
Multicore OCaml GC
KC Sivaramakrishnan, Stephen Dolan

OCaml Labs
University of
Cambridge

Multicore OCaml

• Adds native support for concurrency and parallelism in OCaml

Multicore OCaml

• Adds native support for concurrency and parallelism in OCaml

• Fibers for concurrency, Domains for parallelism

✦ M fibers over N domains

✦ M >>> N

Multicore OCaml

• Adds native support for concurrency and parallelism in OCaml

• Fibers for concurrency, Domains for parallelism

✦ M fibers over N domains

✦ M >>> N

• This talk

✦ Overview of multicore GC with a few deep dives.

Multicore OCaml

• Adds native support for concurrency and parallelism in OCaml

• Fibers for concurrency, Domains for parallelism

✦ M fibers over N domains

✦ M >>> N

• This talk

✦ Overview of multicore GC with a few deep dives.

Multicore OCaml

Outline
• Difficult to appreciate GC choices in isolation

• Begin with a GC for a sequential purely functional language

✦ Gradually add mutations, parallelism and concurrency

B

Purely functional

stackregisters heap

A

C

D

E

B

Purely functional

• Stop-the-world mark and sweep

stackregisters heap

A

C

D

E

B

Purely functional

• Stop-the-world mark and sweep

• Tri-color marking

✦ States: White (Unmarked), Grey (Marking), Black (Marked)

stackregisters heap

A

C

D

E

B

Purely functional

• Stop-the-world mark and sweep

• Tri-color marking

✦ States: White (Unmarked), Grey (Marking), Black (Marked)

• White —> Grey (mark stack) —> Black

stackregisters heap

A

C

B

D

E

B

A

mark stack

B

Purely functional

• Stop-the-world mark and sweep

• Tri-color marking

✦ States: White (Unmarked), Grey (Marking), Black (Marked)

• White —> Grey (mark stack) —> Black

• Mark stack is empty => done

stackregisters heap

A

C

B

D

E

A

mark stack

B

D

B

Purely functional

• Stop-the-world mark and sweep

• Tri-color marking

✦ States: White (Unmarked), Grey (Marking), Black (Marked)

• White —> Grey (mark stack) —> Black

• Mark stack is empty => done

• Tri-color invariant: No black object points to a white object

stackregisters heap

A

C

B

D

E

A

mark stack

B

D

B

Purely functional

stackregisters heap

A

C

B

D

E

A

mark stack

B

D

B

Purely functional

• Pros

✦ Simple

✦ Can perform the GC incrementally

✤ …|—mutator—|—mark—|—mutator—|—mark—|—mutator—|—sweep—|…

stackregisters heap

A

C

B

D

E

A

mark stack

B

D

B

Purely functional

• Pros

✦ Simple

✦ Can perform the GC incrementally

✤ …|—mutator—|—mark—|—mutator—|—mark—|—mutator—|—sweep—|…

• Cons

✦ Need to maintain free-list of objects => allocations overheads + fragmentation

stackregisters heap

A

C

B

D

E

A

mark stack

B

D

Generational GC

Generational GC
• Generational Hypothesis

✦ Young objects are much more likely to die than old objects

Generational GC
• Generational Hypothesis

✦ Young objects are much more likely to die than old objects

minor heap

major heap

stackregisters

Generational GC
• Generational Hypothesis

✦ Young objects are much more likely to die than old objects

minor heap

major heap

stackregisters
frontier

Generational GC
• Generational Hypothesis

✦ Young objects are much more likely to die than old objects

minor heap

major heap

stackregisters
frontier

• Minor heap collected by copying collection

✦ Survivors promoted to major heap

Generational GC
• Generational Hypothesis

✦ Young objects are much more likely to die than old objects

minor heap

major heap

stackregisters
frontier

• Minor heap collected by copying collection

✦ Survivors promoted to major heap

• Roots are registers and stack

✦ purely functional => no pointers from major to minor

Mutations — Minor GC
• Old objects might point to young objects

minor heap

major heap

Mutations — Minor GC
• Old objects might point to young objects

• Must know those pointers for minor GC

✦ (Naively) scan the major GC for such pointers

minor heap

major heap

Mutations — Minor GC
• Old objects might point to young objects

• Must know those pointers for minor GC

✦ (Naively) scan the major GC for such pointers

• Intercept mutations with write barrier
(* Before r := x *)
let write_barrier (r, x) =
 if is_major r && is_minor x then
 remembered_set.add r

minor heap

major heap

Mutations — Minor GC
• Old objects might point to young objects

• Must know those pointers for minor GC

✦ (Naively) scan the major GC for such pointers

• Intercept mutations with write barrier
(* Before r := x *)
let write_barrier (r, x) =
 if is_major r && is_minor x then
 remembered_set.add r

