAct -> IO ()

-- update activations
getAux :: SCont -> STM Dynamic
setAux :: SCont -> Dynamic -> STM ()

16 2014/3/20

Appendix
Semantics of local state manipulation

HEC transitions H;⇥ =) H0;⇥0

(SETDEQUEUEACT)

hs,E[setDequeueAct M], (b,u,r)i;⇥ =)
hs,E[return()], (M,u,r)i;⇥

(SETENQUEUEACT)

hs,E[setEnqueueAct M], (b,u,r)i;⇥ =)
hs,E[return()], (b,M,r)i;⇥

STM transitions s;M ;D;⇥ ⇣ M 0;⇥0

(GETAUXSELF)

s;P[getAux s];D;⇥ ⇣ P[return aux(D)];⇥

(SETAUXSELF)

s;E[setAux s M];D;⇥ ⇣ E[return()];⇥[aux(D) 7! M]

(INVOKEDEQUEUEACTSELF)

s;P[dequeueAct s];D;⇥ ⇣ P[deq(D) s];⇥

(INVOKEENQUEUEACTSELF)

s;P[enqueueAct s];D;⇥ ⇣ P[enq(D) s];⇥

(GETAUXOTHER)

s;P[getAux s0];D;⇥[s0 7! (M 0, D0)] ⇣
P[return aux(D0)];⇥[s0 7! (M 0, D0)]

(SETAUXOTHER)

s;E[setAux s0 M];D;⇥[s0 7! (M 0, D0)] ⇣
E[return()];⇥[s0 7! (M 0, D0)][aux(D0) 7! M]

(INVOKEDEQUEUEACTOTHER)

s;P[dequeueAct s0];D;⇥[s0 7!(M 0, D0)] ⇣
P[deq(D0) s0];⇥[s0 7! (M 0, D0)]

(INVOKEENQUEUEACTOTHER)

s;P[enqueueAct s0];D;⇥[s0 7! (M 0, D0)] ⇣
P[enq(D0) s0];⇥[s0 7! (M 0, D0)]

Figure 15. Operational semantics for manipulating activa-
tions and auxiliary state.

In our formalisation, we represent local state D as a tuple
with two terms and a name (M,N, r) (Figure 5), where
M , N and r are dequeue activation, enqueue activation,

and a TVar representing auxiliary storage, respectively. For
perspicuity, we define accessor functions as shown below.

deq(M, ,) = M enq(,M,) = M aux(, , r) = r

The precise semantics of activations and stack-local state
manipulation is given in Figure 15. Our semantics models
the auxiliary field in the SCont-local state as a TVar. It
is initialised to a dynamic unit value toDyn () when an
new SCont is created (rule NEWSCONT in Figure 8). The
rules SETAUXSELF and SETAUXOTHER update the aux
state of a SCont by writing to the TVar. There are two cases,
depending on whether the SCont is running in the current
HEC, or is passive in the heap. The aux-state is typically
used to store scheduler accounting information, and is most
likely to be updated in the activations, being invoked by
some other SCont or the RTS. This is the reason why we
model aux-state as a TVar and allow it to be modified by
some other SCont. If the target of the setAux is running
in another HEC, no rule applies, and we raise a runtime
exception. This is reasonable: one HEC should not be poking
into another running HEC’s state. The rules for getAux also
have two cases.

An SCont’s activations can be invoked using the dequeueAct
and enqueueAct primitives. Invoking an SCont’s own ac-
tivation is straight-forward; the activation is fetched from
the local state and applied to the current SCont (rules
INVOKEDEQUEUEACTSELF and INVOKEDEQUEUEAC-
TOTHER). We do allow activations of an SCont other than
the current SCont to be invoked (rule INVOKEDEQUEUE-
ACTOTHER and INOKEENQUEUEACTOTHER). Notice that
in order to invoke the activations of other SConts, the SCont
must be passive on the heap, and currently not running.

We allow an SCont to modify its own activations, and
potentially migrate to another ULS. In addition, updating
own activations allows initial thread evaluating the main
IO computation to initialise its activations, and participate
in user-level scheduling. In the common use case, once an
SCont’s activations are initialised, we don’t expect it to
change. Hence, we do not store the activations in a TVar,
but rather directly in the underlying TSO object field. The
avoids the overheads of transactional access of activations.

data SCont
newSCont :: IO () -> IO SCont
switch :: (SCont -> STM SCont) -> IO ()
runOnIdleHEC :: SCont -> IO ()

type DequeueAct = SCont -> STM SCont
type EnqueueAct = SCont -> STM ()

-- read activations
dequeueAct :: DequeueAct
enqueueAct :: EnqueueAct
-- update activations
setDequeueAct :: DequeueAct -> IO ()
setEnqueueAct :: EnqueueAct -> IO ()

-- update activations
getAux :: SCont -> STM Dynamic
setAux :: SCont -> Dynamic -> STM ()

16 2014/3/20

Scheduler access
is under STM

Concurrency Substrate API

Appendix
Semantics of local state manipulation

HEC transitions H;⇥ =) H0;⇥0

(SETDEQUEUEACT)

hs,E[setDequeueAct M], (b,u,r)i;⇥ =)
hs,E[return()], (M,u,r)i;⇥

(SETENQUEUEACT)

hs,E[setEnqueueAct M], (b,u,r)i;⇥ =)
hs,E[return()], (b,M,r)i;⇥

STM transitions s;M ;D;⇥ ⇣ M 0;⇥0

(GETAUXSELF)

s;P[getAux s];D;⇥ ⇣ P[return aux(D)];⇥

(SETAUXSELF)

s;E[setAux s M];D;⇥ ⇣ E[return()];⇥[aux(D) 7! M]

(INVOKEDEQUEUEACTSELF)

s;P[dequeueAct s];D;⇥ ⇣ P[deq(D) s];⇥

(INVOKEENQUEUEACTSELF)

s;P[enqueueAct s];D;⇥ ⇣ P[enq(D) s];⇥

(GETAUXOTHER)

s;P[getAux s0];D;⇥[s0 7! (M 0, D0)] ⇣
P[return aux(D0)];⇥[s0 7! (M 0, D0)]

(SETAUXOTHER)

s;E[setAux s0 M];D;⇥[s0 7! (M 0, D0)] ⇣
E[return()];⇥[s0 7! (M 0, D0)][aux(D0) 7! M]

(INVOKEDEQUEUEACTOTHER)

s;P[dequeueAct s0];D;⇥[s0 7!(M 0, D0)] ⇣
P[deq(D0) s0];⇥[s0 7! (M 0, D0)]

(INVOKEENQUEUEACTOTHER)

s;P[enqueueAct s0];D;⇥[s0 7! (M 0, D0)] ⇣
P[enq(D0) s0];⇥[s0 7! (M 0, D0)]

Figure 15. Operational semantics for manipulating activa-
tions and auxiliary state.

In our formalisation, we represent local state D as a tuple
with two terms and a name (M,N, r) (Figure 5), where
M , N and r are dequeue activation, enqueue activation,

and a TVar representing auxiliary storage, respectively. For
perspicuity, we define accessor functions as shown below.

deq(M, ,) = M enq(,M,) = M aux(, , r) = r

The precise semantics of activations and stack-local state
manipulation is given in Figure 15. Our semantics models
the auxiliary field in the SCont-local state as a TVar. It
is initialised to a dynamic unit value toDyn () when an
new SCont is created (rule NEWSCONT in Figure 8). The
rules SETAUXSELF and SETAUXOTHER update the aux
state of a SCont by writing to the TVar. There are two cases,
depending on whether the SCont is running in the current
HEC, or is passive in the heap. The aux-state is typically
used to store scheduler accounting information, and is most
likely to be updated in the activations, being invoked by
some other SCont or the RTS. This is the reason why we
model aux-state as a TVar and allow it to be modified by
some other SCont. If the target of the setAux is running
in another HEC, no rule applies, and we raise a runtime
exception. This is reasonable: one HEC should not be poking
into another running HEC’s state. The rules for getAux also
have two cases.

An SCont’s activations can be invoked using the dequeueAct
and enqueueAct primitives. Invoking an SCont’s own ac-
tivation is straight-forward; the activation is fetched from
the local state and applied to the current SCont (rules
INVOKEDEQUEUEACTSELF and INVOKEDEQUEUEAC-
TOTHER). We do allow activations of an SCont other than
the current SCont to be invoked (rule INVOKEDEQUEUE-
ACTOTHER and INOKEENQUEUEACTOTHER). Notice that
in order to invoke the activations of other SConts, the SCont
must be passive on the heap, and currently not running.

We allow an SCont to modify its own activations, and
potentially migrate to another ULS. In addition, updating
own activations allows initial thread evaluating the main
IO computation to initialise its activations, and participate
in user-level scheduling. In the common use case, once an
SCont’s activations are initialised, we don’t expect it to
change. Hence, we do not store the activations in a TVar,
but rather directly in the underlying TSO object field. The
avoids the overheads of transactional access of activations.

data SCont
newSCont :: IO () -> IO SCont
switch :: (SCont -> STM SCont) -> IO ()
runOnIdleHEC :: SCont -> IO ()

type DequeueAct = SCont -> STM SCont
type EnqueueAct = SCont -> STM ()

-- read activations
dequeueAct :: DequeueAct
enqueueAct :: EnqueueAct
-- update activations
setDequeueAct :: DequeueAct -> IO ()
setEnqueueAct :: EnqueueAct -> IO ()

-- update activations
getAux :: SCont -> STM Dynamic
setAux :: SCont -> Dynamic -> STM ()

16 2014/3/20

Appendix
Semantics of local state manipulation

HEC transitions H;⇥ =) H0;⇥0

(SETDEQUEUEACT)

hs,E[setDequeueAct M], (b,u,r)i;⇥ =)
hs,E[return()], (M,u,r)i;⇥

(SETENQUEUEACT)

hs,E[setEnqueueAct M], (b,u,r)i;⇥ =)
hs,E[return()], (b,M,r)i;⇥

STM transitions s;M ;D;⇥ ⇣ M 0;⇥0

(GETAUXSELF)

s;P[getAux s];D;⇥ ⇣ P[return aux(D)];⇥

(SETAUXSELF)

s;E[setAux s M];D;⇥ ⇣ E[return()];⇥[aux(D) 7! M]

(INVOKEDEQUEUEACTSELF)

s;P[dequeueAct s];D;⇥ ⇣ P[deq(D) s];⇥

(INVOKEENQUEUEACTSELF)

s;P[enqueueAct s];D;⇥ ⇣ P[enq(D) s];⇥

(GETAUXOTHER)

s;P[getAux s0];D;⇥[s0 7! (M 0, D0)] ⇣
P[return aux(D0)];⇥[s0 7! (M 0, D0)]

(SETAUXOTHER)

s;E[setAux s0 M];D;⇥[s0 7! (M 0, D0)] ⇣
E[return()];⇥[s0 7! (M 0, D0)][aux(D0) 7! M]

(INVOKEDEQUEUEACTOTHER)

s;P[dequeueAct s0];D;⇥[s0 7!(M 0, D0)] ⇣
P[deq(D0) s0];⇥[s0 7! (M 0, D0)]

(INVOKEENQUEUEACTOTHER)

s;P[enqueueAct s0];D;⇥[s0 7! (M 0, D0)] ⇣
P[enq(D0) s0];⇥[s0 7! (M 0, D0)]

Figure 15. Operational semantics for manipulating activa-
tions and auxiliary state.

In our formalisation, we represent local state D as a tuple
with two terms and a name (M,N, r) (Figure 5), where
M , N and r are dequeue activation, enqueue activation,

and a TVar representing auxiliary storage, respectively. For
perspicuity, we define accessor functions as shown below.

deq(M, ,) = M enq(,M,) = M aux(, , r) = r

The precise semantics of activations and stack-local state
manipulation is given in Figure 15. Our semantics models
the auxiliary field in the SCont-local state as a TVar. It
is initialised to a dynamic unit value toDyn () when an
new SCont is created (rule NEWSCONT in Figure 8). The
rules SETAUXSELF and SETAUXOTHER update the aux
state of a SCont by writing to the TVar. There are two cases,
depending on whether the SCont is running in the current
HEC, or is passive in the heap. The aux-state is typically
used to store scheduler accounting information, and is most
likely to be updated in the activations, being invoked by
some other SCont or the RTS. This is the reason why we
model aux-state as a TVar and allow it to be modified by
some other SCont. If the target of the setAux is running
in another HEC, no rule applies, and we raise a runtime
exception. This is reasonable: one HEC should not be poking
into another running HEC’s state. The rules for getAux also
have two cases.

An SCont’s activations can be invoked using the dequeueAct
and enqueueAct primitives. Invoking an SCont’s own ac-
tivation is straight-forward; the activation is fetched from
the local state and applied to the current SCont (rules
INVOKEDEQUEUEACTSELF and INVOKEDEQUEUEAC-
TOTHER). We do allow activations of an SCont other than
the current SCont to be invoked (rule INVOKEDEQUEUE-
ACTOTHER and INOKEENQUEUEACTOTHER). Notice that
in order to invoke the activations of other SConts, the SCont
must be passive on the heap, and currently not running.

We allow an SCont to modify its own activations, and
potentially migrate to another ULS. In addition, updating
own activations allows initial thread evaluating the main
IO computation to initialise its activations, and participate
in user-level scheduling. In the common use case, once an
SCont’s activations are initialised, we don’t expect it to
change. Hence, we do not store the activations in a TVar,
but rather directly in the underlying TSO object field. The
avoids the overheads of transactional access of activations.

data SCont
newSCont :: IO () -> IO SCont
switch :: (SCont -> STM SCont) -> IO ()
runOnIdleHEC :: SCont -> IO ()

type DequeueAct = SCont -> STM SCont
type EnqueueAct = SCont -> STM ()

-- read activations
dequeueAct :: DequeueAct
enqueueAct :: EnqueueAct
-- update activations
setDequeueAct :: DequeueAct -> IO ()
setEnqueueAct :: EnqueueAct -> IO ()

-- update activations
getAux :: SCont -> STM Dynamic
setAux :: SCont -> Dynamic -> STM ()

16 2014/3/20

Scheduler access
is under STM

Concurrency Substrate API

RTS Interaction - Blocking

Current Thread

t

RTS
User-level

RTS Interaction - Blocking

∅

Current Thread

MVar t

RTS
User-level

takeMVar	

RTS Interaction - Blocking

∅

Current Thread

MVar t

RTS
User-level

takeMVar	

switch(dequeueAct	
 t)	

t.sched.dequeue()	

RTS Interaction - Blocking

∅

Current Thread

MVar t

RTS
User-level

takeMVar	

switch(dequeueAct	
 t)	

t.sched.dequeue()	

t’

RTS Interaction - Blocking

∅

Current Thread

MVar t

RTS
User-level

takeMVar	

switch(dequeueAct	
 t)	

t.sched.dequeue()	

Current Thread

t’ ∅ t
takeMVar	

RTS Interaction - Unblocking

∅

Current Thread

t RTS
User-level

takeMVar	

t’

RTS Interaction - Unblocking

∅

Current Thread

t RTS
User-level

takeMVar	

t’

putMVar	
 v	

RTS Interaction - Unblocking

∅

Current Thread

t RTS
User-level

takeMVar	

atomically(enqueueAct	
 t)	

t.sched.enqueue(t)	

t’

putMVar	
 v	

RTS Interaction - Unblocking

∅

Current Thread

t RTS
User-level

takeMVar	

atomically(enqueueAct	
 t)	

t.sched.enqueue(t)	

Current Thread

∅

t’

putMVar	

t’

v	

Multicore capable, preemptive,
round-robin work-sharing scheduler

This situation can occur during multicore execution, when
the number of available threads is less than the number of
HECs. If a HEC does not have any work to do, it better be
put to sleep.

Both the dequeue activation and the body of the switch
primitive are STM transactions. GHC today supports block-
ing operations under STM. When the programmer invokes
retry inside a transaction, the RTS blocks the thread un-
til another thread writes to any of the transactional variables
read by the transaction; then the thread is re-awoken, and re-
tries the transaction [12]. This is entirely transparent to the
programmer. Along the same lines, we interpret the use of
retry within a switch or dequeue activation transaction as
putting the whole HEC to sleep. We use the existing RTS
mechanism to resume the thread when work becomes avail-
able on the scheduler.

3.5 SCont local state
The activations of an SCont can be read by dequeueAct
and enqueueAct primitives. In effect, they constitute the
SCont-local state. Local state is often convenient for other
purposes, so we also provide a single dynamically-typed4

field, the “aux-field”, for arbitrary user purposes. The aux-
field can be read from and written to using the primitives
getAux and setAux. The API additionally allows an SCont
to change its own scheduler through setDequeueAct and
setEnqueueAct primitives.

4. Developing concurrency libraries
In this section, we will utilise the concurrency substrate to
implement a multicore capable, round-robin scheduler and a
user-level MVar implementation.

4.1 User-level scheduler
The first step in designing a scheduler is to describe the
scheduler data structure. We utilise an array of runqueues,
with one queue per HEC. Each runqueue is represented by
a transactional variable (a TVar), which can hold a list of
SConts.
newtype Sched = Sched (Array Int (TVar[SCont]))

The next step is to provide an implementation for the
scheduler activations.
dequeueActivation :: Sched -> SCont -> STM SCont
dequeueActivation (Sched pa) _ = do

cc <- getCurrentHEC -- get current HEC number
l <- readTVar $ pa!cc
case l of

[] -> retry
x:tl -> do

writeTVar (pa!cc) tl
return x

enqueueActivation :: Sched -> SCont -> STM ()
enqueueActivation (Sched pa) sc = do

dyn <- getAux sc

4 http://hackage.haskell.org/package/base-4.6.0.1/docs/
Data-Dynamic.html

let (hec::Int , _::TVar Int) = fromJust $
fromDynamic dyn

l <- readTVar $ pa!hec
writeTVar (pa!hec) $ l++[sc]

dequeueActivation either returns the SCont at the
front of the runqueue and updates the runqueue appro-
priately, or puts the HEC to sleep if the queue is empty.
Recall that performing retry within a dequeue activation
puts the HEC to sleep. The HEC will automatically be wo-
ken up when work becomes available i.e. queue becomes
non-empty. Although we ignore the SCont being blocked
in this case, one could imagine manipulating the blocked
SCont’s aux state for accounting information such as time
slices consumed for fair-share scheduling. Enqueue acti-
vation (enqueueActivation) finds the SCont’s HEC by
querying its stack-local state (the details of which is pre-
sented along with the next primitive). The HEC number
(hec) is used to fetch the correct runqueue, to which the
SCont is appended to.

The next step is to initialise the scheduler. This involves
two steps: (1) allocating the scheduler (newScheduler) and
initialising the main thread and (2) spinning up additional
HECs (newHEC). We assume that the Haskell program wish-
ing to utilise the ULS performs these two steps at the start
of the main IO computation. The implementation of these
primitives are given below:
newScheduler :: IO ()
newScheduler = do

-- Initialise Auxiliary state
switch $ \s -> do

counter <- newTVar (0:: Int)
setAux s $ toDyn $ (0::Int ,counter)
return s

-- Allocate scheduler
nc <- getNumHECs
sched <- (Sched . listArray (0,nc -1)) <$>

replicateM n (newTVar [])
-- Initialise activations
setDequeueAct s $ dequeueActivation sched
setEnqueueAct s $ enqueueActivation sched

newHEC :: IO ()
newHEC = do
-- Initial task
s <- newSCont $ switch dequeueAct
-- Run in parallel
runOnIdleHEC s

First we will focus on initialising a new ULS (newScheduler).
For load balancing purposes, we will spawn threads in a
round-robin fashion over the available HECs. For this pur-
pose, we initialise a TVar counter, and store into the auxil-
iary state a pair (c, t) where c is the SCont’s home HEC and
t is the counter for scheduling. Next, we allocate an empty
scheduler data structure (sched), and register the current
thread with the scheduler activations. This step binds the
current thread to participate in user-level scheduling.

All other HECs act as workers (newHEC), scheduling the
threads that become available on their runqueues. The initial
task created on the HEC simply waits for work to become
available on the runqueue, and switches to it. Recall that al-
locating a new SCont copies the current SCont’s activations

5 2014/3/20

This situation can occur during multicore execution, when
the number of available threads is less than the number of
HECs. If a HEC does not have any work to do, it better be
put to sleep.

Both the dequeue activation and the body of the switch
primitive are STM transactions. GHC today supports block-
ing operations under STM. When the programmer invokes
retry inside a transaction, the RTS blocks the thread un-
til another thread writes to any of the transactional variables
read by the transaction; then the thread is re-awoken, and re-
tries the transaction [12]. This is entirely transparent to the
programmer. Along the same lines, we interpret the use of
retry within a switch or dequeue activation transaction as
putting the whole HEC to sleep. We use the existing RTS
mechanism to resume the thread when work becomes avail-
able on the scheduler.

3.5 SCont local state
The activations of an SCont can be read by dequeueAct
and enqueueAct primitives. In effect, they constitute the
SCont-local state. Local state is often convenient for other
purposes, so we also provide a single dynamically-typed4

field, the “aux-field”, for arbitrary user purposes. The aux-
field can be read from and written to using the primitives
getAux and setAux. The API additionally allows an SCont
to change its own scheduler through setDequeueAct and
setEnqueueAct primitives.

4. Developing concurrency libraries
In this section, we will utilise the concurrency substrate to
implement a multicore capable, round-robin scheduler and a
user-level MVar implementation.