• Remembered set

✦ Set of major heap addresses that point to minor heap

✦ Used as root for minor collection

✦ Cleared after minor collection.

minor heap

major heap

Mutations — Major GC
A

B

C

Mutations — Major GC
A

B

C

Mutations — Major GC
A

B

C

Mutations — Major GC
A

B

CA

Mutations — Major GC
A CA

Mutations — Major GC
• Mutations are problematic if both conditions hold

1. Exists Black —> White

2. All Grey —> White* —> White paths are deleted

A CA

Mutations — Major GC
• Mutations are problematic if both conditions hold

1. Exists Black —> White

2. All Grey —> White* —> White paths are deleted

A CA

• Insertion/Dijkstra/Incremental barrier prevents 1

B

Mutations — Major GC
• Mutations are problematic if both conditions hold

1. Exists Black —> White

2. All Grey —> White* —> White paths are deleted

A CA

• Insertion/Dijkstra/Incremental barrier prevents 1A C

B

Mutations — Major GC
• Mutations are problematic if both conditions hold

1. Exists Black —> White

2. All Grey —> White* —> White paths are deleted

A CA

• Insertion/Dijkstra/Incremental barrier prevents 1A C

BB

Mutations — Major GC
• Mutations are problematic if both conditions hold

1. Exists Black —> White

2. All Grey —> White* —> White paths are deleted

A CA

• Insertion/Dijkstra/Incremental barrier prevents 1A C

BB

Mutations — Major GC
• Mutations are problematic if both conditions hold

1. Exists Black —> White

2. All Grey —> White* —> White paths are deleted

A CA

• Insertion/Dijkstra/Incremental barrier prevents 1A C

• Deletion/Yuasa/snapshot-at-beginning prevents 2

BB

Mutations — Major GC
• Mutations are problematic if both conditions hold

1. Exists Black —> White

2. All Grey —> White* —> White paths are deleted

A CA

• Insertion/Dijkstra/Incremental barrier prevents 1A C

B

CA
• Deletion/Yuasa/snapshot-at-beginning prevents 2

BB

Mutations — Major GC
• Mutations are problematic if both conditions hold

1. Exists Black —> White

2. All Grey —> White* —> White paths are deleted

A CA

• Insertion/Dijkstra/Incremental barrier prevents 1A C

B

CA
• Deletion/Yuasa/snapshot-at-beginning prevents 2

BB

Mutations — Major GC
• Mutations are problematic if both conditions hold

1. Exists Black —> White

2. All Grey —> White* —> White paths are deleted

A CA

• Insertion/Dijkstra/Incremental barrier prevents 1A C

B

CA

B

• Deletion/Yuasa/snapshot-at-beginning prevents 2

BB

Mutations — Major GC
• Mutations are problematic if both conditions hold

1. Exists Black —> White

2. All Grey —> White* —> White paths are deleted

A CA

• Insertion/Dijkstra/Incremental barrier prevents 1A C

B

CA

B

• Deletion/Yuasa/snapshot-at-beginning prevents 2
(* Before r := x *)
let write_barrier (r, x) =
 if is_major r && is_minor x then
 remembered_set.add r
 else if is_major r && is_major x then
 mark(!r)

Parallelism — Minor GC
• Domain.spawn : (unit -> unit) -> unit

Parallelism — Minor GC
• Domain.spawn : (unit -> unit) -> unit

• Collect each domain’s young garbage independently?

Parallelism — Minor GC
• Domain.spawn : (unit -> unit) -> unit

• Collect each domain’s young garbage independently?
major heap

domain n

minor heap(s)

domain 0 …

Parallelism — Minor GC
• Domain.spawn : (unit -> unit) -> unit

• Collect each domain’s young garbage independently?

• Invariant: Minor heap objects are only accessed by owning domain

major heap

domain n

minor heap(s)

domain 0 …

Parallelism — Minor GC
• Domain.spawn : (unit -> unit) -> unit

• Collect each domain’s young garbage independently?

• Invariant: Minor heap objects are only accessed by owning domain

• Doligez-Leroy POPL’93

✦ No pointers between minor heaps

✦ No pointers from major to minor heaps

major heap

domain n

minor heap(s)

domain 0 …

Parallelism — Minor GC
• Domain.spawn : (unit -> unit) -> unit

• Collect each domain’s young garbage independently?

• Invariant: Minor heap objects are only accessed by owning domain

• Doligez-Leroy POPL’93

✦ No pointers between minor heaps

✦ No pointers from major to minor heaps

• Before r := x, if is_major(r) && is_minor(x), then promote(x).

major heap

domain n

minor heap(s)

domain 0 …

Parallelism — Minor GC
• Domain.spawn : (unit -> unit) -> unit

• Collect each domain’s young garbage independently?

• Invariant: Minor heap objects are only accessed by owning domain

• Doligez-Leroy POPL’93

✦ No pointers between minor heaps

✦ No pointers from major to minor heaps

• Before r := x, if is_major(r) && is_minor(x), then promote(x).

• Too much promotion. Ex: work-stealing queue

major heap

domain n

minor heap(s)

domain 0 …

Parallelism — Minor GC
major heap

domain n

minor heap(s)

domain 0 …

Parallelism — Minor GC
major heap

domain n

minor heap(s)

• Weaker invariant

✦ No pointers between minor heaps

✦ Objects in foreign minor heap are not accessed directly

domain 0 …

Parallelism — Minor GC
major heap

domain n

minor heap(s)

• Weaker invariant

✦ No pointers between minor heaps

✦ Objects in foreign minor heap are not accessed directly

• Read barrier. If the value loaded is

✦ integers, object in shared heap or own minor heap => continue

✦ object in foreign minor heap => Read fault (Interrupt + promote)

domain 0 …

Efficient read barrier check

Efficient read barrier check
• Given x, is x an integer1 or in shared heap2 or own minor heap3

Efficient read barrier check
• Given x, is x an integer1 or in shared heap2 or own minor heap3

• Careful VM mapping + bit-twiddling

Efficient read barrier check
• Given x, is x an integer1 or in shared heap2 or own minor heap3

• Careful VM mapping + bit-twiddling

• Example: 16-bit address space, 0xPQRS

✦ Minor area 0x4200 — 0x42ff
✦ Domain 0 : 0x4220 — 0x422f
✦ Domain 1 : 0x4250 — 0x425f
✦ Domain 2 : 0x42a0 — 0x42af 0x4200 0x42ff

0 1 2

0x4220 0x422f

0x4250 0x425f

0x42a0 0x42af

Efficient read barrier check
• Given x, is x an integer1 or in shared heap2 or own minor heap3

• Careful VM mapping + bit-twiddling

• Example: 16-bit address space, 0xPQRS

✦ Minor area 0x4200 — 0x42ff
✦ Domain 0 : 0x4220 — 0x422f
✦ Domain 1 : 0x4250 — 0x425f
✦ Domain 2 : 0x42a0 — 0x42af

• Integer low_bit(S) = 0x1, Minor PQ = 0x42, R determines domain

0x4200 0x42ff

0 1 2

0x4220 0x422f

0x4250 0x425f

0x42a0 0x42af

Efficient read barrier check
• Given x, is x an integer1 or in shared heap2 or own minor heap3

• Careful VM mapping + bit-twiddling

• Example: 16-bit address space, 0xPQRS

✦ Minor area 0x4200 — 0x42ff
✦ Domain 0 : 0x4220 — 0x422f
✦ Domain 1 : 0x4250 — 0x425f
✦ Domain 2 : 0x42a0 — 0x42af

• Integer low_bit(S) = 0x1, Minor PQ = 0x42, R determines domain

• Compare with y, where y lies within domain => allocation pointer!