4.1 User-level scheduler
The first step in designing a scheduler is to describe the
scheduler data structure. We utilise an array of runqueues,
with one queue per HEC. Each runqueue is represented by
a transactional variable (a TVar), which can hold a list of
SConts.
newtype Sched = Sched (Array Int (TVar[SCont]))

The next step is to provide an implementation for the
scheduler activations.
dequeueActivation :: Sched -> SCont -> STM SCont
dequeueActivation (Sched pa) _ = do

cc <- getCurrentHEC -- get current HEC number
l <- readTVar $ pa!cc
case l of

[] -> retry
x:tl -> do

writeTVar (pa!cc) tl
return x

enqueueActivation :: Sched -> SCont -> STM ()
enqueueActivation (Sched pa) sc = do

dyn <- getAux sc

4 http://hackage.haskell.org/package/base-4.6.0.1/docs/
Data-Dynamic.html

let (hec::Int , _::TVar Int) = fromJust $
fromDynamic dyn

l <- readTVar $ pa!hec
writeTVar (pa!hec) $ l++[sc]

dequeueActivation either returns the SCont at the
front of the runqueue and updates the runqueue appro-
priately, or puts the HEC to sleep if the queue is empty.
Recall that performing retry within a dequeue activation
puts the HEC to sleep. The HEC will automatically be wo-
ken up when work becomes available i.e. queue becomes
non-empty. Although we ignore the SCont being blocked
in this case, one could imagine manipulating the blocked
SCont’s aux state for accounting information such as time
slices consumed for fair-share scheduling. Enqueue acti-
vation (enqueueActivation) finds the SCont’s HEC by
querying its stack-local state (the details of which is pre-
sented along with the next primitive). The HEC number
(hec) is used to fetch the correct runqueue, to which the
SCont is appended to.

The next step is to initialise the scheduler. This involves
two steps: (1) allocating the scheduler (newScheduler) and
initialising the main thread and (2) spinning up additional
HECs (newHEC). We assume that the Haskell program wish-
ing to utilise the ULS performs these two steps at the start
of the main IO computation. The implementation of these
primitives are given below:
newScheduler :: IO ()
newScheduler = do

-- Initialise Auxiliary state
switch $ \s -> do

counter <- newTVar (0:: Int)
setAux s $ toDyn $ (0::Int ,counter)
return s

-- Allocate scheduler
nc <- getNumHECs
sched <- (Sched . listArray (0,nc -1)) <$>

replicateM n (newTVar [])
-- Initialise activations
setDequeueAct s $ dequeueActivation sched
setEnqueueAct s $ enqueueActivation sched

newHEC :: IO ()
newHEC = do
-- Initial task
s <- newSCont $ switch dequeueAct
-- Run in parallel
runOnIdleHEC s

First we will focus on initialising a new ULS (newScheduler).
For load balancing purposes, we will spawn threads in a
round-robin fashion over the available HECs. For this pur-
pose, we initialise a TVar counter, and store into the auxil-
iary state a pair (c, t) where c is the SCont’s home HEC and
t is the counter for scheduling. Next, we allocate an empty
scheduler data structure (sched), and register the current
thread with the scheduler activations. This step binds the
current thread to participate in user-level scheduling.

All other HECs act as workers (newHEC), scheduling the
threads that become available on their runqueues. The initial
task created on the HEC simply waits for work to become
available on the runqueue, and switches to it. Recall that al-
locating a new SCont copies the current SCont’s activations

5 2014/3/20

This situation can occur during multicore execution, when
the number of available threads is less than the number of
HECs. If a HEC does not have any work to do, it better be
put to sleep.

Both the dequeue activation and the body of the switch
primitive are STM transactions. GHC today supports block-
ing operations under STM. When the programmer invokes
retry inside a transaction, the RTS blocks the thread un-
til another thread writes to any of the transactional variables
read by the transaction; then the thread is re-awoken, and re-
tries the transaction [12]. This is entirely transparent to the
programmer. Along the same lines, we interpret the use of
retry within a switch or dequeue activation transaction as
putting the whole HEC to sleep. We use the existing RTS
mechanism to resume the thread when work becomes avail-
able on the scheduler.

3.5 SCont local state
The activations of an SCont can be read by dequeueAct
and enqueueAct primitives. In effect, they constitute the
SCont-local state. Local state is often convenient for other
purposes, so we also provide a single dynamically-typed4

field, the “aux-field”, for arbitrary user purposes. The aux-
field can be read from and written to using the primitives
getAux and setAux. The API additionally allows an SCont
to change its own scheduler through setDequeueAct and
setEnqueueAct primitives.

4. Developing concurrency libraries
In this section, we will utilise the concurrency substrate to
implement a multicore capable, round-robin scheduler and a
user-level MVar implementation.

4.1 User-level scheduler
The first step in designing a scheduler is to describe the
scheduler data structure. We utilise an array of runqueues,
with one queue per HEC. Each runqueue is represented by
a transactional variable (a TVar), which can hold a list of
SConts.
newtype Sched = Sched (Array Int (TVar[SCont]))

The next step is to provide an implementation for the
scheduler activations.
dequeueActivation :: Sched -> SCont -> STM SCont
dequeueActivation (Sched pa) _ = do

cc <- getCurrentHEC -- get current HEC number
l <- readTVar $ pa!cc
case l of

[] -> retry
x:tl -> do

writeTVar (pa!cc) tl
return x

enqueueActivation :: Sched -> SCont -> STM ()
enqueueActivation (Sched pa) sc = do

dyn <- getAux sc

4 http://hackage.haskell.org/package/base-4.6.0.1/docs/
Data-Dynamic.html

let (hec::Int , _::TVar Int) = fromJust $
fromDynamic dyn

l <- readTVar $ pa!hec
writeTVar (pa!hec) $ l++[sc]

dequeueActivation either returns the SCont at the
front of the runqueue and updates the runqueue appro-
priately, or puts the HEC to sleep if the queue is empty.
Recall that performing retry within a dequeue activation
puts the HEC to sleep. The HEC will automatically be wo-
ken up when work becomes available i.e. queue becomes
non-empty. Although we ignore the SCont being blocked
in this case, one could imagine manipulating the blocked
SCont’s aux state for accounting information such as time
slices consumed for fair-share scheduling. Enqueue acti-
vation (enqueueActivation) finds the SCont’s HEC by
querying its stack-local state (the details of which is pre-
sented along with the next primitive). The HEC number
(hec) is used to fetch the correct runqueue, to which the
SCont is appended to.

The next step is to initialise the scheduler. This involves
two steps: (1) allocating the scheduler (newScheduler) and
initialising the main thread and (2) spinning up additional
HECs (newHEC). We assume that the Haskell program wish-
ing to utilise the ULS performs these two steps at the start
of the main IO computation. The implementation of these
primitives are given below:
newScheduler :: IO ()
newScheduler = do

-- Initialise Auxiliary state
switch $ \s -> do

counter <- newTVar (0:: Int)
setAux s $ toDyn $ (0::Int ,counter)
return s

-- Allocate scheduler
nc <- getNumHECs
sched <- (Sched . listArray (0,nc -1)) <$>

replicateM n (newTVar [])
-- Initialise activations
setDequeueAct s $ dequeueActivation sched
setEnqueueAct s $ enqueueActivation sched

newHEC :: IO ()
newHEC = do
-- Initial task
s <- newSCont $ switch dequeueAct
-- Run in parallel
runOnIdleHEC s

First we will focus on initialising a new ULS (newScheduler).
For load balancing purposes, we will spawn threads in a
round-robin fashion over the available HECs. For this pur-
pose, we initialise a TVar counter, and store into the auxil-
iary state a pair (c, t) where c is the SCont’s home HEC and
t is the counter for scheduling. Next, we allocate an empty
scheduler data structure (sched), and register the current
thread with the scheduler activations. This step binds the
current thread to participate in user-level scheduling.

All other HECs act as workers (newHEC), scheduling the
threads that become available on their runqueues. The initial
task created on the HEC simply waits for work to become
available on the runqueue, and switches to it. Recall that al-
locating a new SCont copies the current SCont’s activations

5 2014/3/20

This situation can occur during multicore execution, when
the number of available threads is less than the number of
HECs. If a HEC does not have any work to do, it better be
put to sleep.

Both the dequeue activation and the body of the switch
primitive are STM transactions. GHC today supports block-
ing operations under STM. When the programmer invokes
retry inside a transaction, the RTS blocks the thread un-
til another thread writes to any of the transactional variables
read by the transaction; then the thread is re-awoken, and re-
tries the transaction [12]. This is entirely transparent to the
programmer. Along the same lines, we interpret the use of
retry within a switch or dequeue activation transaction as
putting the whole HEC to sleep. We use the existing RTS
mechanism to resume the thread when work becomes avail-
able on the scheduler.

3.5 SCont local state
The activations of an SCont can be read by dequeueAct
and enqueueAct primitives. In effect, they constitute the
SCont-local state. Local state is often convenient for other
purposes, so we also provide a single dynamically-typed4

field, the “aux-field”, for arbitrary user purposes. The aux-
field can be read from and written to using the primitives
getAux and setAux. The API additionally allows an SCont
to change its own scheduler through setDequeueAct and
setEnqueueAct primitives.

4. Developing concurrency libraries
In this section, we will utilise the concurrency substrate to
implement a multicore capable, round-robin scheduler and a
user-level MVar implementation.

4.1 User-level scheduler
The first step in designing a scheduler is to describe the
scheduler data structure. We utilise an array of runqueues,
with one queue per HEC. Each runqueue is represented by
a transactional variable (a TVar), which can hold a list of
SConts.
newtype Sched = Sched (Array Int (TVar[SCont]))

The next step is to provide an implementation for the
scheduler activations.
dequeueActivation :: Sched -> SCont -> STM SCont
dequeueActivation (Sched pa) _ = do

cc <- getCurrentHEC -- get current HEC number
l <- readTVar $ pa!cc
case l of

[] -> retry
x:tl -> do

writeTVar (pa!cc) tl
return x

enqueueActivation :: Sched -> SCont -> STM ()
enqueueActivation (Sched pa) sc = do

dyn <- getAux sc

4 http://hackage.haskell.org/package/base-4.6.0.1/docs/
Data-Dynamic.html

let (hec::Int , _::TVar Int) = fromJust $
fromDynamic dyn

l <- readTVar $ pa!hec
writeTVar (pa!hec) $ l++[sc]

dequeueActivation either returns the SCont at the
front of the runqueue and updates the runqueue appro-
priately, or puts the HEC to sleep if the queue is empty.
Recall that performing retry within a dequeue activation
puts the HEC to sleep. The HEC will automatically be wo-
ken up when work becomes available i.e. queue becomes
non-empty. Although we ignore the SCont being blocked
in this case, one could imagine manipulating the blocked
SCont’s aux state for accounting information such as time
slices consumed for fair-share scheduling. Enqueue acti-
vation (enqueueActivation) finds the SCont’s HEC by
querying its stack-local state (the details of which is pre-
sented along with the next primitive). The HEC number
(hec) is used to fetch the correct runqueue, to which the
SCont is appended to.

The next step is to initialise the scheduler. This involves
two steps: (1) allocating the scheduler (newScheduler) and
initialising the main thread and (2) spinning up additional
HECs (newHEC). We assume that the Haskell program wish-
ing to utilise the ULS performs these two steps at the start
of the main IO computation. The implementation of these
primitives are given below:
newScheduler :: IO ()
newScheduler = do

-- Initialise Auxiliary state
switch $ \s -> do

counter <- newTVar (0:: Int)
setAux s $ toDyn $ (0::Int ,counter)
return s

-- Allocate scheduler
nc <- getNumHECs
sched <- (Sched . listArray (0,nc -1)) <$>

replicateM n (newTVar [])
-- Initialise activations
setDequeueAct s $ dequeueActivation sched
setEnqueueAct s $ enqueueActivation sched

newHEC :: IO ()
newHEC = do
-- Initial task
s <- newSCont $ switch dequeueAct
-- Run in parallel
runOnIdleHEC s

First we will focus on initialising a new ULS (newScheduler).
For load balancing purposes, we will spawn threads in a
round-robin fashion over the available HECs. For this pur-
pose, we initialise a TVar counter, and store into the auxil-
iary state a pair (c, t) where c is the SCont’s home HEC and
t is the counter for scheduling. Next, we allocate an empty
scheduler data structure (sched), and register the current
thread with the scheduler activations. This step binds the
current thread to participate in user-level scheduling.

All other HECs act as workers (newHEC), scheduling the
threads that become available on their runqueues. The initial
task created on the HEC simply waits for work to become
available on the runqueue, and switches to it. Recall that al-
locating a new SCont copies the current SCont’s activations

5 2014/3/20

to the newly created SCont. In this case, the main SCont’s
activations, initialised in newScheduler, are copied to the
newly allocated SCont. As a result, the newly allocated
SCont shares the same ULS with the main SCont. Finally,
we run the new SCont on a free HEC. Notice that sched-
uler data structure is not directly accessed in newHEC, but
accessed through the activation interface.

The Haskell program only needs to prepend the follow-
ing snippet to the main IO computation to utilise the ULS
implementation.
main = do

newScheduler
n <- getNumHECs
replicateM_ (n-1) newHEC
... -- rest of the main code

How do we create new user-level threads in this sched-
uler? For this purpose, we implement a forkIO primitive
that spawns a new user-level thread as follows:
forkIO :: IO () -> IO SCont
forkIO task = do

numHECs <- getNumHECs
-- epilogue: Switch to next thread
newSC <- newSCont (task >> switch dequeueAct)
-- Create and initialise new Aux state
switch $ \s -> do

dyn <- getAux s
let (_::Int , t::TVar Int) = fromJust $

fromDynamic dyn
nextHEC <- readTVar t
writeTVar t $ (nextHEC + 1) ‘mod ‘ numHECs
setAux newSC $ toDyn (nextHEC , t)
return s

-- Add new thread to scheduler
atomically $ enqueueAct newSC
return newSC

forkIO primitive spawns a new thread that runs concur-
rently with its parent thread. What should happen after such
a thread has run to completion? We must request the sched-
uler to provide us the next thread to run. This is captured in
the epilogue e, and is appended to the given IO computation
task. Next, we allocate a new SCont, which implicitly in-
herits the current SCont’s scheduler activations. In order to
spawn threads in a round-robin fashion, we create a new aux-
iliary state for the new SCont and prepare it such that when
unblocked, the new SCont is added to the runqueue on HEC
nextHEC. Finally, the newly created SCont is added to the
scheduler using its enqueue activation.

The key aspect of this forkIO primitive is that it does not
directly access the scheduler data structure, but does so only
through the activation interface. As a result, aside from the
auxiliary state manipulation, the rest of the code pretty much
can stay the same for any user-level forkIO primitive. Addi-
tionally, we can implement a yield primitive similar to the
one described in Section 3.3.2. Due to scheduler activations,
the interaction with the RTS concurrency mechanisms come
for free, and we are done!

4.2 Scheduler agnostic user-level MVars
Our scheduler activations abstracts the interface to the
ULS’s. This fact can be exploited to build scheduler agnostic

implementation of user-level concurrency libraries such as
MVars. The following snippet describes the structure of an
MVar implementation:
newtype MVar a = MVar (TVar (MVPState a))
data MVPState a = Full a [(a, SCont)]

| Empty [(IORef a, SCont)]

MVar is either empty with a list of pending takers, or full
with a value and a list of pending putters. An implementation
of takeMVar function is presented below:
takeMVar :: MVar a -> IO a
takeMVar (MVar ref) = do

h <- atomically $ newTVar undefined
switch $ \s -> do

st <- readTVar ref
case st of

Empty ts -> do
writeTVar ref $ Empty $ enqueue ts (h,s)
dequeueAct s

Full x ts -> do
writeTVar h x
case deque ts of

(_, Nothing) -> do
writeTVar ref $ Empty emptyQueue

(ts ’, Just (x’, s’)) -> do
writeTVar ref $ Full x’ ts ’
enqueueAct s’

return s
atomically $ readTVar h

If the MVar is empty, the SCont enqueues itself into the
queue of pending takers. If the MVar is full, SCont con-
sumes the value and unblocks the next waiting putter SCont,
if any. The implementation of putMVar is the dual of this
implementation. Notice that the implementation only uses
the activations to block and resume the SConts interacting
through the MVar. This allows threads from different ULS’s
to communicate over the same MVar, and hence the imple-
mentation is scheduler agnostic.

5. Semantics
In this section, we present the formal semantics of the con-
currency substrate primitives introduced in Section 3.3. We
will subsequently utilise the semantics to formally describe
the interaction of the ULS with the RTS in Section 6. Our se-
mantics closely follows the implementation. The aim of this
is to precisely describe the issues with respect to the interac-
tions between the ULS and the RTS, and have the language
to enunciate our solutions.

5.1 Syntax
Figure 5 shows the syntax of program states. The program
state P is a soup S of HECs, and a shared heap ⇥. The
operator k in the HEC soup is associative and commutative.
Each HEC is either idle (Idle) or a triple hs,M,Dit where
s is a unique identifier of the currently executing SCont, M
is the currently executing term, D represents SCont-local
state. Each HEC has an optional subscript t representing its
current state, and the absence of the subscript represents a
HEC that is running. As mentioned in Section 3.4, when the
program begins execution, the HEC soup has the following
configuration:

6 2014/3/20

User-level Scheduler

RTS

e t
wait

t.enqueueAct()

current thread t'

()

current thread t'

enqueue(t)

Figure 4. Unblocking from an RTS event.

Suppose we want to resume the thread t which is blocked
on e. The RTS invokes t’s enqueue activation to add t to
its scheduler. Since t’s scheduler is already running, t will
eventually be scheduled again.

3.2 Software transactional memory
Since Haskell computations can run in parallel on different
HECs, the substrate must provide a method for safely coordi-
nating activities across multiple HECs. Similar to Li’s sub-
strate design [17], we adopt transactional memory (STM),
as the sole multiprocessor synchronisation mechanism ex-
posed by the substrate. Using transactional memory, rather
than locks and condition variables make complex concurrent
programs much more modular and less error-prone [12] –
and schedulers are prime candidates, because they are prone
to subtle concurrency bugs.

3.3 Concurrency substrate
Now that we have motivated our design decisions, we will
present the API for the concurrency substrate. The con-
currency substrate includes the primitives for instantiating
and switching between language level threads, manipulating
thread local state, and an abstraction for scheduler activa-
tions. The API is presented below:

data SCont
type DequeueAct = SCont -> STM SCont
type EnqueueAct = SCont -> STM ()

-- activation interface
dequeueAct :: DequeueAct
enqueueAct :: EnqueueAct

-- SCont manipulation
newSCont :: IO () -> IO SCont
switch :: (SCont -> STM SCont) -> IO ()
runOnIdleHEC :: SCont -> IO ()

-- Manipulating local state
setDequeueAct :: DequeueAct -> IO ()
setEnqueueAct :: EnqueueAct -> IO ()
getAux :: SCont -> STM Dynamic
setAux :: SCont -> Dynamic -> STM ()

3.3.1 Activation interface
Rather than directly exposing the notion of a “thread”, the
substrate offers one-shot continuations [4], which is of type
SCont. An SCont is a heap-allocated object representing the
current state of a Haskell computation. In the RTS, SConts
are represented quite conventionally by a heap-allocated
Thread Storage Object (TSO), which includes the compu-

tations stack and local state, saved registers, and program
counter. Unreachable SConts are garbage collected.

The call (dequeueAct s) invokes s’s dequeue activa-
tion, passing s to it like a “self” parameter. The return type
of dequeueAct indicates that the computation encapsulated
in the dequeueAct is transactional (under STM monad3),
which when discharged, returns an SCont. Similarly, the
call (enqueueAct s) invokes the enqueue activation trans-
actionally, which enqueues s to its ULS.

Since the activations are under STM monad, we have the
assurance that the ULS’s schedulers cannot be built with
low-level unsafe components such as locks and condition
variables. Such low-level operations would be under IO
monad, which cannot be part of an STM transaction. Thus,
our concurrency substrate statically prevents the implemen-
tation of potentially unsafe schedulers.

3.3.2 SCont management
The substrate offers primitives for creating, constructing and
transferring control between SConts. The call (newSContM)
creates a new SCont that, when scheduled, executes M . By
default, the newly created SCont is associated with the ULS
of the invoking thread. This is done by copying the invoking
SCont’s activations.

An SCont is scheduled (i.e. is given control of a HEC) by
the switch primitive. The call (switchM) applies M to the
current continuation s. Notice that (M s) is an STM compu-
tation. In a single atomic transaction switch performs the
computation (M s), yielding an SCont s0, and switches con-
trol to s0. Thus, the computation encapsulated by s0 becomes
the currently running computation on this HEC.

Since our continuations are one-shot, capturing a contin-
uation simply fetches the reference to the underlying TSO
object. Hence, continuation capture involves no copying, and
is cheap. Using the SCont interface, a cooperative scheduler
can be built as follows:
yield :: IO ()
yield = switch (\s -> enqueueAct s >> dequeueAct s)

3.4 Parallel SCont execution
When the program begins execution, a fixed number of
HECs (N) is provided to it by the environment. This sig-
nifies the maximum number of parallel computations in
the program. Of these, one of the HEC runs the main IO
computation. All other HECs are in idle state. The call
runOnIdleHEC s initiates parallel execution of SCont s on
an idle HEC. Once the SCont running on a HEC finishes
evaluation, the HEC moves back to the idle state.

Notice that the upcall from the RTS to the dequeue acti-
vation as well as the body of the switch primitive return an
SCont. This is the SCont to which the control would switch
to subsequently. But what if such an SCont cannot be found?

3 http://hackage.haskell.org/package/stm-2.1.1.0/docs/
Control-Concurrent-STM.html

4 2014/3/20

Multicore capable, preemptive,
round-robin work-sharing scheduler

This situation can occur during multicore execution, when
the number of available threads is less than the number of
HECs. If a HEC does not have any work to do, it better be
put to sleep.

Both the dequeue activation and the body of the switch
primitive are STM transactions. GHC today supports block-
ing operations under STM. When the programmer invokes
retry inside a transaction, the RTS blocks the thread un-
til another thread writes to any of the transactional variables
read by the transaction; then the thread is re-awoken, and re-
tries the transaction [12]. This is entirely transparent to the
programmer. Along the same lines, we interpret the use of
retry within a switch or dequeue activation transaction as
putting the whole HEC to sleep. We use the existing RTS
mechanism to resume the thread when work becomes avail-
able on the scheduler.

3.5 SCont local state
The activations of an SCont can be read by dequeueAct
and enqueueAct primitives. In effect, they constitute the
SCont-local state. Local state is often convenient for other
purposes, so we also provide a single dynamically-typed4

field, the “aux-field”, for arbitrary user purposes. The aux-
field can be read from and written to using the primitives
getAux and setAux. The API additionally allows an SCont
to change its own scheduler through setDequeueAct and
setEnqueueAct primitives.

4. Developing concurrency libraries
In this section, we will utilise the concurrency substrate to
implement a multicore capable, round-robin scheduler and a
user-level MVar implementation.

4.1 User-level scheduler
The first step in designing a scheduler is to describe the
scheduler data structure. We utilise an array of runqueues,
with one queue per HEC. Each runqueue is represented by
a transactional variable (a TVar), which can hold a list of
SConts.
newtype Sched = Sched (Array Int (TVar[SCont]))

The next step is to provide an implementation for the
scheduler activations.
dequeueActivation :: Sched -> SCont -> STM SCont
dequeueActivation (Sched pa) _ = do

cc <- getCurrentHEC -- get current HEC number
l <- readTVar $ pa!cc
case l of

[] -> retry
x:tl -> do

writeTVar (pa!cc) tl
return x

enqueueActivation :: Sched -> SCont -> STM ()
enqueueActivation (Sched pa) sc = do

dyn <- getAux sc

4 http://hackage.haskell.org/package/base-4.6.0.1/docs/
Data-Dynamic.html

let (hec::Int , _::TVar Int) = fromJust $
fromDynamic dyn

l <- readTVar $ pa!hec
writeTVar (pa!hec) $ l++[sc]

dequeueActivation either returns the SCont at the
front of the runqueue and updates the runqueue appro-
priately, or puts the HEC to sleep if the queue is empty.
Recall that performing retry within a dequeue activation
puts the HEC to sleep. The HEC will automatically be wo-
ken up when work becomes available i.e. queue becomes
non-empty. Although we ignore the SCont being blocked
in this case, one could imagine manipulating the blocked
SCont’s aux state for accounting information such as time
slices consumed for fair-share scheduling. Enqueue acti-
vation (enqueueActivation) finds the SCont’s HEC by
querying its stack-local state (the details of which is pre-
sented along with the next primitive). The HEC number
(hec) is used to fetch the correct runqueue, to which the
SCont is appended to.

The next step is to initialise the scheduler. This involves
two steps: (1) allocating the scheduler (newScheduler) and
initialising the main thread and (2) spinning up additional
HECs (newHEC). We assume that the Haskell program wish-
ing to utilise the ULS performs these two steps at the start
of the main IO computation. The implementation of these
primitives are given below:
newScheduler :: IO ()
newScheduler = do

-- Initialise Auxiliary state
switch $ \s -> do

counter <- newTVar (0:: Int)
setAux s $ toDyn $ (0::Int ,counter)
return s

-- Allocate scheduler
nc <- getNumHECs
sched <- (Sched . listArray (0,nc -1)) <$>

replicateM n (newTVar [])
-- Initialise activations
setDequeueAct s $ dequeueActivation sched
setEnqueueAct s $ enqueueActivation sched

newHEC :: IO ()
newHEC = do
-- Initial task
s <- newSCont $ switch dequeueAct
-- Run in parallel
runOnIdleHEC s

First we will focus on initialising a new ULS (newScheduler).
For load balancing purposes, we will spawn threads in a
round-robin fashion over the available HECs. For this pur-
pose, we initialise a TVar counter, and store into the auxil-
iary state a pair (c, t) where c is the SCont’s home HEC and
t is the counter for scheduling. Next, we allocate an empty
scheduler data structure (sched), and register the current
thread with the scheduler activations. This step binds the
current thread to participate in user-level scheduling.

All other HECs act as workers (newHEC), scheduling the
threads that become available on their runqueues. The initial
task created on the HEC simply waits for work to become
available on the runqueue, and switches to it. Recall that al-
locating a new SCont copies the current SCont’s activations

5 2014/3/20

This situation can occur during multicore execution, when
the number of available threads is less than the number of
HECs. If a HEC does not have any work to do, it better be
put to sleep.

Both the dequeue activation and the body of the switch
primitive are STM transactions. GHC today supports block-
ing operations under STM. When the programmer invokes
retry inside a transaction, the RTS blocks the thread un-
til another thread writes to any of the transactional variables
read by the transaction; then the thread is re-awoken, and re-
tries the transaction [12]. This is entirely transparent to the
programmer. Along the same lines, we interpret the use of
retry within a switch or dequeue activation transaction as
putting the whole HEC to sleep. We use the existing RTS
mechanism to resume the thread when work becomes avail-
able on the scheduler.

3.5 SCont local state
The activations of an SCont can be read by dequeueAct
and enqueueAct primitives. In effect, they constitute the
SCont-local state. Local state is often convenient for other
purposes, so we also provide a single dynamically-typed4

field, the “aux-field”, for arbitrary user purposes. The aux-
field can be read from and written to using the primitives
getAux and setAux. The API additionally allows an SCont
to change its own scheduler through setDequeueAct and
setEnqueueAct primitives.

4. Developing concurrency libraries
In this section, we will utilise the concurrency substrate to
implement a multicore capable, round-robin scheduler and a
user-level MVar implementation.

4.1 User-level scheduler
The first step in designing a scheduler is to describe the
scheduler data structure. We utilise an array of runqueues,
with one queue per HEC. Each runqueue is represented by
a transactional variable (a TVar), which can hold a list of
SConts.
newtype Sched = Sched (Array Int (TVar[SCont]))

The next step is to provide an implementation for the
scheduler activations.
dequeueActivation :: Sched -> SCont -> STM SCont
dequeueActivation (Sched pa) _ = do

cc <- getCurrentHEC -- get current HEC number
l <- readTVar $ pa!cc
case l of

[] -> retry
x:tl -> do

writeTVar (pa!cc) tl
return x

enqueueActivation :: Sched -> SCont -> STM ()
enqueueActivation (Sched pa) sc = do

dyn <- getAux sc

4 http://hackage.haskell.org/package/base-4.6.0.1/docs/
Data-Dynamic.html

let (hec::Int , _::TVar Int) = fromJust $
fromDynamic dyn

l <- readTVar $ pa!hec
writeTVar (pa!hec) $ l++[sc]

dequeueActivation either returns the SCont at the
front of the runqueue and updates the runqueue appro-
priately, or puts the HEC to sleep if the queue is empty.
Recall that performing retry within a dequeue activation
puts the HEC to sleep. The HEC will automatically be wo-
ken up when work becomes available i.e. queue becomes
non-empty. Although we ignore the SCont being blocked
in this case, one could imagine manipulating the blocked
SCont’s aux state for accounting information such as time
slices consumed for fair-share scheduling. Enqueue acti-
vation (enqueueActivation) finds the SCont’s HEC by
querying its stack-local state (the details of which is pre-
sented along with the next primitive). The HEC number
(hec) is used to fetch the correct runqueue, to which the
SCont is appended to.

The next step is to initialise the scheduler. This involves
two steps: (1) allocating the scheduler (newScheduler) and
initialising the main thread and (2) spinning up additional
HECs (newHEC). We assume that the Haskell program wish-
ing to utilise the ULS performs these two steps at the start
of the main IO computation. The implementation of these
primitives are given below:
newScheduler :: IO ()
newScheduler = do

-- Initialise Auxiliary state
switch $ \s -> do

counter <- newTVar (0:: Int)
setAux s $ toDyn $ (0::Int ,counter)
return s

-- Allocate scheduler
nc <- getNumHECs
sched <- (Sched . listArray (0,nc -1)) <$>

replicateM n (newTVar [])
-- Initialise activations
setDequeueAct s $ dequeueActivation sched
setEnqueueAct s $ enqueueActivation sched

newHEC :: IO ()
newHEC = do
-- Initial task
s <- newSCont $ switch dequeueAct
-- Run in parallel
runOnIdleHEC s

First we will focus on initialising a new ULS (newScheduler).
For load balancing purposes, we will spawn threads in a
round-robin fashion over the available HECs. For this pur-
pose, we initialise a TVar counter, and store into the auxil-
iary state a pair (c, t) where c is the SCont’s home HEC and
t is the counter for scheduling. Next, we allocate an empty
scheduler data structure (sched), and register the current
thread with the scheduler activations. This step binds the
current thread to participate in user-level scheduling.

All other HECs act as workers (newHEC), scheduling the
threads that become available on their runqueues. The initial
task created on the HEC simply waits for work to become
available on the runqueue, and switches to it. Recall that al-
locating a new SCont copies the current SCont’s activations

5 2014/3/20

This situation can occur during multicore execution, when
the number of available threads is less than the number of
HECs. If a HEC does not have any work to do, it better be
put to sleep.

Both the dequeue activation and the body of the switch
primitive are STM transactions. GHC today supports block-
ing operations under STM. When the programmer invokes
retry inside a transaction, the RTS blocks the thread un-
til another thread writes to any of the transactional variables
read by the transaction; then the thread is re-awoken, and re-
tries the transaction [12]. This is entirely transparent to the
programmer. Along the same lines, we interpret the use of
retry within a switch or dequeue activation transaction as
putting the whole HEC to sleep. We use the existing RTS
mechanism to resume the thread when work becomes avail-
able on the scheduler.

3.5 SCont local state
The activations of an SCont can be read by dequeueAct
and enqueueAct primitives. In effect, they constitute the
SCont-local state. Local state is often convenient for other
purposes, so we also provide a single dynamically-typed4

field, the “aux-field”, for arbitrary user purposes. The aux-
field can be read from and written to using the primitives
getAux and setAux. The API additionally allows an SCont
to change its own scheduler through setDequeueAct and
setEnqueueAct primitives.

4. Developing concurrency libraries
In this section, we will utilise the concurrency substrate to
implement a multicore capable, round-robin scheduler and a
user-level MVar implementation.

4.1 User-level scheduler
The first step in designing a scheduler is to describe the
scheduler data structure. We utilise an array of runqueues,
with one queue per HEC. Each runqueue is represented by
a transactional variable (a TVar), which can hold a list of
SConts.
newtype Sched = Sched (Array Int (TVar[SCont]))

The next step is to provide an implementation for the
scheduler activations.
dequeueActivation :: Sched -> SCont -> STM SCont
dequeueActivation (Sched pa) _ = do

cc <- getCurrentHEC -- get current HEC number
l <- readTVar $ pa!cc
case l of

[] -> retry
x:tl -> do

writeTVar (pa!cc) tl
return x

enqueueActivation :: Sched -> SCont -> STM ()
enqueueActivation (Sched pa) sc = do

dyn <- getAux sc

4 http://hackage.haskell.org/package/base-4.6.0.1/docs/
Data-Dynamic.html

let (hec::Int , _::TVar Int) = fromJust $
fromDynamic dyn

l <- readTVar $ pa!hec
writeTVar (pa!hec) $ l++[sc]

dequeueActivation either returns the SCont at the
front of the runqueue and updates the runqueue appro-
priately, or puts the HEC to sleep if the queue is empty.
Recall that performing retry within a dequeue activation
puts the HEC to sleep. The HEC will automatically be wo-
ken up when work becomes available i.e. queue becomes
non-empty. Although we ignore the SCont being blocked
in this case, one could imagine manipulating the blocked
SCont’s aux state for accounting information such as time
slices consumed for fair-share scheduling. Enqueue acti-
vation (enqueueActivation) finds the SCont’s HEC by
querying its stack-local state (the details of which is pre-
sented along with the next primitive). The HEC number
(hec) is used to fetch the correct runqueue, to which the
SCont is appended to.

The next step is to initialise the scheduler. This involves
two steps: (1) allocating the scheduler (newScheduler) and
initialising the main thread and (2) spinning up additional
HECs (newHEC). We assume that the Haskell program wish-
ing to utilise the ULS performs these two steps at the start
of the main IO computation. The implementation of these
primitives are given below:
newScheduler :: IO ()
newScheduler = do

-- Initialise Auxiliary state
switch $ \s -> do

counter <- newTVar (0:: Int)
setAux s $ toDyn $ (0::Int ,counter)
return s

-- Allocate scheduler
nc <- getNumHECs
sched <- (Sched . listArray (0,nc -1)) <$>

replicateM n (newTVar [])
-- Initialise activations
setDequeueAct s $ dequeueActivation sched
setEnqueueAct s $ enqueueActivation sched

newHEC :: IO ()
newHEC = do
-- Initial task
s <- newSCont $ switch dequeueAct
-- Run in parallel
runOnIdleHEC s

First we will focus on initialising a new ULS (newScheduler).
For load balancing purposes, we will spawn threads in a
round-robin fashion over the available HECs. For this pur-
pose, we initialise a TVar counter, and store into the auxil-
iary state a pair (c, t) where c is the SCont’s home HEC and
t is the counter for scheduling. Next, we allocate an empty
scheduler data structure (sched), and register the current
thread with the scheduler activations. This step binds the
current thread to participate in user-level scheduling.

All other HECs act as workers (newHEC), scheduling the
threads that become available on their runqueues. The initial
task created on the HEC simply waits for work to become
available on the runqueue, and switches to it. Recall that al-
locating a new SCont copies the current SCont’s activations

5 2014/3/20

This situation can occur during multicore execution, when
the number of available threads is less than the number of
HECs. If a HEC does not have any work to do, it better be
put to sleep.

Both the dequeue activation and the body of the switch
primitive are STM transactions. GHC today supports block-
ing operations under STM. When the programmer invokes
retry inside a transaction, the RTS blocks the thread un-
til another thread writes to any of the transactional variables
read by the transaction; then the thread is re-awoken, and re-
tries the transaction [12]. This is entirely transparent to the
programmer. Along the same lines, we interpret the use of
retry within a switch or dequeue activation transaction as
putting the whole HEC to sleep. We use the existing RTS
mechanism to resume the thread when work becomes avail-
able on the scheduler.

3.5 SCont local state
The activations of an SCont can be read by dequeueAct
and enqueueAct primitives. In effect, they constitute the
SCont-local state. Local state is often convenient for other
purposes, so we also provide a single dynamically-typed4

field, the “aux-field”, for arbitrary user purposes. The aux-
field can be read from and written to using the primitives
getAux and setAux. The API additionally allows an SCont
to change its own scheduler through setDequeueAct and
setEnqueueAct primitives.

4. Developing concurrency libraries
In this section, we will utilise the concurrency substrate to
implement a multicore capable, round-robin scheduler and a
user-level MVar implementation.

4.1 User-level scheduler
The first step in designing a scheduler is to describe the
scheduler data structure. We utilise an array of runqueues,
with one queue per HEC. Each runqueue is represented by
a transactional variable (a TVar), which can hold a list of
SConts.
newtype Sched = Sched (Array Int (TVar[SCont]))

The next step is to provide an implementation for the
scheduler activations.
dequeueActivation :: Sched -> SCont -> STM SCont
dequeueActivation (Sched pa) _ = do

cc <- getCurrentHEC -- get current HEC number
l <- readTVar $ pa!cc
case l of

[] -> retry
x:tl -> do

writeTVar (pa!cc) tl
return x

enqueueActivation :: Sched -> SCont -> STM ()
enqueueActivation (Sched pa) sc = do

dyn <- getAux sc

4 http://hackage.haskell.org/package/base-4.6.0.1/docs/
Data-Dynamic.html

let (hec::Int , _::TVar Int) = fromJust $
fromDynamic dyn

l <- readTVar $ pa!hec
writeTVar (pa!hec) $ l++[sc]

dequeueActivation either returns the SCont at the
front of the runqueue and updates the runqueue appro-
priately, or puts the HEC to sleep if the queue is empty.
Recall that performing retry within a dequeue activation
puts the HEC to sleep. The HEC will automatically be wo-
ken up when work becomes available i.e. queue becomes
non-empty. Although we ignore the SCont being blocked
in this case, one could imagine manipulating the blocked
SCont’s aux state for accounting information such as time
slices consumed for fair-share scheduling. Enqueue acti-
vation (enqueueActivation) finds the SCont’s HEC by
querying its stack-local state (the details of which is pre-
sented along with the next primitive). The HEC number
(hec) is used to fetch the correct runqueue, to which the
SCont is appended to.

The next step is to initialise the scheduler. This involves
two steps: (1) allocating the scheduler (newScheduler) and
initialising the main thread and (2) spinning up additional
HECs (newHEC). We assume that the Haskell program wish-
ing to utilise the ULS performs these two steps at the start
of the main IO computation. The implementation of these
primitives are given below:
newScheduler :: IO ()
newScheduler = do

-- Initialise Auxiliary state
switch $ \s -> do

counter <- newTVar (0:: Int)
setAux s $ toDyn $ (0::Int ,counter)
return s

-- Allocate scheduler
nc <- getNumHECs
sched <- (Sched . listArray (0,nc -1)) <$>

replicateM n (newTVar [])
-- Initialise activations
setDequeueAct s $ dequeueActivation sched
setEnqueueAct s $ enqueueActivation sched

newHEC :: IO ()
newHEC = do
-- Initial task
s <- newSCont $ switch dequeueAct
-- Run in parallel
runOnIdleHEC s

First we will focus on initialising a new ULS (newScheduler).
For load balancing purposes, we will spawn threads in a
round-robin fashion over the available HECs. For this pur-
pose, we initialise a TVar counter, and store into the auxil-
iary state a pair (c, t) where c is the SCont’s home HEC and
t is the counter for scheduling. Next, we allocate an empty
scheduler data structure (sched), and register the current
thread with the scheduler activations. This step binds the
current thread to participate in user-level scheduling.

All other HECs act as workers (newHEC), scheduling the
threads that become available on their runqueues. The initial
task created on the HEC simply waits for work to become
available on the runqueue, and switches to it. Recall that al-
locating a new SCont copies the current SCont’s activations

5 2014/3/20

to the newly created SCont. In this case, the main SCont’s
activations, initialised in newScheduler, are copied to the
newly allocated SCont. As a result, the newly allocated
SCont shares the same ULS with the main SCont. Finally,
we run the new SCont on a free HEC. Notice that sched-
uler data structure is not directly accessed in newHEC, but
accessed through the activation interface.

The Haskell program only needs to prepend the follow-
ing snippet to the main IO computation to utilise the ULS
implementation.
main = do

newScheduler
n <- getNumHECs
replicateM_ (n-1) newHEC
... -- rest of the main code

How do we create new user-level threads in this sched-
uler? For this purpose, we implement a forkIO primitive
that spawns a new user-level thread as follows:
forkIO :: IO () -> IO SCont
forkIO task = do

numHECs <- getNumHECs
-- epilogue: Switch to next thread
newSC <- newSCont (task >> switch dequeueAct)
-- Create and initialise new Aux state
switch $ \s -> do

dyn <- getAux s
let (_::Int , t::TVar Int) = fromJust $

fromDynamic dyn
nextHEC <- readTVar t
writeTVar t $ (nextHEC + 1) ‘mod ‘ numHECs
setAux newSC $ toDyn (nextHEC , t)
return s

-- Add new thread to scheduler
atomically $ enqueueAct newSC
return newSC

forkIO primitive spawns a new thread that runs concur-
rently with its parent thread. What should happen after such
a thread has run to completion? We must request the sched-
uler to provide us the next thread to run. This is captured in
the epilogue e, and is appended to the given IO computation
task. Next, we allocate a new SCont, which implicitly in-
herits the current SCont’s scheduler activations. In order to
spawn threads in a round-robin fashion, we create a new aux-
iliary state for the new SCont and prepare it such that when
unblocked, the new SCont is added to the runqueue on HEC
nextHEC. Finally, the newly created SCont is added to the
scheduler using its enqueue activation.

The key aspect of this forkIO primitive is that it does not
directly access the scheduler data structure, but does so only
through the activation interface. As a result, aside from the
auxiliary state manipulation, the rest of the code pretty much
can stay the same for any user-level forkIO primitive. Addi-
tionally, we can implement a yield primitive similar to the
one described in Section 3.3.2. Due to scheduler activations,
the interaction with the RTS concurrency mechanisms come
for free, and we are done!

4.2 Scheduler agnostic user-level MVars
Our scheduler activations abstracts the interface to the
ULS’s. This fact can be exploited to build scheduler agnostic

implementation of user-level concurrency libraries such as
MVars. The following snippet describes the structure of an
MVar implementation:
newtype MVar a = MVar (TVar (MVPState a))
data MVPState a = Full a [(a, SCont)]

| Empty [(IORef a, SCont)]

MVar is either empty with a list of pending takers, or full
with a value and a list of pending putters. An implementation
of takeMVar function is presented below:
takeMVar :: MVar a -> IO a
takeMVar (MVar ref) = do

h <- atomically $ newTVar undefined
switch $ \s -> do

st <- readTVar ref
case st of

Empty ts -> do
writeTVar ref $ Empty $ enqueue ts (h,s)
dequeueAct s

Full x ts -> do
writeTVar h x
case deque ts of

(_, Nothing) -> do
writeTVar ref $ Empty emptyQueue

(ts ’, Just (x’, s’)) -> do
writeTVar ref $ Full x’ ts ’
enqueueAct s’

return s
atomically $ readTVar h

If the MVar is empty, the SCont enqueues itself into the
queue of pending takers. If the MVar is full, SCont con-
sumes the value and unblocks the next waiting putter SCont,
if any. The implementation of putMVar is the dual of this
implementation. Notice that the implementation only uses
the activations to block and resume the SConts interacting
through the MVar. This allows threads from different ULS’s
to communicate over the same MVar, and hence the imple-
mentation is scheduler agnostic.

5. Semantics
In this section, we present the formal semantics of the con-
currency substrate primitives introduced in Section 3.3. We
will subsequently utilise the semantics to formally describe
the interaction of the ULS with the RTS in Section 6. Our se-
mantics closely follows the implementation. The aim of this
is to precisely describe the issues with respect to the interac-
tions between the ULS and the RTS, and have the language
to enunciate our solutions.

5.1 Syntax
Figure 5 shows the syntax of program states. The program
state P is a soup S of HECs, and a shared heap ⇥. The
operator k in the HEC soup is associative and commutative.
Each HEC is either idle (Idle) or a triple hs,M,Dit where
s is a unique identifier of the currently executing SCont, M
is the currently executing term, D represents SCont-local
state. Each HEC has an optional subscript t representing its
current state, and the absence of the subscript represents a
HEC that is running. As mentioned in Section 3.4, when the
program begins execution, the HEC soup has the following
configuration:

6 2014/3/20

User-level Scheduler

RTS

e t
wait

t.enqueueAct()

current thread t'

()

current thread t'

enqueue(t)

Figure 4. Unblocking from an RTS event.