✦ On amd64, allocation pointer is in r15 register

0x4200 0x42ff

0 1 2

0x4220 0x422f

0x4250 0x425f

0x42a0 0x42af

Efficient read barrier check
%rax holds x (value of interest)
xor %r15, %rax
sub 0x0010, %rax
test 0xff01, %rax
Any bit set => ZF not set => not foreign minor

Efficient read barrier check
%rax holds x (value of interest)
xor %r15, %rax
sub 0x0010, %rax
test 0xff01, %rax
Any bit set => ZF not set => not foreign minor

low_bit(%rax) = 1
xor %r15, %rax
low_bit(%rax) = 1
sub 0x0010, %rax
low_bit(%rax) = 1
test 0xff01, %rax
ZF not set

Integer

Efficient read barrier check
%rax holds x (value of interest)
xor %r15, %rax
sub 0x0010, %rax
test 0xff01, %rax
Any bit set => ZF not set => not foreign minor

low_bit(%rax) = 1
xor %r15, %rax
low_bit(%rax) = 1
sub 0x0010, %rax
low_bit(%rax) = 1
test 0xff01, %rax
ZF not set

PQ(%r15) != PQ(%rax)
xor %r15, %rax
PQ(%rax) is non-zero
sub 0x0010, %rax
PQ(%rax) is non-zero
test 0xff01, %rax
ZF not set

Integer Shared heap

Efficient read barrier check
%rax holds x (value of interest)
xor %r15, %rax
sub 0x0010, %rax
test 0xff01, %rax
Any bit set => ZF not set => not foreign minor

Efficient read barrier check
%rax holds x (value of interest)
xor %r15, %rax
sub 0x0010, %rax
test 0xff01, %rax
Any bit set => ZF not set => not foreign minor

PQR(%r15) = PQR(%rax)
xor %r15, %rax
PQR(%rax) is zero
sub 0x0010, %rax
PQ(%rax) is non-zero
test 0xff01, %rax
ZF not set

Own minor heap

Efficient read barrier check
%rax holds x (value of interest)
xor %r15, %rax
sub 0x0010, %rax
test 0xff01, %rax
Any bit set => ZF not set => not foreign minor

PQR(%r15) = PQR(%rax)
xor %r15, %rax
PQR(%rax) is zero
sub 0x0010, %rax
PQ(%rax) is non-zero
test 0xff01, %rax
ZF not set

Own minor heap

PQ(%r15) = PQ(%rax)
S(%r15) = S(%rax) = 0
R(%r15) != R(%rax)
xor %r15, %rax
R(%rax) is non-zero, rest 0
sub 0x0010, %rax
rest 0
test 0xff01, %rax
ZF set

Foreign minor heap

Promotion

• How do you promote objects to the major heap on read fault?

Promotion

• How do you promote objects to the major heap on read fault?

• Several alternatives

1. Copy the object to major heap.

✤ Mutable objects, Abstract_tag, …

2. Move the object closure + minor GC.

✤ False promotions, latency, …

3. Move the object closure + scan the minor GC

✤ Need to examine all objects on minor GC

Promotion

• How do you promote objects to the major heap on read fault?

• Several alternatives

1. Copy the object to major heap.

✤ Mutable objects, Abstract_tag, …

2. Move the object closure + minor GC.

✤ False promotions, latency, …

3. Move the object closure + scan the minor GC

✤ Need to examine all objects on minor GC

• Hypothesis: most objects promoted on read faults are young.

✦ 95% promoted objects among the youngest 5%

Promotion

• How do you promote objects to the major heap on read fault?

• Several alternatives

1. Copy the object to major heap.

✤ Mutable objects, Abstract_tag, …

2. Move the object closure + minor GC.

✤ False promotions, latency, …

3. Move the object closure + scan the minor GC

✤ Need to examine all objects on minor GC

• Hypothesis: most objects promoted on read faults are young.

✦ 95% promoted objects among the youngest 5%

• Combine 2 & 3

Promotion

Promotion

• If promoted object among youngest x%,

✦ move + fix pointers to promoted object
❖ Scan roots = registers + current stack + remembered set

❖ Younger minor objects

❖ Older minor objects referring to younger objects (mutations!)

Promotion

• If promoted object among youngest x%,

✦ move + fix pointers to promoted object
❖ Scan roots = registers + current stack + remembered set

❖ Younger minor objects

❖ Older minor objects referring to younger objects (mutations!)