Suppose we want to resume the thread t which is blocked
on e. The RTS invokes t’s enqueue activation to add t to
its scheduler. Since t’s scheduler is already running, t will
eventually be scheduled again.

3.2 Software transactional memory
Since Haskell computations can run in parallel on different
HECs, the substrate must provide a method for safely coordi-
nating activities across multiple HECs. Similar to Li’s sub-
strate design [17], we adopt transactional memory (STM),
as the sole multiprocessor synchronisation mechanism ex-
posed by the substrate. Using transactional memory, rather
than locks and condition variables make complex concurrent
programs much more modular and less error-prone [12] –
and schedulers are prime candidates, because they are prone
to subtle concurrency bugs.

3.3 Concurrency substrate
Now that we have motivated our design decisions, we will
present the API for the concurrency substrate. The con-
currency substrate includes the primitives for instantiating
and switching between language level threads, manipulating
thread local state, and an abstraction for scheduler activa-
tions. The API is presented below:

data SCont
type DequeueAct = SCont -> STM SCont
type EnqueueAct = SCont -> STM ()

-- activation interface
dequeueAct :: DequeueAct
enqueueAct :: EnqueueAct

-- SCont manipulation
newSCont :: IO () -> IO SCont
switch :: (SCont -> STM SCont) -> IO ()
runOnIdleHEC :: SCont -> IO ()

-- Manipulating local state
setDequeueAct :: DequeueAct -> IO ()
setEnqueueAct :: EnqueueAct -> IO ()
getAux :: SCont -> STM Dynamic
setAux :: SCont -> Dynamic -> STM ()

3.3.1 Activation interface
Rather than directly exposing the notion of a “thread”, the
substrate offers one-shot continuations [4], which is of type
SCont. An SCont is a heap-allocated object representing the
current state of a Haskell computation. In the RTS, SConts
are represented quite conventionally by a heap-allocated
Thread Storage Object (TSO), which includes the compu-

tations stack and local state, saved registers, and program
counter. Unreachable SConts are garbage collected.

The call (dequeueAct s) invokes s’s dequeue activa-
tion, passing s to it like a “self” parameter. The return type
of dequeueAct indicates that the computation encapsulated
in the dequeueAct is transactional (under STM monad3),
which when discharged, returns an SCont. Similarly, the
call (enqueueAct s) invokes the enqueue activation trans-
actionally, which enqueues s to its ULS.

Since the activations are under STM monad, we have the
assurance that the ULS’s schedulers cannot be built with
low-level unsafe components such as locks and condition
variables. Such low-level operations would be under IO
monad, which cannot be part of an STM transaction. Thus,
our concurrency substrate statically prevents the implemen-
tation of potentially unsafe schedulers.

3.3.2 SCont management
The substrate offers primitives for creating, constructing and
transferring control between SConts. The call (newSContM)
creates a new SCont that, when scheduled, executes M . By
default, the newly created SCont is associated with the ULS
of the invoking thread. This is done by copying the invoking
SCont’s activations.

An SCont is scheduled (i.e. is given control of a HEC) by
the switch primitive. The call (switchM) applies M to the
current continuation s. Notice that (M s) is an STM compu-
tation. In a single atomic transaction switch performs the
computation (M s), yielding an SCont s0, and switches con-
trol to s0. Thus, the computation encapsulated by s0 becomes
the currently running computation on this HEC.

Since our continuations are one-shot, capturing a contin-
uation simply fetches the reference to the underlying TSO
object. Hence, continuation capture involves no copying, and
is cheap. Using the SCont interface, a cooperative scheduler
can be built as follows:
yield :: IO ()
yield = switch (\s -> enqueueAct s >> dequeueAct s)

3.4 Parallel SCont execution
When the program begins execution, a fixed number of
HECs (N) is provided to it by the environment. This sig-
nifies the maximum number of parallel computations in
the program. Of these, one of the HEC runs the main IO
computation. All other HECs are in idle state. The call
runOnIdleHEC s initiates parallel execution of SCont s on
an idle HEC. Once the SCont running on a HEC finishes
evaluation, the HEC moves back to the idle state.

Notice that the upcall from the RTS to the dequeue acti-
vation as well as the body of the switch primitive return an
SCont. This is the SCont to which the control would switch
to subsequently. But what if such an SCont cannot be found?

3 http://hackage.haskell.org/package/stm-2.1.1.0/docs/
Control-Concurrent-STM.html

4 2014/3/20

0

10

20

30

40

k-nucleotide mandelbrot chameneos primes-sieve

Ti
m

e (
Se

co
nd

s)
 Vanilla GHC

ULS GHC

Multicore capable, preemptive,
round-robin work-sharing scheduler

This situation can occur during multicore execution, when
the number of available threads is less than the number of
HECs. If a HEC does not have any work to do, it better be
put to sleep.

Both the dequeue activation and the body of the switch
primitive are STM transactions. GHC today supports block-
ing operations under STM. When the programmer invokes
retry inside a transaction, the RTS blocks the thread un-
til another thread writes to any of the transactional variables
read by the transaction; then the thread is re-awoken, and re-
tries the transaction [12]. This is entirely transparent to the
programmer. Along the same lines, we interpret the use of
retry within a switch or dequeue activation transaction as
putting the whole HEC to sleep. We use the existing RTS
mechanism to resume the thread when work becomes avail-
able on the scheduler.

3.5 SCont local state
The activations of an SCont can be read by dequeueAct
and enqueueAct primitives. In effect, they constitute the
SCont-local state. Local state is often convenient for other
purposes, so we also provide a single dynamically-typed4

field, the “aux-field”, for arbitrary user purposes. The aux-
field can be read from and written to using the primitives
getAux and setAux. The API additionally allows an SCont
to change its own scheduler through setDequeueAct and
setEnqueueAct primitives.

4. Developing concurrency libraries
In this section, we will utilise the concurrency substrate to
implement a multicore capable, round-robin scheduler and a
user-level MVar implementation.

4.1 User-level scheduler
The first step in designing a scheduler is to describe the
scheduler data structure. We utilise an array of runqueues,
with one queue per HEC. Each runqueue is represented by
a transactional variable (a TVar), which can hold a list of
SConts.
newtype Sched = Sched (Array Int (TVar[SCont]))

The next step is to provide an implementation for the
scheduler activations.
dequeueActivation :: Sched -> SCont -> STM SCont
dequeueActivation (Sched pa) _ = do

cc <- getCurrentHEC -- get current HEC number
l <- readTVar $ pa!cc
case l of

[] -> retry
x:tl -> do

writeTVar (pa!cc) tl
return x

enqueueActivation :: Sched -> SCont -> STM ()
enqueueActivation (Sched pa) sc = do

dyn <- getAux sc

4 http://hackage.haskell.org/package/base-4.6.0.1/docs/
Data-Dynamic.html

let (hec::Int , _::TVar Int) = fromJust $
fromDynamic dyn

l <- readTVar $ pa!hec
writeTVar (pa!hec) $ l++[sc]

dequeueActivation either returns the SCont at the
front of the runqueue and updates the runqueue appro-
priately, or puts the HEC to sleep if the queue is empty.
Recall that performing retry within a dequeue activation
puts the HEC to sleep. The HEC will automatically be wo-
ken up when work becomes available i.e. queue becomes
non-empty. Although we ignore the SCont being blocked
in this case, one could imagine manipulating the blocked
SCont’s aux state for accounting information such as time
slices consumed for fair-share scheduling. Enqueue acti-
vation (enqueueActivation) finds the SCont’s HEC by
querying its stack-local state (the details of which is pre-
sented along with the next primitive). The HEC number
(hec) is used to fetch the correct runqueue, to which the
SCont is appended to.

The next step is to initialise the scheduler. This involves
two steps: (1) allocating the scheduler (newScheduler) and
initialising the main thread and (2) spinning up additional
HECs (newHEC). We assume that the Haskell program wish-
ing to utilise the ULS performs these two steps at the start
of the main IO computation. The implementation of these
primitives are given below:
newScheduler :: IO ()
newScheduler = do

-- Initialise Auxiliary state
switch $ \s -> do

counter <- newTVar (0:: Int)
setAux s $ toDyn $ (0::Int ,counter)
return s

-- Allocate scheduler
nc <- getNumHECs
sched <- (Sched . listArray (0,nc -1)) <$>

replicateM n (newTVar [])
-- Initialise activations
setDequeueAct s $ dequeueActivation sched
setEnqueueAct s $ enqueueActivation sched

newHEC :: IO ()
newHEC = do
-- Initial task
s <- newSCont $ switch dequeueAct
-- Run in parallel
runOnIdleHEC s

First we will focus on initialising a new ULS (newScheduler).
For load balancing purposes, we will spawn threads in a
round-robin fashion over the available HECs. For this pur-
pose, we initialise a TVar counter, and store into the auxil-
iary state a pair (c, t) where c is the SCont’s home HEC and
t is the counter for scheduling. Next, we allocate an empty
scheduler data structure (sched), and register the current
thread with the scheduler activations. This step binds the
current thread to participate in user-level scheduling.

All other HECs act as workers (newHEC), scheduling the
threads that become available on their runqueues. The initial
task created on the HEC simply waits for work to become
available on the runqueue, and switches to it. Recall that al-
locating a new SCont copies the current SCont’s activations

5 2014/3/20

This situation can occur during multicore execution, when
the number of available threads is less than the number of
HECs. If a HEC does not have any work to do, it better be
put to sleep.

Both the dequeue activation and the body of the switch
primitive are STM transactions. GHC today supports block-
ing operations under STM. When the programmer invokes
retry inside a transaction, the RTS blocks the thread un-
til another thread writes to any of the transactional variables
read by the transaction; then the thread is re-awoken, and re-
tries the transaction [12]. This is entirely transparent to the
programmer. Along the same lines, we interpret the use of
retry within a switch or dequeue activation transaction as
putting the whole HEC to sleep. We use the existing RTS
mechanism to resume the thread when work becomes avail-
able on the scheduler.

3.5 SCont local state
The activations of an SCont can be read by dequeueAct
and enqueueAct primitives. In effect, they constitute the
SCont-local state. Local state is often convenient for other
purposes, so we also provide a single dynamically-typed4

field, the “aux-field”, for arbitrary user purposes. The aux-
field can be read from and written to using the primitives
getAux and setAux. The API additionally allows an SCont
to change its own scheduler through setDequeueAct and
setEnqueueAct primitives.

4. Developing concurrency libraries
In this section, we will utilise the concurrency substrate to
implement a multicore capable, round-robin scheduler and a
user-level MVar implementation.

4.1 User-level scheduler
The first step in designing a scheduler is to describe the
scheduler data structure. We utilise an array of runqueues,
with one queue per HEC. Each runqueue is represented by
a transactional variable (a TVar), which can hold a list of
SConts.
newtype Sched = Sched (Array Int (TVar[SCont]))

The next step is to provide an implementation for the
scheduler activations.
dequeueActivation :: Sched -> SCont -> STM SCont
dequeueActivation (Sched pa) _ = do

cc <- getCurrentHEC -- get current HEC number
l <- readTVar $ pa!cc
case l of

[] -> retry
x:tl -> do

writeTVar (pa!cc) tl
return x

enqueueActivation :: Sched -> SCont -> STM ()
enqueueActivation (Sched pa) sc = do

dyn <- getAux sc

4 http://hackage.haskell.org/package/base-4.6.0.1/docs/
Data-Dynamic.html

let (hec::Int , _::TVar Int) = fromJust $
fromDynamic dyn

l <- readTVar $ pa!hec
writeTVar (pa!hec) $ l++[sc]

dequeueActivation either returns the SCont at the
front of the runqueue and updates the runqueue appro-
priately, or puts the HEC to sleep if the queue is empty.
Recall that performing retry within a dequeue activation
puts the HEC to sleep. The HEC will automatically be wo-
ken up when work becomes available i.e. queue becomes
non-empty. Although we ignore the SCont being blocked
in this case, one could imagine manipulating the blocked
SCont’s aux state for accounting information such as time
slices consumed for fair-share scheduling. Enqueue acti-
vation (enqueueActivation) finds the SCont’s HEC by
querying its stack-local state (the details of which is pre-
sented along with the next primitive). The HEC number
(hec) is used to fetch the correct runqueue, to which the
SCont is appended to.

The next step is to initialise the scheduler. This involves
two steps: (1) allocating the scheduler (newScheduler) and
initialising the main thread and (2) spinning up additional
HECs (newHEC). We assume that the Haskell program wish-
ing to utilise the ULS performs these two steps at the start
of the main IO computation. The implementation of these
primitives are given below:
newScheduler :: IO ()
newScheduler = do

-- Initialise Auxiliary state
switch $ \s -> do

counter <- newTVar (0:: Int)
setAux s $ toDyn $ (0::Int ,counter)
return s

-- Allocate scheduler
nc <- getNumHECs
sched <- (Sched . listArray (0,nc -1)) <$>

replicateM n (newTVar [])
-- Initialise activations
setDequeueAct s $ dequeueActivation sched
setEnqueueAct s $ enqueueActivation sched

newHEC :: IO ()
newHEC = do
-- Initial task
s <- newSCont $ switch dequeueAct
-- Run in parallel
runOnIdleHEC s

First we will focus on initialising a new ULS (newScheduler).
For load balancing purposes, we will spawn threads in a
round-robin fashion over the available HECs. For this pur-
pose, we initialise a TVar counter, and store into the auxil-
iary state a pair (c, t) where c is the SCont’s home HEC and
t is the counter for scheduling. Next, we allocate an empty
scheduler data structure (sched), and register the current
thread with the scheduler activations. This step binds the
current thread to participate in user-level scheduling.

All other HECs act as workers (newHEC), scheduling the
threads that become available on their runqueues. The initial
task created on the HEC simply waits for work to become
available on the runqueue, and switches to it. Recall that al-
locating a new SCont copies the current SCont’s activations

5 2014/3/20

This situation can occur during multicore execution, when
the number of available threads is less than the number of
HECs. If a HEC does not have any work to do, it better be
put to sleep.

Both the dequeue activation and the body of the switch
primitive are STM transactions. GHC today supports block-
ing operations under STM. When the programmer invokes
retry inside a transaction, the RTS blocks the thread un-
til another thread writes to any of the transactional variables
read by the transaction; then the thread is re-awoken, and re-
tries the transaction [12]. This is entirely transparent to the
programmer. Along the same lines, we interpret the use of
retry within a switch or dequeue activation transaction as
putting the whole HEC to sleep. We use the existing RTS
mechanism to resume the thread when work becomes avail-
able on the scheduler.

3.5 SCont local state
The activations of an SCont can be read by dequeueAct
and enqueueAct primitives. In effect, they constitute the
SCont-local state. Local state is often convenient for other
purposes, so we also provide a single dynamically-typed4

field, the “aux-field”, for arbitrary user purposes. The aux-
field can be read from and written to using the primitives
getAux and setAux. The API additionally allows an SCont
to change its own scheduler through setDequeueAct and
setEnqueueAct primitives.

4. Developing concurrency libraries
In this section, we will utilise the concurrency substrate to
implement a multicore capable, round-robin scheduler and a
user-level MVar implementation.

4.1 User-level scheduler
The first step in designing a scheduler is to describe the
scheduler data structure. We utilise an array of runqueues,
with one queue per HEC. Each runqueue is represented by
a transactional variable (a TVar), which can hold a list of
SConts.
newtype Sched = Sched (Array Int (TVar[SCont]))

The next step is to provide an implementation for the
scheduler activations.
dequeueActivation :: Sched -> SCont -> STM SCont
dequeueActivation (Sched pa) _ = do

cc <- getCurrentHEC -- get current HEC number
l <- readTVar $ pa!cc
case l of

[] -> retry
x:tl -> do

writeTVar (pa!cc) tl
return x

enqueueActivation :: Sched -> SCont -> STM ()
enqueueActivation (Sched pa) sc = do

dyn <- getAux sc

4 http://hackage.haskell.org/package/base-4.6.0.1/docs/
Data-Dynamic.html

let (hec::Int , _::TVar Int) = fromJust $
fromDynamic dyn

l <- readTVar $ pa!hec
writeTVar (pa!hec) $ l++[sc]

dequeueActivation either returns the SCont at the
front of the runqueue and updates the runqueue appro-
priately, or puts the HEC to sleep if the queue is empty.
Recall that performing retry within a dequeue activation
puts the HEC to sleep. The HEC will automatically be wo-
ken up when work becomes available i.e. queue becomes
non-empty. Although we ignore the SCont being blocked
in this case, one could imagine manipulating the blocked
SCont’s aux state for accounting information such as time
slices consumed for fair-share scheduling. Enqueue acti-
vation (enqueueActivation) finds the SCont’s HEC by
querying its stack-local state (the details of which is pre-
sented along with the next primitive). The HEC number
(hec) is used to fetch the correct runqueue, to which the
SCont is appended to.

The next step is to initialise the scheduler. This involves
two steps: (1) allocating the scheduler (newScheduler) and
initialising the main thread and (2) spinning up additional
HECs (newHEC). We assume that the Haskell program wish-
ing to utilise the ULS performs these two steps at the start
of the main IO computation. The implementation of these
primitives are given below:
newScheduler :: IO ()
newScheduler = do

-- Initialise Auxiliary state
switch $ \s -> do

counter <- newTVar (0:: Int)
setAux s $ toDyn $ (0::Int ,counter)
return s

-- Allocate scheduler
nc <- getNumHECs
sched <- (Sched . listArray (0,nc -1)) <$>

replicateM n (newTVar [])
-- Initialise activations
setDequeueAct s $ dequeueActivation sched
setEnqueueAct s $ enqueueActivation sched

newHEC :: IO ()
newHEC = do
-- Initial task
s <- newSCont $ switch dequeueAct
-- Run in parallel
runOnIdleHEC s

First we will focus on initialising a new ULS (newScheduler).
For load balancing purposes, we will spawn threads in a
round-robin fashion over the available HECs. For this pur-
pose, we initialise a TVar counter, and store into the auxil-
iary state a pair (c, t) where c is the SCont’s home HEC and
t is the counter for scheduling. Next, we allocate an empty
scheduler data structure (sched), and register the current
thread with the scheduler activations. This step binds the
current thread to participate in user-level scheduling.

All other HECs act as workers (newHEC), scheduling the
threads that become available on their runqueues. The initial
task created on the HEC simply waits for work to become
available on the runqueue, and switches to it. Recall that al-
locating a new SCont copies the current SCont’s activations

5 2014/3/20

This situation can occur during multicore execution, when
the number of available threads is less than the number of
HECs. If a HEC does not have any work to do, it better be
put to sleep.

Both the dequeue activation and the body of the switch
primitive are STM transactions. GHC today supports block-
ing operations under STM. When the programmer invokes
retry inside a transaction, the RTS blocks the thread un-
til another thread writes to any of the transactional variables
read by the transaction; then the thread is re-awoken, and re-
tries the transaction [12]. This is entirely transparent to the
programmer. Along the same lines, we interpret the use of
retry within a switch or dequeue activation transaction as
putting the whole HEC to sleep. We use the existing RTS
mechanism to resume the thread when work becomes avail-
able on the scheduler.

3.5 SCont local state
The activations of an SCont can be read by dequeueAct
and enqueueAct primitives. In effect, they constitute the
SCont-local state. Local state is often convenient for other
purposes, so we also provide a single dynamically-typed4

field, the “aux-field”, for arbitrary user purposes. The aux-
field can be read from and written to using the primitives
getAux and setAux. The API additionally allows an SCont
to change its own scheduler through setDequeueAct and
setEnqueueAct primitives.

4. Developing concurrency libraries
In this section, we will utilise the concurrency substrate to
implement a multicore capable, round-robin scheduler and a
user-level MVar implementation.

4.1 User-level scheduler
The first step in designing a scheduler is to describe the
scheduler data structure. We utilise an array of runqueues,
with one queue per HEC. Each runqueue is represented by
a transactional variable (a TVar), which can hold a list of
SConts.
newtype Sched = Sched (Array Int (TVar[SCont]))

The next step is to provide an implementation for the
scheduler activations.
dequeueActivation :: Sched -> SCont -> STM SCont
dequeueActivation (Sched pa) _ = do

cc <- getCurrentHEC -- get current HEC number
l <- readTVar $ pa!cc
case l of

[] -> retry
x:tl -> do

writeTVar (pa!cc) tl
return x

enqueueActivation :: Sched -> SCont -> STM ()
enqueueActivation (Sched pa) sc = do

dyn <- getAux sc

4 http://hackage.haskell.org/package/base-4.6.0.1/docs/
Data-Dynamic.html

let (hec::Int , _::TVar Int) = fromJust $
fromDynamic dyn

l <- readTVar $ pa!hec
writeTVar (pa!hec) $ l++[sc]

dequeueActivation either returns the SCont at the
front of the runqueue and updates the runqueue appro-
priately, or puts the HEC to sleep if the queue is empty.
Recall that performing retry within a dequeue activation
puts the HEC to sleep. The HEC will automatically be wo-
ken up when work becomes available i.e. queue becomes
non-empty. Although we ignore the SCont being blocked
in this case, one could imagine manipulating the blocked
SCont’s aux state for accounting information such as time
slices consumed for fair-share scheduling. Enqueue acti-
vation (enqueueActivation) finds the SCont’s HEC by
querying its stack-local state (the details of which is pre-
sented along with the next primitive). The HEC number
(hec) is used to fetch the correct runqueue, to which the
SCont is appended to.

The next step is to initialise the scheduler. This involves
two steps: (1) allocating the scheduler (newScheduler) and
initialising the main thread and (2) spinning up additional
HECs (newHEC). We assume that the Haskell program wish-
ing to utilise the ULS performs these two steps at the start
of the main IO computation. The implementation of these
primitives are given below:
newScheduler :: IO ()
newScheduler = do

-- Initialise Auxiliary state
switch $ \s -> do

counter <- newTVar (0:: Int)
setAux s $ toDyn $ (0::Int ,counter)
return s

-- Allocate scheduler
nc <- getNumHECs
sched <- (Sched . listArray (0,nc -1)) <$>

replicateM n (newTVar [])
-- Initialise activations
setDequeueAct s $ dequeueActivation sched
setEnqueueAct s $ enqueueActivation sched

newHEC :: IO ()
newHEC = do
-- Initial task
s <- newSCont $ switch dequeueAct
-- Run in parallel
runOnIdleHEC s

First we will focus on initialising a new ULS (newScheduler).
For load balancing purposes, we will spawn threads in a
round-robin fashion over the available HECs. For this pur-
pose, we initialise a TVar counter, and store into the auxil-
iary state a pair (c, t) where c is the SCont’s home HEC and
t is the counter for scheduling. Next, we allocate an empty
scheduler data structure (sched), and register the current
thread with the scheduler activations. This step binds the
current thread to participate in user-level scheduling.

All other HECs act as workers (newHEC), scheduling the
threads that become available on their runqueues. The initial
task created on the HEC simply waits for work to become
available on the runqueue, and switches to it. Recall that al-
locating a new SCont copies the current SCont’s activations

5 2014/3/20

to the newly created SCont. In this case, the main SCont’s
activations, initialised in newScheduler, are copied to the
newly allocated SCont. As a result, the newly allocated
SCont shares the same ULS with the main SCont. Finally,
we run the new SCont on a free HEC. Notice that sched-
uler data structure is not directly accessed in newHEC, but
accessed through the activation interface.

The Haskell program only needs to prepend the follow-
ing snippet to the main IO computation to utilise the ULS
implementation.
main = do

newScheduler
n <- getNumHECs
replicateM_ (n-1) newHEC
... -- rest of the main code

How do we create new user-level threads in this sched-
uler? For this purpose, we implement a forkIO primitive
that spawns a new user-level thread as follows:
forkIO :: IO () -> IO SCont
forkIO task = do

numHECs <- getNumHECs
-- epilogue: Switch to next thread
newSC <- newSCont (task >> switch dequeueAct)
-- Create and initialise new Aux state
switch $ \s -> do

dyn <- getAux s
let (_::Int , t::TVar Int) = fromJust $

fromDynamic dyn
nextHEC <- readTVar t
writeTVar t $ (nextHEC + 1) ‘mod ‘ numHECs
setAux newSC $ toDyn (nextHEC , t)
return s

-- Add new thread to scheduler
atomically $ enqueueAct newSC
return newSC

forkIO primitive spawns a new thread that runs concur-
rently with its parent thread. What should happen after such
a thread has run to completion? We must request the sched-
uler to provide us the next thread to run. This is captured in
the epilogue e, and is appended to the given IO computation
task. Next, we allocate a new SCont, which implicitly in-
herits the current SCont’s scheduler activations. In order to
spawn threads in a round-robin fashion, we create a new aux-
iliary state for the new SCont and prepare it such that when
unblocked, the new SCont is added to the runqueue on HEC
nextHEC. Finally, the newly created SCont is added to the
scheduler using its enqueue activation.

The key aspect of this forkIO primitive is that it does not
directly access the scheduler data structure, but does so only
through the activation interface. As a result, aside from the
auxiliary state manipulation, the rest of the code pretty much
can stay the same for any user-level forkIO primitive. Addi-
tionally, we can implement a yield primitive similar to the
one described in Section 3.3.2. Due to scheduler activations,
the interaction with the RTS concurrency mechanisms come
for free, and we are done!

4.2 Scheduler agnostic user-level MVars
Our scheduler activations abstracts the interface to the
ULS’s. This fact can be exploited to build scheduler agnostic

implementation of user-level concurrency libraries such as
MVars. The following snippet describes the structure of an
MVar implementation:
newtype MVar a = MVar (TVar (MVPState a))
data MVPState a = Full a [(a, SCont)]

| Empty [(IORef a, SCont)]

MVar is either empty with a list of pending takers, or full
with a value and a list of pending putters. An implementation
of takeMVar function is presented below:
takeMVar :: MVar a -> IO a
takeMVar (MVar ref) = do

h <- atomically $ newTVar undefined
switch $ \s -> do

st <- readTVar ref
case st of

Empty ts -> do
writeTVar ref $ Empty $ enqueue ts (h,s)
dequeueAct s

Full x ts -> do
writeTVar h x
case deque ts of

(_, Nothing) -> do
writeTVar ref $ Empty emptyQueue

(ts ’, Just (x’, s’)) -> do
writeTVar ref $ Full x’ ts ’
enqueueAct s’

return s
atomically $ readTVar h

If the MVar is empty, the SCont enqueues itself into the
queue of pending takers. If the MVar is full, SCont con-
sumes the value and unblocks the next waiting putter SCont,
if any. The implementation of putMVar is the dual of this
implementation. Notice that the implementation only uses
the activations to block and resume the SConts interacting
through the MVar. This allows threads from different ULS’s
to communicate over the same MVar, and hence the imple-
mentation is scheduler agnostic.

5. Semantics
In this section, we present the formal semantics of the con-
currency substrate primitives introduced in Section 3.3. We
will subsequently utilise the semantics to formally describe
the interaction of the ULS with the RTS in Section 6. Our se-
mantics closely follows the implementation. The aim of this
is to precisely describe the issues with respect to the interac-
tions between the ULS and the RTS, and have the language
to enunciate our solutions.

5.1 Syntax
Figure 5 shows the syntax of program states. The program
state P is a soup S of HECs, and a shared heap ⇥. The
operator k in the HEC soup is associative and commutative.
Each HEC is either idle (Idle) or a triple hs,M,Dit where
s is a unique identifier of the currently executing SCont, M
is the currently executing term, D represents SCont-local
state. Each HEC has an optional subscript t representing its
current state, and the absence of the subscript represents a
HEC that is running. As mentioned in Section 3.4, when the
program begins execution, the HEC soup has the following
configuration:

6 2014/3/20

User-level Scheduler

RTS

e t
wait

t.enqueueAct()

current thread t'

()

current thread t'

enqueue(t)

Figure 4. Unblocking from an RTS event.

Suppose we want to resume the thread t which is blocked
on e. The RTS invokes t’s enqueue activation to add t to
its scheduler. Since t’s scheduler is already running, t will
eventually be scheduled again.

3.2 Software transactional memory
Since Haskell computations can run in parallel on different
HECs, the substrate must provide a method for safely coordi-
nating activities across multiple HECs. Similar to Li’s sub-
strate design [17], we adopt transactional memory (STM),
as the sole multiprocessor synchronisation mechanism ex-
posed by the substrate. Using transactional memory, rather
than locks and condition variables make complex concurrent
programs much more modular and less error-prone [12] –
and schedulers are prime candidates, because they are prone
to subtle concurrency bugs.

3.3 Concurrency substrate
Now that we have motivated our design decisions, we will
present the API for the concurrency substrate. The con-
currency substrate includes the primitives for instantiating
and switching between language level threads, manipulating
thread local state, and an abstraction for scheduler activa-
tions. The API is presented below:

data SCont
type DequeueAct = SCont -> STM SCont
type EnqueueAct = SCont -> STM ()

-- activation interface
dequeueAct :: DequeueAct
enqueueAct :: EnqueueAct

-- SCont manipulation
newSCont :: IO () -> IO SCont
switch :: (SCont -> STM SCont) -> IO ()
runOnIdleHEC :: SCont -> IO ()

-- Manipulating local state
setDequeueAct :: DequeueAct -> IO ()
setEnqueueAct :: EnqueueAct -> IO ()
getAux :: SCont -> STM Dynamic
setAux :: SCont -> Dynamic -> STM ()

3.3.1 Activation interface
Rather than directly exposing the notion of a “thread”, the
substrate offers one-shot continuations [4], which is of type
SCont. An SCont is a heap-allocated object representing the
current state of a Haskell computation. In the RTS, SConts
are represented quite conventionally by a heap-allocated
Thread Storage Object (TSO), which includes the compu-

tations stack and local state, saved registers, and program
counter. Unreachable SConts are garbage collected.

The call (dequeueAct s) invokes s’s dequeue activa-
tion, passing s to it like a “self” parameter. The return type
of dequeueAct indicates that the computation encapsulated
in the dequeueAct is transactional (under STM monad3),
which when discharged, returns an SCont. Similarly, the
call (enqueueAct s) invokes the enqueue activation trans-
actionally, which enqueues s to its ULS.

Since the activations are under STM monad, we have the
assurance that the ULS’s schedulers cannot be built with
low-level unsafe components such as locks and condition
variables. Such low-level operations would be under IO
monad, which cannot be part of an STM transaction. Thus,
our concurrency substrate statically prevents the implemen-
tation of potentially unsafe schedulers.

3.3.2 SCont management
The substrate offers primitives for creating, constructing and
transferring control between SConts. The call (newSContM)
creates a new SCont that, when scheduled, executes M . By
default, the newly created SCont is associated with the ULS
of the invoking thread. This is done by copying the invoking
SCont’s activations.

An SCont is scheduled (i.e. is given control of a HEC) by
the switch primitive. The call (switchM) applies M to the
current continuation s. Notice that (M s) is an STM compu-
tation. In a single atomic transaction switch performs the
computation (M s), yielding an SCont s0, and switches con-
trol to s0. Thus, the computation encapsulated by s0 becomes
the currently running computation on this HEC.

Since our continuations are one-shot, capturing a contin-
uation simply fetches the reference to the underlying TSO
object. Hence, continuation capture involves no copying, and
is cheap. Using the SCont interface, a cooperative scheduler
can be built as follows:
yield :: IO ()
yield = switch (\s -> enqueueAct s >> dequeueAct s)

3.4 Parallel SCont execution
When the program begins execution, a fixed number of
HECs (N) is provided to it by the environment. This sig-
nifies the maximum number of parallel computations in
the program. Of these, one of the HEC runs the main IO
computation. All other HECs are in idle state. The call
runOnIdleHEC s initiates parallel execution of SCont s on
an idle HEC. Once the SCont running on a HEC finishes
evaluation, the HEC moves back to the idle state.

Notice that the upcall from the RTS to the dequeue acti-
vation as well as the body of the switch primitive return an
SCont. This is the SCont to which the control would switch
to subsequently. But what if such an SCont cannot be found?

3 http://hackage.haskell.org/package/stm-2.1.1.0/docs/
Control-Concurrent-STM.html

4 2014/3/20

0

10

20

30

40

k-nucleotide mandelbrot chameneos primes-sieve

Ti
m

e (
Se

co
nd

s)
 Vanilla GHC

ULS GHC GC overheads
of ULS

Multicore capable, preemptive,
round-robin work-sharing scheduler

This situation can occur during multicore execution, when
the number of available threads is less than the number of
HECs. If a HEC does not have any work to do, it better be
put to sleep.

Both the dequeue activation and the body of the switch
primitive are STM transactions. GHC today supports block-
ing operations under STM. When the programmer invokes
retry inside a transaction, the RTS blocks the thread un-
til another thread writes to any of the transactional variables
read by the transaction; then the thread is re-awoken, and re-
tries the transaction [12]. This is entirely transparent to the
programmer. Along the same lines, we interpret the use of
retry within a switch or dequeue activation transaction as
putting the whole HEC to sleep. We use the existing RTS
mechanism to resume the thread when work becomes avail-
able on the scheduler.

3.5 SCont local state
The activations of an SCont can be read by dequeueAct
and enqueueAct primitives. In effect, they constitute the
SCont-local state. Local state is often convenient for other
purposes, so we also provide a single dynamically-typed4

field, the “aux-field”, for arbitrary user purposes. The aux-
field can be read from and written to using the primitives
getAux and setAux. The API additionally allows an SCont
to change its own scheduler through setDequeueAct and
setEnqueueAct primitives.

4. Developing concurrency libraries
In this section, we will utilise the concurrency substrate to
implement a multicore capable, round-robin scheduler and a
user-level MVar implementation.

4.1 User-level scheduler
The first step in designing a scheduler is to describe the
scheduler data structure. We utilise an array of runqueues,
with one queue per HEC. Each runqueue is represented by
a transactional variable (a TVar), which can hold a list of
SConts.
newtype Sched = Sched (Array Int (TVar[SCont]))

The next step is to provide an implementation for the
scheduler activations.
dequeueActivation :: Sched -> SCont -> STM SCont
dequeueActivation (Sched pa) _ = do

cc <- getCurrentHEC -- get current HEC number
l <- readTVar $ pa!cc
case l of

[] -> retry
x:tl -> do

writeTVar (pa!cc) tl
return x

enqueueActivation :: Sched -> SCont -> STM ()
enqueueActivation (Sched pa) sc = do

dyn <- getAux sc

4 http://hackage.haskell.org/package/base-4.6.0.1/docs/
Data-Dynamic.html

let (hec::Int , _::TVar Int) = fromJust $
fromDynamic dyn

l <- readTVar $ pa!hec
writeTVar (pa!hec) $ l++[sc]

dequeueActivation either returns the SCont at the
front of the runqueue and updates the runqueue appro-
priately, or puts the HEC to sleep if the queue is empty.
Recall that performing retry within a dequeue activation
puts the HEC to sleep. The HEC will automatically be wo-
ken up when work becomes available i.e. queue becomes
non-empty. Although we ignore the SCont being blocked
in this case, one could imagine manipulating the blocked
SCont’s aux state for accounting information such as time
slices consumed for fair-share scheduling. Enqueue acti-
vation (enqueueActivation) finds the SCont’s HEC by
querying its stack-local state (the details of which is pre-
sented along with the next primitive). The HEC number
(hec) is used to fetch the correct runqueue, to which the
SCont is appended to.

The next step is to initialise the scheduler. This involves
two steps: (1) allocating the scheduler (newScheduler) and
initialising the main thread and (2) spinning up additional
HECs (newHEC). We assume that the Haskell program wish-
ing to utilise the ULS performs these two steps at the start
of the main IO computation. The implementation of these
primitives are given below:
newScheduler :: IO ()
newScheduler = do

-- Initialise Auxiliary state
switch $ \s -> do

counter <- newTVar (0:: Int)
setAux s $ toDyn $ (0::Int ,counter)
return s

-- Allocate scheduler
nc <- getNumHECs
sched <- (Sched . listArray (0,nc -1)) <$>

replicateM n (newTVar [])
-- Initialise activations
setDequeueAct s $ dequeueActivation sched
setEnqueueAct s $ enqueueActivation sched

newHEC :: IO ()
newHEC = do
-- Initial task
s <- newSCont $ switch dequeueAct
-- Run in parallel
runOnIdleHEC s

First we will focus on initialising a new ULS (newScheduler).
For load balancing purposes, we will spawn threads in a
round-robin fashion over the available HECs. For this pur-
pose, we initialise a TVar counter, and store into the auxil-
iary state a pair (c, t) where c is the SCont’s home HEC and
t is the counter for scheduling. Next, we allocate an empty
scheduler data structure (sched), and register the current
thread with the scheduler activations. This step binds the
current thread to participate in user-level scheduling.

All other HECs act as workers (newHEC), scheduling the
threads that become available on their runqueues. The initial
task created on the HEC simply waits for work to become
available on the runqueue, and switches to it. Recall that al-
locating a new SCont copies the current SCont’s activations

5 2014/3/20

This situation can occur during multicore execution, when
the number of available threads is less than the number of
HECs. If a HEC does not have any work to do, it better be
put to sleep.

Both the dequeue activation and the body of the switch
primitive are STM transactions. GHC today supports block-
ing operations under STM. When the programmer invokes
retry inside a transaction, the RTS blocks the thread un-
til another thread writes to any of the transactional variables
read by the transaction; then the thread is re-awoken, and re-
tries the transaction [12]. This is entirely transparent to the
programmer. Along the same lines, we interpret the use of
retry within a switch or dequeue activation transaction as
putting the whole HEC to sleep. We use the existing RTS
mechanism to resume the thread when work becomes avail-
able on the scheduler.

3.5 SCont local state
The activations of an SCont can be read by dequeueAct
and enqueueAct primitives. In effect, they constitute the
SCont-local state. Local state is often convenient for other
purposes, so we also provide a single dynamically-typed4

field, the “aux-field”, for arbitrary user purposes. The aux-
field can be read from and written to using the primitives
getAux and setAux. The API additionally allows an SCont
to change its own scheduler through setDequeueAct and
setEnqueueAct primitives.

4. Developing concurrency libraries
In this section, we will utilise the concurrency substrate to
implement a multicore capable, round-robin scheduler and a
user-level MVar implementation.

4.1 User-level scheduler
The first step in designing a scheduler is to describe the
scheduler data structure. We utilise an array of runqueues,
with one queue per HEC. Each runqueue is represented by
a transactional variable (a TVar), which can hold a list of
SConts.
newtype Sched = Sched (Array Int (TVar[SCont]))

The next step is to provide an implementation for the
scheduler activations.
dequeueActivation :: Sched -> SCont -> STM SCont
dequeueActivation (Sched pa) _ = do

cc <- getCurrentHEC -- get current HEC number
l <- readTVar $ pa!cc
case l of

[] -> retry
x:tl -> do

writeTVar (pa!cc) tl
return x

enqueueActivation :: Sched -> SCont -> STM ()
enqueueActivation (Sched pa) sc = do

dyn <- getAux sc

4 http://hackage.haskell.org/package/base-4.6.0.1/docs/
Data-Dynamic.html

let (hec::Int , _::TVar Int) = fromJust $
fromDynamic dyn

l <- readTVar $ pa!hec
writeTVar (pa!hec) $ l++[sc]

dequeueActivation either returns the SCont at the
front of the runqueue and updates the runqueue appro-
priately, or puts the HEC to sleep if the queue is empty.
Recall that performing retry within a dequeue activation
puts the HEC to sleep. The HEC will automatically be wo-
ken up when work becomes available i.e. queue becomes
non-empty. Although we ignore the SCont being blocked
in this case, one could imagine manipulating the blocked
SCont’s aux state for accounting information such as time
slices consumed for fair-share scheduling. Enqueue acti-
vation (enqueueActivation) finds the SCont’s HEC by
querying its stack-local state (the details of which is pre-
sented along with the next primitive). The HEC number
(hec) is used to fetch the correct runqueue, to which the
SCont is appended to.

The next step is to initialise the scheduler. This involves
two steps: (1) allocating the scheduler (newScheduler) and
initialising the main thread and (2) spinning up additional
HECs (newHEC). We assume that the Haskell program wish-
ing to utilise the ULS performs these two steps at the start
of the main IO computation. The implementation of these
primitives are given below:
newScheduler :: IO ()
newScheduler = do

-- Initialise Auxiliary state
switch $ \s -> do

counter <- newTVar (0:: Int)
setAux s $ toDyn $ (0::Int ,counter)
return s

-- Allocate scheduler
nc <- getNumHECs
sched <- (Sched . listArray (0,nc -1)) <$>

replicateM n (newTVar [])
-- Initialise activations
setDequeueAct s $ dequeueActivation sched
setEnqueueAct s $ enqueueActivation sched

newHEC :: IO ()
newHEC = do
-- Initial task
s <- newSCont $ switch dequeueAct
-- Run in parallel
runOnIdleHEC s

First we will focus on initialising a new ULS (newScheduler).
For load balancing purposes, we will spawn threads in a
round-robin fashion over the available HECs. For this pur-
pose, we initialise a TVar counter, and store into the auxil-
iary state a pair (c, t) where c is the SCont’s home HEC and
t is the counter for scheduling. Next, we allocate an empty
scheduler data structure (sched), and register the current
thread with the scheduler activations. This step binds the
current thread to participate in user-level scheduling.

All other HECs act as workers (newHEC), scheduling the
threads that become available on their runqueues. The initial
task created on the HEC simply waits for work to become
available on the runqueue, and switches to it. Recall that al-
locating a new SCont copies the current SCont’s activations

5 2014/3/20

This situation can occur during multicore execution, when
the number of available threads is less than the number of
HECs. If a HEC does not have any work to do, it better be
put to sleep.

Both the dequeue activation and the body of the switch
primitive are STM transactions. GHC today supports block-
ing operations under STM. When the programmer invokes
retry inside a transaction, the RTS blocks the thread un-
til another thread writes to any of the transactional variables
read by the transaction; then the thread is re-awoken, and re-
tries the transaction [12]. This is entirely transparent to the
programmer. Along the same lines, we interpret the use of
retry within a switch or dequeue activation transaction as
putting the whole HEC to sleep. We use the existing RTS
mechanism to resume the thread when work becomes avail-
able on the scheduler.

3.5 SCont local state
The activations of an SCont can be read by dequeueAct
and enqueueAct primitives. In effect, they constitute the
SCont-local state. Local state is often convenient for other
purposes, so we also provide a single dynamically-typed4

field, the “aux-field”, for arbitrary user purposes. The aux-
field can be read from and written to using the primitives
getAux and setAux. The API additionally allows an SCont
to change its own scheduler through setDequeueAct and
setEnqueueAct primitives.

4. Developing concurrency libraries
In this section, we will utilise the concurrency substrate to
implement a multicore capable, round-robin scheduler and a
user-level MVar implementation.

4.1 User-level scheduler
The first step in designing a scheduler is to describe the
scheduler data structure. We utilise an array of runqueues,
with one queue per HEC. Each runqueue is represented by
a transactional variable (a TVar), which can hold a list of
SConts.
newtype Sched = Sched (Array Int (TVar[SCont]))

The next step is to provide an implementation for the
scheduler activations.
dequeueActivation :: Sched -> SCont -> STM SCont
dequeueActivation (Sched pa) _ = do

cc <- getCurrentHEC -- get current HEC number
l <- readTVar $ pa!cc
case l of

[] -> retry
x:tl -> do

writeTVar (pa!cc) tl
return x

enqueueActivation :: Sched -> SCont -> STM ()
enqueueActivation (Sched pa) sc = do

dyn <- getAux sc

4 http://hackage.haskell.org/package/base-4.6.0.1/docs/
Data-Dynamic.html

let (hec::Int , _::TVar Int) = fromJust $
fromDynamic dyn

l <- readTVar $ pa!hec
writeTVar (pa!hec) $ l++[sc]

dequeueActivation either returns the SCont at the
front of the runqueue and updates the runqueue appro-
priately, or puts the HEC to sleep if the queue is empty.
Recall that performing retry within a dequeue activation
puts the HEC to sleep. The HEC will automatically be wo-
ken up when work becomes available i.e. queue becomes
non-empty. Although we ignore the SCont being blocked
in this case, one could imagine manipulating the blocked
SCont’s aux state for accounting information such as time
slices consumed for fair-share scheduling. Enqueue acti-
vation (enqueueActivation) finds the SCont’s HEC by
querying its stack-local state (the details of which is pre-
sented along with the next primitive). The HEC number
(hec) is used to fetch the correct runqueue, to which the
SCont is appended to.

The next step is to initialise the scheduler. This involves
two steps: (1) allocating the scheduler (newScheduler) and
initialising the main thread and (2) spinning up additional
HECs (newHEC). We assume that the Haskell program wish-
ing to utilise the ULS performs these two steps at the start
of the main IO computation. The implementation of these
primitives are given below:
newScheduler :: IO ()
newScheduler = do

-- Initialise Auxiliary state
switch $ \s -> do

counter <- newTVar (0:: Int)
setAux s $ toDyn $ (0::Int ,counter)
return s

-- Allocate scheduler
nc <- getNumHECs
sched <- (Sched . listArray (0,nc -1)) <$>

replicateM n (newTVar [])
-- Initialise activations
setDequeueAct s $ dequeueActivation sched
setEnqueueAct s $ enqueueActivation sched

newHEC :: IO ()
newHEC = do
-- Initial task
s <- newSCont $ switch dequeueAct
-- Run in parallel
runOnIdleHEC s

First we will focus on initialising a new ULS (newScheduler).
For load balancing purposes, we will spawn threads in a
round-robin fashion over the available HECs. For this pur-
pose, we initialise a TVar counter, and store into the auxil-
iary state a pair (c, t) where c is the SCont’s home HEC and
t is the counter for scheduling. Next, we allocate an empty
scheduler data structure (sched), and register the current
thread with the scheduler activations. This step binds the
current thread to participate in user-level scheduling.

All other HECs act as workers (newHEC), scheduling the
threads that become available on their runqueues. The initial
task created on the HEC simply waits for work to become
available on the runqueue, and switches to it. Recall that al-
locating a new SCont copies the current SCont’s activations

5 2014/3/20

This situation can occur during multicore execution, when
the number of available threads is less than the number of
HECs. If a HEC does not have any work to do, it better be
put to sleep.

Both the dequeue activation and the body of the switch
primitive are STM transactions. GHC today supports block-
ing operations under STM. When the programmer invokes
retry inside a transaction, the RTS blocks the thread un-
til another thread writes to any of the transactional variables
read by the transaction; then the thread is re-awoken, and re-
tries the transaction [12]. This is entirely transparent to the
programmer. Along the same lines, we interpret the use of
retry within a switch or dequeue activation transaction as
putting the whole HEC to sleep. We use the existing RTS
mechanism to resume the thread when work becomes avail-
able on the scheduler.

3.5 SCont local state
The activations of an SCont can be read by dequeueAct
and enqueueAct primitives. In effect, they constitute the
SCont-local state. Local state is often convenient for other
purposes, so we also provide a single dynamically-typed4

field, the “aux-field”, for arbitrary user purposes. The aux-
field can be read from and written to using the primitives
getAux and setAux. The API additionally allows an SCont
to change its own scheduler through setDequeueAct and
setEnqueueAct primitives.

4. Developing concurrency libraries
In this section, we will utilise the concurrency substrate to
implement a multicore capable, round-robin scheduler and a
user-level MVar implementation.

4.1 User-level scheduler
The first step in designing a scheduler is to describe the
scheduler data structure. We utilise an array of runqueues,
with one queue per HEC. Each runqueue is represented by
a transactional variable (a TVar), which can hold a list of
SConts.
newtype Sched = Sched (Array Int (TVar[SCont]))

The next step is to provide an implementation for the
scheduler activations.
dequeueActivation :: Sched -> SCont -> STM SCont
dequeueActivation (Sched pa) _ = do

cc <- getCurrentHEC -- get current HEC number
l <- readTVar $ pa!cc
case l of

[] -> retry
x:tl -> do

writeTVar (pa!cc) tl
return x

enqueueActivation :: Sched -> SCont -> STM ()
enqueueActivation (Sched pa) sc = do

dyn <- getAux sc

4 http://hackage.haskell.org/package/base-4.6.0.1/docs/
Data-Dynamic.html

let (hec::Int , _::TVar Int) = fromJust $
fromDynamic dyn

l <- readTVar $ pa!hec
writeTVar (pa!hec) $ l++[sc]

dequeueActivation either returns the SCont at the
front of the runqueue and updates the runqueue appro-
priately, or puts the HEC to sleep if the queue is empty.
Recall that performing retry within a dequeue activation
puts the HEC to sleep. The HEC will automatically be wo-
ken up when work becomes available i.e. queue becomes
non-empty. Although we ignore the SCont being blocked
in this case, one could imagine manipulating the blocked
SCont’s aux state for accounting information such as time
slices consumed for fair-share scheduling. Enqueue acti-
vation (enqueueActivation) finds the SCont’s HEC by
querying its stack-local state (the details of which is pre-
sented along with the next primitive). The HEC number
(hec) is used to fetch the correct runqueue, to which the
SCont is appended to.

The next step is to initialise the scheduler. This involves
two steps: (1) allocating the scheduler (newScheduler) and
initialising the main thread and (2) spinning up additional
HECs (newHEC). We assume that the Haskell program wish-
ing to utilise the ULS performs these two steps at the start
of the main IO computation. The implementation of these
primitives are given below:
newScheduler :: IO ()
newScheduler = do

-- Initialise Auxiliary state
switch $ \s -> do

counter <- newTVar (0:: Int)
setAux s $ toDyn $ (0::Int ,counter)
return s

-- Allocate scheduler
nc <- getNumHECs
sched <- (Sched . listArray (0,nc -1)) <$>

replicateM n (newTVar [])
-- Initialise activations
setDequeueAct s $ dequeueActivation sched
setEnqueueAct s $ enqueueActivation sched

newHEC :: IO ()
newHEC = do
-- Initial task
s <- newSCont $ switch dequeueAct
-- Run in parallel
runOnIdleHEC s

First we will focus on initialising a new ULS (newScheduler).
For load balancing purposes, we will spawn threads in a
round-robin fashion over the available HECs. For this pur-
pose, we initialise a TVar counter, and store into the auxil-
iary state a pair (c, t) where c is the SCont’s home HEC and
t is the counter for scheduling. Next, we allocate an empty
scheduler data structure (sched), and register the current
thread with the scheduler activations. This step binds the
current thread to participate in user-level scheduling.

All other HECs act as workers (newHEC), scheduling the
threads that become available on their runqueues. The initial
task created on the HEC simply waits for work to become
available on the runqueue, and switches to it. Recall that al-
locating a new SCont copies the current SCont’s activations

5 2014/3/20

to the newly created SCont. In this case, the main SCont’s
activations, initialised in newScheduler, are copied to the
newly allocated SCont. As a result, the newly allocated
SCont shares the same ULS with the main SCont. Finally,
we run the new SCont on a free HEC. Notice that sched-
uler data structure is not directly accessed in newHEC, but
accessed through the activation interface.

The Haskell program only needs to prepend the follow-
ing snippet to the main IO computation to utilise the ULS
implementation.
main = do

newScheduler
n <- getNumHECs
replicateM_ (n-1) newHEC
... -- rest of the main code

How do we create new user-level threads in this sched-
uler? For this purpose, we implement a forkIO primitive
that spawns a new user-level thread as follows:
forkIO :: IO () -> IO SCont
forkIO task = do

numHECs <- getNumHECs
-- epilogue: Switch to next thread
newSC <- newSCont (task >> switch dequeueAct)
-- Create and initialise new Aux state
switch $ \s -> do

dyn <- getAux s
let (_::Int , t::TVar Int) = fromJust $

fromDynamic dyn
nextHEC <- readTVar t
writeTVar t $ (nextHEC + 1) ‘mod ‘ numHECs
setAux newSC $ toDyn (nextHEC , t)
return s

-- Add new thread to scheduler
atomically $ enqueueAct newSC
return newSC

forkIO primitive spawns a new thread that runs concur-
rently with its parent thread. What should happen after such
a thread has run to completion? We must request the sched-
uler to provide us the next thread to run. This is captured in
the epilogue e, and is appended to the given IO computation
task. Next, we allocate a new SCont, which implicitly in-
herits the current SCont’s scheduler activations. In order to
spawn threads in a round-robin fashion, we create a new aux-
iliary state for the new SCont and prepare it such that when
unblocked, the new SCont is added to the runqueue on HEC
nextHEC. Finally, the newly created SCont is added to the
scheduler using its enqueue activation.

The key aspect of this forkIO primitive is that it does not
directly access the scheduler data structure, but does so only
through the activation interface. As a result, aside from the
auxiliary state manipulation, the rest of the code pretty much
can stay the same for any user-level forkIO primitive. Addi-
tionally, we can implement a yield primitive similar to the
one described in Section 3.3.2. Due to scheduler activations,
the interaction with the RTS concurrency mechanisms come
for free, and we are done!

4.2 Scheduler agnostic user-level MVars
Our scheduler activations abstracts the interface to the
ULS’s. This fact can be exploited to build scheduler agnostic

implementation of user-level concurrency libraries such as
MVars. The following snippet describes the structure of an
MVar implementation:
newtype MVar a = MVar (TVar (MVPState a))
data MVPState a = Full a [(a, SCont)]

| Empty [(IORef a, SCont)]

MVar is either empty with a list of pending takers, or full
with a value and a list of pending putters. An implementation
of takeMVar function is presented below:
takeMVar :: MVar a -> IO a
takeMVar (MVar ref) = do

h <- atomically $ newTVar undefined
switch $ \s -> do

st <- readTVar ref
case st of

Empty ts -> do
writeTVar ref $ Empty $ enqueue ts (h,s)
dequeueAct s

Full x ts -> do
writeTVar h x
case deque ts of

(_, Nothing) -> do
writeTVar ref $ Empty emptyQueue

(ts ’, Just (x’, s’)) -> do
writeTVar ref $ Full x’ ts ’
enqueueAct s’

return s
atomically $ readTVar h

If the MVar is empty, the SCont enqueues itself into the
queue of pending takers. If the MVar is full, SCont con-
sumes the value and unblocks the next waiting putter SCont,
if any. The implementation of putMVar is the dual of this
implementation. Notice that the implementation only uses
the activations to block and resume the SConts interacting
through the MVar. This allows threads from different ULS’s
to communicate over the same MVar, and hence the imple-
mentation is scheduler agnostic.

5. Semantics
In this section, we present the formal semantics of the con-
currency substrate primitives introduced in Section 3.3. We
will subsequently utilise the semantics to formally describe
the interaction of the ULS with the RTS in Section 6. Our se-
mantics closely follows the implementation. The aim of this
is to precisely describe the issues with respect to the interac-
tions between the ULS and the RTS, and have the language
to enunciate our solutions.

5.1 Syntax
Figure 5 shows the syntax of program states. The program
state P is a soup S of HECs, and a shared heap ⇥. The
operator k in the HEC soup is associative and commutative.
Each HEC is either idle (Idle) or a triple hs,M,Dit where
s is a unique identifier of the currently executing SCont, M
is the currently executing term, D represents SCont-local
state. Each HEC has an optional subscript t representing its
current state, and the absence of the subscript represents a
HEC that is running. As mentioned in Section 3.4, when the
program begins execution, the HEC soup has the following
configuration:

6 2014/3/20

User-level Scheduler

RTS

e t
wait

t.enqueueAct()

current thread t'

()

current thread t'

enqueue(t)

Figure 4. Unblocking from an RTS event.

Suppose we want to resume the thread t which is blocked
on e. The RTS invokes t’s enqueue activation to add t to
its scheduler. Since t’s scheduler is already running, t will
eventually be scheduled again.

3.2 Software transactional memory
Since Haskell computations can run in parallel on different
HECs, the substrate must provide a method for safely coordi-
nating activities across multiple HECs. Similar to Li’s sub-
strate design [17], we adopt transactional memory (STM),
as the sole multiprocessor synchronisation mechanism ex-
posed by the substrate. Using transactional memory, rather
than locks and condition variables make complex concurrent
programs much more modular and less error-prone [12] –
and schedulers are prime candidates, because they are prone
to subtle concurrency bugs.

3.3 Concurrency substrate
Now that we have motivated our design decisions, we will
present the API for the concurrency substrate. The con-
currency substrate includes the primitives for instantiating
and switching between language level threads, manipulating
thread local state, and an abstraction for scheduler activa-
tions. The API is presented below:

data SCont
type DequeueAct = SCont -> STM SCont
type EnqueueAct = SCont -> STM ()

-- activation interface
dequeueAct :: DequeueAct
enqueueAct :: EnqueueAct

-- SCont manipulation
newSCont :: IO () -> IO SCont
switch :: (SCont -> STM SCont) -> IO ()
runOnIdleHEC :: SCont -> IO ()

-- Manipulating local state
setDequeueAct :: DequeueAct -> IO ()
setEnqueueAct :: EnqueueAct -> IO ()
getAux :: SCont -> STM Dynamic
setAux :: SCont -> Dynamic -> STM ()

3.3.1 Activation interface
Rather than directly exposing the notion of a “thread”, the
substrate offers one-shot continuations [4], which is of type
SCont. An SCont is a heap-allocated object representing the
current state of a Haskell computation. In the RTS, SConts
are represented quite conventionally by a heap-allocated
Thread Storage Object (TSO), which includes the compu-

tations stack and local state, saved registers, and program
counter. Unreachable SConts are garbage collected.

The call (dequeueAct s) invokes s’s dequeue activa-
tion, passing s to it like a “self” parameter. The return type
of dequeueAct indicates that the computation encapsulated
in the dequeueAct is transactional (under STM monad3),
which when discharged, returns an SCont. Similarly, the
call (enqueueAct s) invokes the enqueue activation trans-
actionally, which enqueues s to its ULS.

Since the activations are under STM monad, we have the
assurance that the ULS’s schedulers cannot be built with
low-level unsafe components such as locks and condition
variables. Such low-level operations would be under IO
monad, which cannot be part of an STM transaction. Thus,
our concurrency substrate statically prevents the implemen-
tation of potentially unsafe schedulers.

3.3.2 SCont management
The substrate offers primitives for creating, constructing and
transferring control between SConts. The call (newSContM)
creates a new SCont that, when scheduled, executes M . By
default, the newly created SCont is associated with the ULS
of the invoking thread. This is done by copying the invoking
SCont’s activations.

An SCont is scheduled (i.e. is given control of a HEC) by
the switch primitive. The call (switchM) applies M to the
current continuation s. Notice that (M s) is an STM compu-
tation. In a single atomic transaction switch performs the
computation (M s), yielding an SCont s0, and switches con-
trol to s0. Thus, the computation encapsulated by s0 becomes
the currently running computation on this HEC.

Since our continuations are one-shot, capturing a contin-
uation simply fetches the reference to the underlying TSO
object. Hence, continuation capture involves no copying, and
is cheap. Using the SCont interface, a cooperative scheduler
can be built as follows:
yield :: IO ()
yield = switch (\s -> enqueueAct s >> dequeueAct s)

3.4 Parallel SCont execution
When the program begins execution, a fixed number of
HECs (N) is provided to it by the environment. This sig-
nifies the maximum number of parallel computations in
the program. Of these, one of the HEC runs the main IO
computation. All other HECs are in idle state. The call
runOnIdleHEC s initiates parallel execution of SCont s on
an idle HEC. Once the SCont running on a HEC finishes
evaluation, the HEC moves back to the idle state.

Notice that the upcall from the RTS to the dequeue acti-
vation as well as the body of the switch primitive return an
SCont. This is the SCont to which the control would switch
to subsequently. But what if such an SCont cannot be found?

3 http://hackage.haskell.org/package/stm-2.1.1.0/docs/
Control-Concurrent-STM.html

4 2014/3/20

0

10

20

30

40

k-nucleotide mandelbrot chameneos primes-sieve

Ti
m

e (
Se

co
nd

s)
 Vanilla GHC

ULS GHC

Work-stealing is
too aggressive

Formalization

Dequeue upcall instantiation H;⇥
deq
,! H0;⇥0

(UPDEQUEUE)

s0 fresh r fresh D0 = (deq(D), enq(D), r)

M 0 = switch (�x. deq(D) s)

⇥0 = ⇥[s 7! (M,D)][r 7! toDyn ()]

hs,M,Di;⇥
deq
,! hs0,M 0, D0i;⇥0

Enqueue upcall instantiation H;⇥
enq s
,! H0;⇥0

(UPENQUEUEIDLE)

s0 fresh r fresh D0 = (deq(D), enq(D), r)

M 0 = atomically (enq(D) s)

⇥0 = ⇥[s 7! (M,D)][r 7! toDyn ()]

Idle;⇥[s 7! (M,D)]
enq s
,! hs0,M 0, D0i;⇥0

(UPENQUEUERUNNING)

M 00 = atomically (enq(D) s) >> M 0

hs0,M 0,D0i;⇥[s 7! (M,D)]
enq s
,! hs0,M 00,D0i;⇥[s 7! (M,D)]

Figure 11. Instantiating upcalls

At the point of invocation of the dequeue upcall, the RTS
believes that the blocked SCont s is completely owned by
the RTS, not running, and available to be resumed. Invoking
the dequeue upcall on the blocked SCont s can lead to a race
on s between multiple HECs if s happens to be unblocked
and enqueued to the scheduler before the switch transaction
is completed.

6.2.2 Resuming the SCont
Some time later, the RTS will see that some thread has
written to one of the TVars read by s’s transaction, so it will
signal an RetrySTM s interaction (rule TRESUMERETRY).
Again, we use an auxiliary transition

enq s
,! to enqueue the

SCont to its scheduler (Figure 11).
Unlike

deq
,! transition, unblocking a thread has nothing

to do with the computation currently running on any HEC.
If we find an idle HEC (rule UPENQUEUEIDLE), we instan-
tiate a new ephemeral SCont s0 to enqueue the SCont s.
The actual unblock operation is achieved by fetching SCont
s’s enqueue activation, applying it to s and atomically per-
forming the resultant STM computation. If we do not find
any idle HECs (rule UPENQUEUERUNNING), we pick one
of the running HECs, prepare it such that it first unblocks the
SCont s before resuming the original computation.

6.2.3 HEC sleep and wakeup
Recall that invoking retry within a switch transaction or
dequeue activation puts the HEC to sleep (Section 3.4).
Also, notice that the dequeue activation is always invoked

by the RTS from a switch transaction (Rule UPDEQUEUE).
This motivates rule TRETRYSWITCH: if a switch transac-
tion blocks, we put the whole HEC to sleep. Then, dual to
TRESUMERETRY, rule TWAKEUP wakes up the HEC when
the RTS sees that the transaction may now be able to make
progress.

6.2.4 Implementation of upcalls
Notice that the rules UPDEQUEUE and UPENQUEUEIDLE in
Figure 11 instantiate a fresh SCont. The freshly instantiated
SCont performs just a single transaction; switch in UPDE-
QUEUE and atomically in UPENQUEUEIDLE, after which
they are garbage-collected. Since instantiating a fresh SCont
for every upcall is unwise, the RTS maintains a dynamic
pool of dedicated upcall SConts for performing the upcalls.
It is worth mentioning that we need an “upcall SCont pool”
rather than a single “upcall SCont” since the upcall trans-
actions can themselves get blocked synchronously on STM
retry as well as asynchronously due to optimizations for
lazy evaluation (Section 6.5).

6.3 Safe foreign function calls
Foreign calls in GHC are highly efficient but intricately
interact with the scheduler [20]. Much of it owes to the the
RTS’s task model. Each HEC is animated by one of a pool of
tasks (OS threads); the current task may become blocked in
a foreign call (e.g. a blocking I/O operation), in which case
another task takes over the HEC. However, at most only one
task ever has exclusive access to a HEC.

GHC’s task model ensures that a HEC performing a safe-
foreign call only blocks the Haskell thread (and the task)
making the call but not the other threads running on the
HEC’s scheduler. However, it would be unwise to switch the
thread (and the task) on every foreign call as most invoca-
tions are expected to return in a timely fashion. In this sec-
tion, we will discuss the interaction of safe-foreign function
calls and the ULS. In particular, we restrict the discussion to
outcalls — calls made from Haskell to C.

Our decision to preserve the task model in the RTS allows
us to delegate much of the work involved in safe foreign call
to the RTS. We only need to deal with the ULS interaction,
and not the creation and coordination of tasks. The semantics
of foreign call handling is presented in Figure 12. Rule
OCBLOCK illustrates that the HEC performing the foreign
call moves into the Outcall state, where it is no longer
runnable. In the fast path (rule OCRETFAST), the foreign
call returns immediately with the result M , and the HEC
resumes execution with the result plugged into the context.

In the slow path, the RTS may decide to pay the cost of
task switching and resume the scheduler (rule OCSTEAL).
The scheduler is resumed using the dequeue upcall. Once the
foreign call eventually returns, the SCont s blocked on the
foreign call can be resumed. Since we have already resumed
the scheduler, the correct behaviour is to prepare the SCont

10 2014/3/20

x, y 2 V ariable r, s, 2 Name

Md ::= return M | M >>= N
Ex ::= throw M | catch M N | catchSTM M N
Stm ::= newTVar M | readTVar r | writeTVar r M

| atomically M | retry
Sc ::= newSCont M | switch M | runOnIdleHEC s
Sls ::= getAux s | setAux s M
Act ::= dequeueAct s | enqueueAct s

| setDequeueAct M | setEnqueueAct M

Term
M,N ::= r | x | �.x �> M | M N | . . .

| Md | Ex | Stm | Sc | Sls | Act

Program state P ::= S;⇥
HEC soup S ::= ; | H k S

HEC H ::= hs,M,Di | hs,M,DiSleeping
| hs,M,DiOutcall | Idle

Heap ⇥ ::= r 7! M � s 7! (M,D)
SLS Store D ::= (M,N, r)

IO Context E ::= • | E >>= M | catch E M
STM Context P ::= • | P >>= M

Figure 5. Syntax of terms, states, contexts, and heaps

Initial HEC Soup S = hs,M,Di k Idle1 k . . . k IdleN�1

where M is the main computation, and all other HECs are
idle. We represent the stack local state D as a tuple with
two terms and a name (M,N, r). Here, M , N , and r are
the dequeue activation, enqueue activation, and a TVar rep-
resenting the auxiliary storage of the current SCont on this
HEC. For perspicuity, we define accessor functions as shown
below.

deq(M, ,) = M enq(,M,) = M aux(, , r) = r

Since the semantics of primitives that read and write
from SCont-local states (the ones under the terms Sls and
Act in Figure 5) is straight-forward, and do not deter the
understanding of the rest of the system, for want of space,
we discuss them in the Appendix.

The heap ⇥ is a disjoint finite map of:

• (r 7! M), maps the identifier r of a transactional vari-
able, or TVar, to its value.

• (s 7! (M,D)), maps the identifier s of an SCont to its
current state.

In a program state (S;⇥), an SCont with identifier s ap-
pears either as the running SCont in a HEC hs,M,Dit 2 S,
or as a binding s 7! (M,D) in the heap ⇥, but never in
both. The distinction has direct operational significance: an
SCont running in a HEC has part of its state loaded into ma-
chine registers, whereas one in the heap is entirely passive.
In both cases, however, the term M has type IO(), modelling
the fact that concurrent Haskell threads can perform I/O.

Top-level transitions S;⇥
a

==) S0;⇥0

H;⇥
a

==) H0;⇥0

H k S;⇥
a

==) H0 k S;⇥0
(ONEHEC)

HEC transitions H;⇥ =) H0;⇥0

M ! N

hs,E[M], Di;⇥ =) hs,E[N], Di;⇥0 (PURESTEP)

Purely functional transitions M ! N

return N >>= M ! M N (BIND)
throw N >>= M ! throw N (THROW)

retry >>= M ! retry (RETRY)
catch (return M) N ! return M (IOCATCH)
catch (throw M) N ! N M (IOCATCHEXN)

Plus the usual rules for call-by-need �-calculus, in small-step fashion

Figure 6. Operational semantics for basic transitions

The number of HECs remains constant, and HEC runs
one, and only one SCont. The business of multiplexing mul-
tiple SConts onto a single HEC is what the scheduler is for,
and is organised by Haskell code using the primitives de-
scribed in this section.

5.2 Basic Transitions
Some basic transitions are presented in Figure 6. The pro-
gram makes a transition from one state to another through
the top-level program small-step transition relation: S;⇥ a

==)
S0;⇥0. This says that the program makes a transition from
S;⇥ to S0;⇥0, possibly interacting with the underlying RTS
through action a. We return to these RTS interactions in
Section 6, and we omit a altogether if there is no interaction.

Rule OneHEC says that if one HEC H can take a step
with the single-HEC transition relation, then the whole ma-
chine can take a step. As usual, we assume that the soup
S is permuted to bring a runnable HEC to the right-hand
end of the soup, so that OneHEC can fire. Similarly, Rule
PureStep enables one of the HECs to perform a purely func-
tional transition under the evaluation context E (defined in
Figure 5). There is no action a on the arrow because this step
does not interact with the RTS. Notice that PureStep transi-
tion is only possible if the HEC is in running state (with no
subscript). The purely functional transitions M ! N in-
clude �-reduction, arithmetic expressions, case expressions,
monadic operations return, bind, throw, catch, and so on
according to their standard definitions. Bind operation on
the transactional memory primitive retry simply reduces to
retry (Figure 6). These primitives represent blocking actions
under transactional memory and will be dealt with in Sec-
tion 6.2.

7 2014/3/20

Concurrency Substrate Upcalls from the RTS

Formalization

Dequeue upcall instantiation H;⇥
deq
,! H0;⇥0

(UPDEQUEUE)

s0 fresh r fresh D0 = (deq(D), enq(D), r)

M 0 = switch (�x. deq(D) s)

⇥0 = ⇥[s 7! (M,D)][r 7! toDyn ()]

hs,M,Di;⇥
deq
,! hs0,M 0, D0i;⇥0

Enqueue upcall instantiation H;⇥
enq s
,! H0;⇥0

(UPENQUEUEIDLE)

s0 fresh r fresh D0 = (deq(D), enq(D), r)

M 0 = atomically (enq(D) s)

⇥0 = ⇥[s 7! (M,D)][r 7! toDyn ()]

Idle;⇥[s 7! (M,D)]
enq s
,! hs0,M 0, D0i;⇥0

(UPENQUEUERUNNING)

M 00 = atomically (enq(D) s) >> M 0

hs0,M 0,D0i;⇥[s 7! (M,D)]
enq s
,! hs0,M 00,D0i;⇥[s 7! (M,D)]

Figure 11. Instantiating upcalls

At the point of invocation of the dequeue upcall, the RTS
believes that the blocked SCont s is completely owned by
the RTS, not running, and available to be resumed. Invoking
the dequeue upcall on the blocked SCont s can lead to a race
on s between multiple HECs if s happens to be unblocked
and enqueued to the scheduler before the switch transaction
is completed.

6.2.2 Resuming the SCont
Some time later, the RTS will see that some thread has
written to one of the TVars read by s’s transaction, so it will
signal an RetrySTM s interaction (rule TRESUMERETRY).
Again, we use an auxiliary transition

enq s
,! to enqueue the

SCont to its scheduler (Figure 11).
Unlike

deq
,! transition, unblocking a thread has nothing

to do with the computation currently running on any HEC.
If we find an idle HEC (rule UPENQUEUEIDLE), we instan-
tiate a new ephemeral SCont s0 to enqueue the SCont s.
The actual unblock operation is achieved by fetching SCont
s’s enqueue activation, applying it to s and atomically per-
forming the resultant STM computation. If we do not find
any idle HECs (rule UPENQUEUERUNNING), we pick one
of the running HECs, prepare it such that it first unblocks the
SCont s before resuming the original computation.

6.2.3 HEC sleep and wakeup
Recall that invoking retry within a switch transaction or
dequeue activation puts the HEC to sleep (Section 3.4).
Also, notice that the dequeue activation is always invoked

by the RTS from a switch transaction (Rule UPDEQUEUE).
This motivates rule TRETRYSWITCH: if a switch transac-
tion blocks, we put the whole HEC to sleep. Then, dual to
TRESUMERETRY, rule TWAKEUP wakes up the HEC when
the RTS sees that the transaction may now be able to make
progress.

6.2.4 Implementation of upcalls
Notice that the rules UPDEQUEUE and UPENQUEUEIDLE in
Figure 11 instantiate a fresh SCont. The freshly instantiated
SCont performs just a single transaction; switch in UPDE-
QUEUE and atomically in UPENQUEUEIDLE, after which
they are garbage-collected. Since instantiating a fresh SCont
for every upcall is unwise, the RTS maintains a dynamic
pool of dedicated upcall SConts for performing the upcalls.
It is worth mentioning that we need an “upcall SCont pool”
rather than a single “upcall SCont” since the upcall trans-
actions can themselves get blocked synchronously on STM
retry as well as asynchronously due to optimizations for
lazy evaluation (Section 6.5).

6.3 Safe foreign function calls
Foreign calls in GHC are highly efficient but intricately
interact with the scheduler [20]. Much of it owes to the the
RTS’s task model. Each HEC is animated by one of a pool of
tasks (OS threads); the current task may become blocked in
a foreign call (e.g. a blocking I/O operation), in which case
another task takes over the HEC. However, at most only one
task ever has exclusive access to a HEC.

GHC’s task model ensures that a HEC performing a safe-
foreign call only blocks the Haskell thread (and the task)
making the call but not the other threads running on the
HEC’s scheduler. However, it would be unwise to switch the
thread (and the task) on every foreign call as most invoca-
tions are expected to return in a timely fashion. In this sec-
tion, we will discuss the interaction of safe-foreign function
calls and the ULS. In particular, we restrict the discussion to
outcalls — calls made from Haskell to C.

Our decision to preserve the task model in the RTS allows
us to delegate much of the work involved in safe foreign call
to the RTS. We only need to deal with the ULS interaction,
and not the creation and coordination of tasks. The semantics
of foreign call handling is presented in Figure 12. Rule
OCBLOCK illustrates that the HEC performing the foreign
call moves into the Outcall state, where it is no longer
runnable. In the fast path (rule OCRETFAST), the foreign
call returns immediately with the result M , and the HEC
resumes execution with the result plugged into the context.

In the slow path, the RTS may decide to pay the cost of
task switching and resume the scheduler (rule OCSTEAL).
The scheduler is resumed using the dequeue upcall. Once the
foreign call eventually returns, the SCont s blocked on the
foreign call can be resumed. Since we have already resumed
the scheduler, the correct behaviour is to prepare the SCont

10 2014/3/20

x, y 2 V ariable r, s, 2 Name

Md ::= return M | M >>= N
Ex ::= throw M | catch M N | catchSTM M N
Stm ::= newTVar M | readTVar r | writeTVar r M

| atomically M | retry
Sc ::= newSCont M | switch M | runOnIdleHEC s
Sls ::= getAux s | setAux s M
Act ::= dequeueAct s | enqueueAct s

| setDequeueAct M | setEnqueueAct M

Term
M,N ::= r | x | �.x �> M | M N | . . .

| Md | Ex | Stm | Sc | Sls | Act

Program state P ::= S;⇥
HEC soup S ::= ; | H k S

HEC H ::= hs,M,Di | hs,M,DiSleeping
| hs,M,DiOutcall | Idle

Heap ⇥ ::= r 7! M � s 7! (M,D)
SLS Store D ::= (M,N, r)

IO Context E ::= • | E >>= M | catch E M
STM Context P ::= • | P >>= M

Figure 5. Syntax of terms, states, contexts, and heaps

Initial HEC Soup S = hs,M,Di k Idle1 k . . . k IdleN�1

where M is the main computation, and all other HECs are
idle. We represent the stack local state D as a tuple with
two terms and a name (M,N, r). Here, M , N , and r are
the dequeue activation, enqueue activation, and a TVar rep-
resenting the auxiliary storage of the current SCont on this
HEC. For perspicuity, we define accessor functions as shown
below.

deq(M, ,) = M enq(,M,) = M aux(, , r) = r

Since the semantics of primitives that read and write
from SCont-local states (the ones under the terms Sls and
Act in Figure 5) is straight-forward, and do not deter the
understanding of the rest of the system, for want of space,
we discuss them in the Appendix.

The heap ⇥ is a disjoint finite map of:

• (r 7! M), maps the identifier r of a transactional vari-
able, or TVar, to its value.

• (s 7! (M,D)), maps the identifier s of an SCont to its
current state.

In a program state (S;⇥), an SCont with identifier s ap-
pears either as the running SCont in a HEC hs,M,Dit 2 S,
or as a binding s 7! (M,D) in the heap ⇥, but never in
both. The distinction has direct operational significance: an
SCont running in a HEC has part of its state loaded into ma-
chine registers, whereas one in the heap is entirely passive.
In both cases, however, the term M has type IO(), modelling
the fact that concurrent Haskell threads can perform I/O.

Top-level transitions S;⇥
a

==) S0;⇥0

H;⇥
a

==) H0;⇥0

H k S;⇥
a

==) H0 k S;⇥0
(ONEHEC)

HEC transitions H;⇥ =) H0;⇥0

M ! N

hs,E[M], Di;⇥ =) hs,E[N], Di;⇥0 (PURESTEP)

Purely functional transitions M ! N

return N >>= M ! M N (BIND)
throw N >>= M ! throw N (THROW)

retry >>= M ! retry (RETRY)
catch (return M) N ! return M (IOCATCH)
catch (throw M) N ! N M (IOCATCHEXN)

Plus the usual rules for call-by-need �-calculus, in small-step fashion

Figure 6. Operational semantics for basic transitions

The number of HECs remains constant, and HEC runs
one, and only one SCont. The business of multiplexing mul-
tiple SConts onto a single HEC is what the scheduler is for,
and is organised by Haskell code using the primitives de-
scribed in this section.

5.2 Basic Transitions
Some basic transitions are presented in Figure 6. The pro-
gram makes a transition from one state to another through
the top-level program small-step transition relation: S;⇥ a

==)
S0;⇥0. This says that the program makes a transition from
S;⇥ to S0;⇥0, possibly interacting with the underlying RTS
through action a. We return to these RTS interactions in
Section 6, and we omit a altogether if there is no interaction.

Rule OneHEC says that if one HEC H can take a step
with the single-HEC transition relation, then the whole ma-
chine can take a step. As usual, we assume that the soup
S is permuted to bring a runnable HEC to the right-hand
end of the soup, so that OneHEC can fire. Similarly, Rule
PureStep enables one of the HECs to perform a purely func-
tional transition under the evaluation context E (defined in
Figure 5). There is no action a on the arrow because this step
does not interact with the RTS. Notice that PureStep transi-
tion is only possible if the HEC is in running state (with no
subscript). The purely functional transitions M ! N in-
clude �-reduction, arithmetic expressions, case expressions,
monadic operations return, bind, throw, catch, and so on
according to their standard definitions. Bind operation on
the transactional memory primitive retry simply reduces to
retry (Figure 6). These primitives represent blocking actions
under transactional memory and will be dealt with in Sec-
tion 6.2.

7 2014/3/20

Concurrency Substrate Upcalls from the RTS

E[M]	
 tick IO E[yield	
 >>	
 M]	

Formalization

Dequeue upcall instantiation H;⇥
deq
,! H0;⇥0

(UPDEQUEUE)

s0 fresh r fresh D0 = (deq(D), enq(D), r)

M 0 = switch (�x. deq(D) s)

⇥0 = ⇥[s 7! (M,D)][r 7! toDyn ()]

hs,M,Di;⇥
deq
,! hs0,M 0, D0i;⇥0

Enqueue upcall instantiation H;⇥
enq s
,! H0;⇥0

(UPENQUEUEIDLE)

s0 fresh r fresh D0 = (deq(D), enq(D), r)

M 0 = atomically (enq(D) s)

⇥0 = ⇥[s 7! (M,D)][r 7! toDyn ()]

Idle;⇥[s 7! (M,D)]
enq s
,! hs0,M 0, D0i;⇥0

(UPENQUEUERUNNING)

M 00 = atomically (enq(D) s) >> M 0

hs0,M 0,D0i;⇥[s 7! (M,D)]
enq s
,! hs0,M 00,D0i;⇥[s 7! (M,D)]

Figure 11. Instantiating upcalls

At the point of invocation of the dequeue upcall, the RTS
believes that the blocked SCont s is completely owned by
the RTS, not running, and available to be resumed. Invoking
the dequeue upcall on the blocked SCont s can lead to a race
on s between multiple HECs if s happens to be unblocked
and enqueued to the scheduler before the switch transaction
is completed.

6.2.2 Resuming the SCont
Some time later, the RTS will see that some thread has
written to one of the TVars read by s’s transaction, so it will
signal an RetrySTM s interaction (rule TRESUMERETRY).
Again, we use an auxiliary transition

enq s
,! to enqueue the

SCont to its scheduler (Figure 11).
Unlike

deq
,! transition, unblocking a thread has nothing

to do with the computation currently running on any HEC.
If we find an idle HEC (rule UPENQUEUEIDLE), we instan-
tiate a new ephemeral SCont s0 to enqueue the SCont s.
The actual unblock operation is achieved by fetching SCont
s’s enqueue activation, applying it to s and atomically per-
forming the resultant STM computation. If we do not find
any idle HECs (rule UPENQUEUERUNNING), we pick one
of the running HECs, prepare it such that it first unblocks the
SCont s before resuming the original computation.

6.2.3 HEC sleep and wakeup
Recall that invoking retry within a switch transaction or
dequeue activation puts the HEC to sleep (Section 3.4).
Also, notice that the dequeue activation is always invoked

by the RTS from a switch transaction (Rule UPDEQUEUE).
This motivates rule TRETRYSWITCH: if a switch transac-
tion blocks, we put the whole HEC to sleep. Then, dual to
TRESUMERETRY, rule TWAKEUP wakes up the HEC when
the RTS sees that the transaction may now be able to make
progress.

6.2.4 Implementation of upcalls
Notice that the rules UPDEQUEUE and UPENQUEUEIDLE in
Figure 11 instantiate a fresh SCont. The freshly instantiated
SCont performs just a single transaction; switch in UPDE-
QUEUE and atomically in UPENQUEUEIDLE, after which
they are garbage-collected. Since instantiating a fresh SCont
for every upcall is unwise, the RTS maintains a dynamic
pool of dedicated upcall SConts for performing the upcalls.
It is worth mentioning that we need an “upcall SCont pool”
rather than a single “upcall SCont” since the upcall trans-
actions can themselves get blocked synchronously on STM
retry as well as asynchronously due to optimizations for
lazy evaluation (Section 6.5).

6.3 Safe foreign function calls
Foreign calls in GHC are highly efficient but intricately
interact with the scheduler [20]. Much of it owes to the the
RTS’s task model. Each HEC is animated by one of a pool of
tasks (OS threads); the current task may become blocked in
a foreign call (e.g. a blocking I/O operation), in which case
another task takes over the HEC. However, at most only one
task ever has exclusive access to a HEC.

GHC’s task model ensures that a HEC performing a safe-
foreign call only blocks the Haskell thread (and the task)
making the call but not the other threads running on the
HEC’s scheduler. However, it would be unwise to switch the
thread (and the task) on every foreign call as most invoca-
tions are expected to return in a timely fashion. In this sec-
tion, we will discuss the interaction of safe-foreign function
calls and the ULS. In particular, we restrict the discussion to
outcalls — calls made from Haskell to C.

Our decision to preserve the task model in the RTS allows
us to delegate much of the work involved in safe foreign call
to the RTS. We only need to deal with the ULS interaction,
and not the creation and coordination of tasks. The semantics
of foreign call handling is presented in Figure 12. Rule
OCBLOCK illustrates that the HEC performing the foreign
call moves into the Outcall state, where it is no longer
runnable. In the fast path (rule OCRETFAST), the foreign
call returns immediately with the result M , and the HEC
resumes execution with the result plugged into the context.

In the slow path, the RTS may decide to pay the cost of
task switching and resume the scheduler (rule OCSTEAL).
The scheduler is resumed using the dequeue upcall. Once the
foreign call eventually returns, the SCont s blocked on the
foreign call can be resumed. Since we have already resumed
the scheduler, the correct behaviour is to prepare the SCont

10 2014/3/20

x, y 2 V ariable r, s, 2 Name

Md ::= return M | M >>= N
Ex ::= throw M | catch M N | catchSTM M N
Stm ::= newTVar M | readTVar r | writeTVar r M

| atomically M | retry
Sc ::= newSCont M | switch M | runOnIdleHEC s
Sls ::= getAux s | setAux s M
Act ::= dequeueAct s | enqueueAct s

| setDequeueAct M | setEnqueueAct M

Term
M,N ::= r | x | �.x �> M | M N | . . .

| Md | Ex | Stm | Sc | Sls | Act

Program state P ::= S;⇥
HEC soup S ::= ; | H k S

HEC H ::= hs,M,Di | hs,M,DiSleeping
| hs,M,DiOutcall | Idle

Heap ⇥ ::= r 7! M � s 7! (M,D)
SLS Store D ::= (M,N, r)

IO Context E ::= • | E >>= M | catch E M
STM Context P ::= • | P >>= M

Figure 5. Syntax of terms, states, contexts, and heaps

Initial HEC Soup S = hs,M,Di k Idle1 k . . . k IdleN�1

where M is the main computation, and all other HECs are
idle. We represent the stack local state D as a tuple with
two terms and a name (M,N, r). Here, M , N , and r are
the dequeue activation, enqueue activation, and a TVar rep-
resenting the auxiliary storage of the current SCont on this
HEC. For perspicuity, we define accessor functions as shown
below.

deq(M, ,) = M enq(,M,) = M aux(, , r) = r

Since the semantics of primitives that read and write
from SCont-local states (the ones under the terms Sls and
Act in Figure 5) is straight-forward, and do not deter the
understanding of the rest of the system, for want of space,
we discuss them in the Appendix.

The heap ⇥ is a disjoint finite map of:

• (r 7! M), maps the identifier r of a transactional vari-
able, or TVar, to its value.

• (s 7! (M,D)), maps the identifier s of an SCont to its
current state.

In a program state (S;⇥), an SCont with identifier s ap-
pears either as the running SCont in a HEC hs,M,Dit 2 S,
or as a binding s 7! (M,D) in the heap ⇥, but never in
both. The distinction has direct operational significance: an
SCont running in a HEC has part of its state loaded into ma-
chine registers, whereas one in the heap is entirely passive.
In both cases, however, the term M has type IO(), modelling
the fact that concurrent Haskell threads can perform I/O.

Top-level transitions S;⇥
a

==) S0;⇥0

H;⇥
a

==) H0;⇥0

H k S;⇥
a

==) H0 k S;⇥0
(ONEHEC)

HEC transitions H;⇥ =) H0;⇥0

M ! N

hs,E[M], Di;⇥ =) hs,E[N], Di;⇥0 (PURESTEP)

Purely functional transitions M ! N

return N >>= M ! M N (BIND)
throw N >>= M ! throw N (THROW)

retry >>= M ! retry (RETRY)
catch (return M) N ! return M (IOCATCH)
catch (throw M) N ! N M (IOCATCHEXN)

Plus the usual rules for call-by-need �-calculus, in small-step fashion

Figure 6. Operational semantics for basic transitions

The number of HECs remains constant, and HEC runs
one, and only one SCont. The business of multiplexing mul-
tiple SConts onto a single HEC is what the scheduler is for,
and is organised by Haskell code using the primitives de-
scribed in this section.

5.2 Basic Transitions
Some basic transitions are presented in Figure 6. The pro-
gram makes a transition from one state to another through
the top-level program small-step transition relation: S;⇥ a

==)
S0;⇥0. This says that the program makes a transition from
S;⇥ to S0;⇥0, possibly interacting with the underlying RTS
through action a. We return to these RTS interactions in
Section 6, and we omit a altogether if there is no interaction.

Rule OneHEC says that if one HEC H can take a step
with the single-HEC transition relation, then the whole ma-
chine can take a step. As usual, we assume that the soup
S is permuted to bring a runnable HEC to the right-hand
end of the soup, so that OneHEC can fire. Similarly, Rule
PureStep enables one of the HECs to perform a purely func-
tional transition under the evaluation context E (defined in
Figure 5). There is no action a on the arrow because this step
does not interact with the RTS. Notice that PureStep transi-
tion is only possible if the HEC is in running state (with no
subscript). The purely functional transitions M ! N in-
clude �-reduction, arithmetic expressions, case expressions,
monadic operations return, bind, throw, catch, and so on
according to their standard definitions. Bind operation on
the transactional memory primitive retry simply reduces to
retry (Figure 6). These primitives represent blocking actions
under transactional memory and will be dealt with in Sec-
tion 6.2.

7 2014/3/20

Concurrency Substrate Upcalls from the RTS

E[M]	
 tick IO E[yield	
 >>	
 M]	

atomically
STM E[atomically(P[M])]	
 tick

Suspend transaction
and switch	

Formalization

Dequeue upcall instantiation H;⇥
deq
,! H0;⇥0

(UPDEQUEUE)

s0 fresh r fresh D0 = (deq(D), enq(D), r)

M 0 = switch (�x. deq(D) s)

⇥0 = ⇥[s 7! (M,D)][r 7! toDyn ()]

hs,M,Di;⇥
deq
,! hs0,M 0, D0i;⇥0

Enqueue upcall instantiation H;⇥
enq s
,! H0;⇥0

(UPENQUEUEIDLE)

s0 fresh r fresh D0 = (deq(D), enq(D), r)

M 0 = atomically (enq(D) s)

⇥0 = ⇥[s 7! (M,D)][r 7! toDyn ()]

Idle;⇥[s 7! (M,D)]
enq s
,! hs0,M 0, D0i;⇥0

(UPENQUEUERUNNING)

M 00 = atomically (enq(D) s) >> M 0

hs0,M 0,D0i;⇥[s 7! (M,D)]
enq s
,! hs0,M 00,D0i;⇥[s 7! (M,D)]

Figure 11. Instantiating upcalls

At the point of invocation of the dequeue upcall, the RTS
believes that the blocked SCont s is completely owned by
the RTS, not running, and available to be resumed. Invoking
the dequeue upcall on the blocked SCont s can lead to a race
on s between multiple HECs if s happens to be unblocked
and enqueued to the scheduler before the switch transaction
is completed.

6.2.2 Resuming the SCont
Some time later, the RTS will see that some thread has
written to one of the TVars read by s’s transaction, so it will
signal an RetrySTM s interaction (rule TRESUMERETRY).
Again, we use an auxiliary transition

enq s
,! to enqueue the

SCont to its scheduler (Figure 11).
Unlike

deq
,! transition, unblocking a thread has nothing

to do with the computation currently running on any HEC.
If we find an idle HEC (rule UPENQUEUEIDLE), we instan-
tiate a new ephemeral SCont s0 to enqueue the SCont s.
The actual unblock operation is achieved by fetching SCont
s’s enqueue activation, applying it to s and atomically per-
forming the resultant STM computation. If we do not find
any idle HECs (rule UPENQUEUERUNNING), we pick one
of the running HECs, prepare it such that it first unblocks the
SCont s before resuming the original computation.

6.2.3 HEC sleep and wakeup
Recall that invoking retry within a switch transaction or
dequeue activation puts the HEC to sleep (Section 3.4).
Also, notice that the dequeue activation is always invoked

by the RTS from a switch transaction (Rule UPDEQUEUE).
This motivates rule TRETRYSWITCH: if a switch transac-
tion blocks, we put the whole HEC to sleep. Then, dual to
TRESUMERETRY, rule TWAKEUP wakes up the HEC when
the RTS sees that the transaction may now be able to make
progress.

6.2.4 Implementation of upcalls
Notice that the rules UPDEQUEUE and UPENQUEUEIDLE in
Figure 11 instantiate a fresh SCont. The freshly instantiated
SCont performs just a single transaction; switch in UPDE-
QUEUE and atomically in UPENQUEUEIDLE, after which
they are garbage-collected. Since instantiating a fresh SCont
for every upcall is unwise, the RTS maintains a dynamic
pool of dedicated upcall SConts for performing the upcalls.
It is worth mentioning that we need an “upcall SCont pool”
rather than a single “upcall SCont” since the upcall trans-
actions can themselves get blocked synchronously on STM
retry as well as asynchronously due to optimizations for
lazy evaluation (Section 6.5).

6.3 Safe foreign function calls
Foreign calls in GHC are highly efficient but intricately
interact with the scheduler [20]. Much of it owes to the the
RTS’s task model. Each HEC is animated by one of a pool of
tasks (OS threads); the current task may become blocked in
a foreign call (e.g. a blocking I/O operation), in which case
another task takes over the HEC. However, at most only one
task ever has exclusive access to a HEC.

GHC’s task model ensures that a HEC performing a safe-
foreign call only blocks the Haskell thread (and the task)
making the call but not the other threads running on the
HEC’s scheduler. However, it would be unwise to switch the
thread (and the task) on every foreign call as most invoca-
tions are expected to return in a timely fashion. In this sec-
tion, we will discuss the interaction of safe-foreign function
calls and the ULS. In particular, we restrict the discussion to
outcalls — calls made from Haskell to C.

Our decision to preserve the task model in the RTS allows
us to delegate much of the work involved in safe foreign call
to the RTS. We only need to deal with the ULS interaction,
and not the creation and coordination of tasks. The semantics
of foreign call handling is presented in Figure 12. Rule
OCBLOCK illustrates that the HEC performing the foreign
call moves into the Outcall state, where it is no longer
runnable. In the fast path (rule OCRETFAST), the foreign
call returns immediately with the result M , and the HEC
resumes execution with the result plugged into the context.

In the slow path, the RTS may decide to pay the cost of
task switching and resume the scheduler (rule OCSTEAL).
The scheduler is resumed using the dequeue upcall. Once the
foreign call eventually returns, the SCont s blocked on the
foreign call can be resumed. Since we have already resumed
the scheduler, the correct behaviour is to prepare the SCont

10 2014/3/20

x, y 2 V ariable r, s, 2 Name

Md ::= return M | M >>= N
Ex ::= throw M | catch M N | catchSTM M N
Stm ::= newTVar M | readTVar r | writeTVar r M

| atomically M | retry
Sc ::= newSCont M | switch M | runOnIdleHEC s
Sls ::= getAux s | setAux s M
Act ::= dequeueAct s | enqueueAct s

| setDequeueAct M | setEnqueueAct M

Term
M,N ::= r | x | �.x �> M | M N | . . .

| Md | Ex | Stm | Sc | Sls | Act

Program state P ::= S;⇥
HEC soup S ::= ; | H k S

HEC H ::= hs,M,Di | hs,M,DiSleeping
| hs,M,DiOutcall | Idle

Heap ⇥ ::= r 7! M � s 7! (M,D)
SLS Store D ::= (M,N, r)

IO Context E ::= • | E >>= M | catch E M
STM Context P ::= • | P >>= M

Figure 5. Syntax of terms, states, contexts, and heaps

Initial HEC Soup S = hs,M,Di k Idle1 k . . . k IdleN�1

where M is the main computation, and all other HECs are
idle. We represent the stack local state D as a tuple with
two terms and a name (M,N, r). Here, M , N , and r are
the dequeue activation, enqueue activation, and a TVar rep-
resenting the auxiliary storage of the current SCont on this
HEC. For perspicuity, we define accessor functions as shown
below.

deq(M, ,) = M enq(,M,) = M aux(, , r) = r

Since the semantics of primitives that read and write
from SCont-local states (the ones under the terms Sls and
Act in Figure 5) is straight-forward, and do not deter the
understanding of the rest of the system, for want of space,
we discuss them in the Appendix.

The heap ⇥ is a disjoint finite map of:

• (r 7! M), maps the identifier r of a transactional vari-
able, or TVar, to its value.

• (s 7! (M,D)), maps the identifier s of an SCont to its
current state.

In a program state (S;⇥), an SCont with identifier s ap-
pears either as the running SCont in a HEC hs,M,Dit 2 S,
or as a binding s 7! (M,D) in the heap ⇥, but never in
both. The distinction has direct operational significance: an
SCont running in a HEC has part of its state loaded into ma-
chine registers, whereas one in the heap is entirely passive.
In both cases, however, the term M has type IO(), modelling
the fact that concurrent Haskell threads can perform I/O.

Top-level transitions S;⇥
a

==) S0;⇥0

H;⇥
a

==) H0;⇥0

H k S;⇥
a

==) H0 k S;⇥0
(ONEHEC)

HEC transitions H;⇥ =) H0;⇥0

M ! N

hs,E[M], Di;⇥ =) hs,E[N], Di;⇥0 (PURESTEP)

Purely functional transitions M ! N

return N >>= M ! M N (BIND)
throw N >>= M ! throw N (THROW)

retry >>= M ! retry (RETRY)
catch (return M) N ! return M (IOCATCH)
catch (throw M) N ! N M (IOCATCHEXN)

Plus the usual rules for call-by-need �-calculus, in small-step fashion

Figure 6. Operational semantics for basic transitions

The number of HECs remains constant, and HEC runs
one, and only one SCont. The business of multiplexing mul-
tiple SConts onto a single HEC is what the scheduler is for,
and is organised by Haskell code using the primitives de-
scribed in this section.

5.2 Basic Transitions
Some basic transitions are presented in Figure 6. The pro-
gram makes a transition from one state to another through
the top-level program small-step transition relation: S;⇥ a

==)
S0;⇥0. This says that the program makes a transition from
S;⇥ to S0;⇥0, possibly interacting with the underlying RTS
through action a. We return to these RTS interactions in
Section 6, and we omit a altogether if there is no interaction.

Rule OneHEC says that if one HEC H can take a step
with the single-HEC transition relation, then the whole ma-
chine can take a step. As usual, we assume that the soup
S is permuted to bring a runnable HEC to the right-hand
end of the soup, so that OneHEC can fire. Similarly, Rule
PureStep enables one of the HECs to perform a purely func-
tional transition under the evaluation context E (defined in
Figure 5). There is no action a on the arrow because this step
does not interact with the RTS. Notice that PureStep transi-
tion is only possible if the HEC is in running state (with no
subscript). The purely functional transitions M ! N in-
clude �-reduction, arithmetic expressions, case expressions,
monadic operations return, bind, throw, catch, and so on
according to their standard definitions. Bind operation on
the transactional memory primitive retry simply reduces to
retry (Figure 6). These primitives represent blocking actions
under transactional memory and will be dealt with in Sec-
tion 6.2.

7 2014/3/20

Concurrency Substrate Upcalls from the RTS

E[M]	
 tick IO E[yield	
 >>	
 M]	

atomically
STM E[atomically(P[M])]	
 tick

Suspend transaction
and switch	

Switch
STM E[switch(P[M])]	
 tick

Formalization

Dequeue upcall instantiation H;⇥
deq
,! H0;⇥0

(UPDEQUEUE)

s0 fresh r fresh D0 = (deq(D), enq(D), r)

M 0 = switch (�x. deq(D) s)

⇥0 = ⇥[s 7! (M,D)][r 7! toDyn ()]

hs,M,Di;⇥
deq
,! hs0,M 0, D0i;⇥0

Enqueue upcall instantiation H;⇥
enq s
,! H0;⇥0

(UPENQUEUEIDLE)

s0 fresh r fresh D0 = (deq(D), enq(D), r)

M 0 = atomically (enq(D) s)

⇥0 = ⇥[s 7! (M,D)][r 7! toDyn ()]

Idle;⇥[s 7! (M,D)]
enq s
,! hs0,M 0, D0i;⇥0

(UPENQUEUERUNNING)

M 00 = atomically (enq(D) s) >> M 0

hs0,M 0,D0i;⇥[s 7! (M,D)]
enq s
,! hs0,M 00,D0i;⇥[s 7! (M,D)]

Figure 11. Instantiating upcalls

At the point of invocation of the dequeue upcall, the RTS
believes that the blocked SCont s is completely owned by
the RTS, not running, and available to be resumed. Invoking
the dequeue upcall on the blocked SCont s can lead to a race
on s between multiple HECs if s happens to be unblocked
and enqueued to the scheduler before the switch transaction
is completed.

6.2.2 Resuming the SCont
Some time later, the RTS will see that some thread has
written to one of the TVars read by s’s transaction, so it will
signal an RetrySTM s interaction (rule TRESUMERETRY).
Again, we use an auxiliary transition

enq s
,! to enqueue the

SCont to its scheduler (Figure 11).
Unlike

deq
,! transition, unblocking a thread has nothing

to do with the computation currently running on any HEC.
If we find an idle HEC (rule UPENQUEUEIDLE), we instan-
tiate a new ephemeral SCont s0 to enqueue the SCont s.
The actual unblock operation is achieved by fetching SCont
s’s enqueue activation, applying it to s and atomically per-
forming the resultant STM computation. If we do not find
any idle HECs (rule UPENQUEUERUNNING), we pick one
of the running HECs, prepare it such that it first unblocks the
SCont s before resuming the original computation.

6.2.3 HEC sleep and wakeup
Recall that invoking retry within a switch transaction or
dequeue activation puts the HEC to sleep (Section 3.4).
Also, notice that the dequeue activation is always invoked

by the RTS from a switch transaction (Rule UPDEQUEUE).
This motivates rule TRETRYSWITCH: if a switch transac-
tion blocks, we put the whole HEC to sleep. Then, dual to
TRESUMERETRY, rule TWAKEUP wakes up the HEC when
the RTS sees that the transaction may now be able to make
progress.

6.2.4 Implementation of upcalls
Notice that the rules UPDEQUEUE and UPENQUEUEIDLE in
Figure 11 instantiate a fresh SCont. The freshly instantiated
SCont performs just a single transaction; switch in UPDE-
QUEUE and atomically in UPENQUEUEIDLE, after which
they are garbage-collected. Since instantiating a fresh SCont
for every upcall is unwise, the RTS maintains a dynamic
pool of dedicated upcall SConts for performing the upcalls.
It is worth mentioning that we need an “upcall SCont pool”
rather than a single “upcall SCont” since the upcall trans-
actions can themselves get blocked synchronously on STM
retry as well as asynchronously due to optimizations for
lazy evaluation (Section 6.5).

6.3 Safe foreign function calls
Foreign calls in GHC are highly efficient but intricately
interact with the scheduler [20]. Much of it owes to the the
RTS’s task model. Each HEC is animated by one of a pool of
tasks (OS threads); the current task may become blocked in
a foreign call (e.g. a blocking I/O operation), in which case
another task takes over the HEC. However, at most only one
task ever has exclusive access to a HEC.

GHC’s task model ensures that a HEC performing a safe-
foreign call only blocks the Haskell thread (and the task)
making the call but not the other threads running on the
HEC’s scheduler. However, it would be unwise to switch the
thread (and the task) on every foreign call as most invoca-
tions are expected to return in a timely fashion. In this sec-
tion, we will discuss the interaction of safe-foreign function
calls and the ULS. In particular, we restrict the discussion to
outcalls — calls made from Haskell to C.

Our decision to preserve the task model in the RTS allows
us to delegate much of the work involved in safe foreign call
to the RTS. We only need to deal with the ULS interaction,
and not the creation and coordination of tasks. The semantics
of foreign call handling is presented in Figure 12. Rule
OCBLOCK illustrates that the HEC performing the foreign
call moves into the Outcall state, where it is no longer
runnable. In the fast path (rule OCRETFAST), the foreign
call returns immediately with the result M , and the HEC
resumes execution with the result plugged into the context.

In the slow path, the RTS may decide to pay the cost of
task switching and resume the scheduler (rule OCSTEAL).
The scheduler is resumed using the dequeue upcall. Once the
foreign call eventually returns, the SCont s blocked on the
foreign call can be resumed. Since we have already resumed
the scheduler, the correct behaviour is to prepare the SCont

10 2014/3/20

x, y 2 V ariable r, s, 2 Name

Md ::= return M | M >>= N
Ex ::= throw M | catch M N | catchSTM M N
Stm ::= newTVar M | readTVar r | writeTVar r M

| atomically M | retry
Sc ::= newSCont M | switch M | runOnIdleHEC s
Sls ::= getAux s | setAux s M
Act ::= dequeueAct s | enqueueAct s

| setDequeueAct M | setEnqueueAct M

Term
M,N ::= r | x | �.x �> M | M N | . . .

| Md | Ex | Stm | Sc | Sls | Act

Program state P ::= S;⇥
HEC soup S ::= ; | H k S

HEC H ::= hs,M,Di | hs,M,DiSleeping
| hs,M,DiOutcall | Idle

Heap ⇥ ::= r 7! M � s 7! (M,D)
SLS Store D ::= (M,N, r)

IO Context E ::= • | E >>= M | catch E M
STM Context P ::= • | P >>= M

Figure 5. Syntax of terms, states, contexts, and heaps

Initial HEC Soup S = hs,M,Di k Idle1 k . . . k IdleN�1

where M is the main computation, and all other HECs are
idle. We represent the stack local state D as a tuple with
two terms and a name (M,N, r). Here, M , N , and r are
the dequeue activation, enqueue activation, and a TVar rep-
resenting the auxiliary storage of the current SCont on this
HEC. For perspicuity, we define accessor functions as shown
below.

deq(M, ,) = M enq(,M,) = M aux(, , r) = r

Since the semantics of primitives that read and write
from SCont-local states (the ones under the terms Sls and
Act in Figure 5) is straight-forward, and do not deter the
understanding of the rest of the system, for want of space,
we discuss them in the Appendix.

The heap ⇥ is a disjoint finite map of:

• (r 7! M), maps the identifier r of a transactional vari-
able, or TVar, to its value.

• (s 7! (M,D)), maps the identifier s of an SCont to its
current state.

In a program state (S;⇥), an SCont with identifier s ap-
pears either as the running SCont in a HEC hs,M,Dit 2 S,
or as a binding s 7! (M,D) in the heap ⇥, but never in
both. The distinction has direct operational significance: an
SCont running in a HEC has part of its state loaded into ma-
chine registers, whereas one in the heap is entirely passive.
In both cases, however, the term M has type IO(), modelling
the fact that concurrent Haskell threads can perform I/O.

Top-level transitions S;⇥
a

==) S0;⇥0

H;⇥
a

==) H0;⇥0

H k S;⇥
a

==) H0 k S;⇥0
(ONEHEC)

HEC transitions H;⇥ =) H0;⇥0

M ! N

hs,E[M], Di;⇥ =) hs,E[N], Di;⇥0 (PURESTEP)

Purely functional transitions M ! N

return N >>= M ! M N (BIND)
throw N >>= M ! throw N (THROW)

retry >>= M ! retry (RETRY)
catch (return M) N ! return M (IOCATCH)
catch (throw M) N ! N M (IOCATCHEXN)

Plus the usual rules for call-by-need �-calculus, in small-step fashion

Figure 6. Operational semantics for basic transitions

The number of HECs remains constant, and HEC runs
one, and only one SCont. The business of multiplexing mul-
tiple SConts onto a single HEC is what the scheduler is for,
and is organised by Haskell code using the primitives de-
scribed in this section.

5.2 Basic Transitions
Some basic transitions are presented in Figure 6. The pro-
gram makes a transition from one state to another through
the top-level program small-step transition relation: S;⇥ a

==)
S0;⇥0. This says that the program makes a transition from
S;⇥ to S0;⇥0, possibly interacting with the underlying RTS
through action a. We return to these RTS interactions in
Section 6, and we omit a altogether if there is no interaction.

Rule OneHEC says that if one HEC H can take a step
with the single-HEC transition relation, then the whole ma-
chine can take a step. As usual, we assume that the soup
S is permuted to bring a runnable HEC to the right-hand
end of the soup, so that OneHEC can fire. Similarly, Rule
PureStep enables one of the HECs to perform a purely func-
tional transition under the evaluation context E (defined in
Figure 5). There is no action a on the arrow because this step
does not interact with the RTS. Notice that PureStep transi-
tion is only possible if the HEC is in running state (with no
subscript). The purely functional transitions M ! N in-
clude �-reduction, arithmetic expressions, case expressions,
monadic operations return, bind, throw, catch, and so on
according to their standard definitions. Bind operation on
the transactional memory primitive retry simply reduces to
retry (Figure 6). These primitives represent blocking actions
under transactional memory and will be dealt with in Sec-
tion 6.2.

7 2014/3/20

Concurrency Substrate Upcalls from the RTS

E[M]	
 tick IO E[yield	
 >>	
 M]	

atomically
STM E[atomically(P[M])]	
 tick

Suspend transaction
and switch	

Switch
STM E[switch(P[M])]	
 tick Disable Interrupts!	

GC

Future directions

RTS - C

Haskell

Concurrency
Substrate

User-level
scheduler

GC GC
Substrate

Future directions

RTS - C

Haskell

Concurrency
Substrate

User-level
scheduler

User-level
(concurrent) GC?

GC GC
Substrate

Future directions

RTS - C

Haskell

Concurrency
Substrate

User-level
scheduler

User-level
(concurrent) GC?

GC code itself can
invoke a GC

GC GC
Substrate

Future directions

RTS - C

Haskell

Concurrency
Substrate

User-level
scheduler

User-level
(concurrent) GC?

GC code itself can
invoke a GC

•  Verifying the functional correctness of schedulers

–  Correct Scheduler ⇒ Each thread runs as if given its own processor
and register set

–  Scheduler access under STM ⇒ Treat scheduler as sequential process

GC GC
Substrate

Future directions

RTS - C

Haskell

Concurrency
Substrate

User-level
scheduler

User-level
(concurrent) GC?

GC code itself can
invoke a GC

•  Verifying the functional correctness of schedulers

–  Correct Scheduler ⇒ Each thread runs as if given its own processor
and register set

–  Scheduler access under STM ⇒ Treat scheduler as sequential process

•  FP abstractions for eventually consistent systems

–  Operations on ECDTs described as pure functions over axiomatic
executions

–  A relational specification language for specifying consistency assertions
over axiomatic executions

Conclusion

•  Abstractions introduce
indirection resulting in
overheads
–  Rx-CML slower than

explicit async under
contention

–  Conc. Subs: Scheduler
allocations increase GC
overheads

•  Functional programming
abstractions simplify
concurrent programming
–  Rx-CML: Synchronous

communication over geo-
distributed systems

–  Concurrency Substrate:
Scheduler activation + STM
for writing schedulers