Promotion

(* r := x *)
let write_barrier (r, x) =
 if is_major r && is_minor x then
 remembered_set.add r
 else if is_major r && is_major x then
 mark(!r)
 else if is_minor r && is_minor x && addr r > addr x then
 promotion_set.add r

• If promoted object among youngest x%,

✦ move + fix pointers to promoted object
❖ Scan roots = registers + current stack + remembered set

❖ Younger minor objects

❖ Older minor objects referring to younger objects (mutations!)

• Otherwise, move + minor GC

Promotion

(* r := x *)
let write_barrier (r, x) =
 if is_major r && is_minor x then
 remembered_set.add r
 else if is_major r && is_major x then
 mark(!r)
 else if is_minor r && is_minor x && addr r > addr x then
 promotion_set.add r

Parallelism — Major GC

Parallelism — Major GC
• OCaml’s GC is incremental, needs to be concurrent w/ parallelism

Parallelism — Major GC
• OCaml’s GC is incremental, needs to be concurrent w/ parallelism

• Design based on VCGC from Inferno project (ISMM’98)

Parallelism — Major GC
• OCaml’s GC is incremental, needs to be concurrent w/ parallelism

• Design based on VCGC from Inferno project (ISMM’98)

✦ Allows mutator, marker, sweeper threads to concurrently

Parallelism — Major GC
• OCaml’s GC is incremental, needs to be concurrent w/ parallelism

• Design based on VCGC from Inferno project (ISMM’98)

✦ Allows mutator, marker, sweeper threads to concurrently

• Multicore OCaml is MCGC

Parallelism — Major GC
• OCaml’s GC is incremental, needs to be concurrent w/ parallelism

• Design based on VCGC from Inferno project (ISMM’98)

✦ Allows mutator, marker, sweeper threads to concurrently

• Multicore OCaml is MCGC

✦ States Garbage FreeUnmarked Marked

Parallelism — Major GC
• OCaml’s GC is incremental, needs to be concurrent w/ parallelism

• Design based on VCGC from Inferno project (ISMM’98)

✦ Allows mutator, marker, sweeper threads to concurrently

• Multicore OCaml is MCGC

✦ States

✦ Domains alternate between mutator and gc thread

Garbage FreeUnmarked Marked

Parallelism — Major GC
• OCaml’s GC is incremental, needs to be concurrent w/ parallelism

• Design based on VCGC from Inferno project (ISMM’98)

✦ Allows mutator, marker, sweeper threads to concurrently

• Multicore OCaml is MCGC

✦ States

✦ Domains alternate between mutator and gc thread

✦ GC thread Garbage FreeUnmarked Marked

Garbage FreeUnmarked Marked

Parallelism — Major GC
• OCaml’s GC is incremental, needs to be concurrent w/ parallelism

• Design based on VCGC from Inferno project (ISMM’98)

✦ Allows mutator, marker, sweeper threads to concurrently

• Multicore OCaml is MCGC

✦ States

✦ Domains alternate between mutator and gc thread

✦ GC thread

✦ Marking is racy but idempotent

Garbage FreeUnmarked Marked

Garbage FreeUnmarked Marked

Parallelism — Major GC
• OCaml’s GC is incremental, needs to be concurrent w/ parallelism

• Design based on VCGC from Inferno project (ISMM’98)

✦ Allows mutator, marker, sweeper threads to concurrently

• Multicore OCaml is MCGC

✦ States

✦ Domains alternate between mutator and gc thread

✦ GC thread

✦ Marking is racy but idempotent

• Stop-the-world

Garbage FreeUnmarked Marked

Garbage FreeUnmarked Marked

Parallelism — Major GC
• OCaml’s GC is incremental, needs to be concurrent w/ parallelism

• Design based on VCGC from Inferno project (ISMM’98)

✦ Allows mutator, marker, sweeper threads to concurrently

• Multicore OCaml is MCGC

✦ States

✦ Domains alternate between mutator and gc thread

✦ GC thread

✦ Marking is racy but idempotent

• Stop-the-world

Garbage FreeUnmarked Marked

Garbage FreeUnmarked Marked

Garbage FreeUnmarked Marked

Garbage FreeUnmarked Marked

• Fibers: vm-threads, 1-shot delimited continuations

✦ stack segments on heap

Concurrency — Minor GC

• Fibers: vm-threads, 1-shot delimited continuations

✦ stack segments on heap

• stack operations are not protected by write barrier!

Concurrency — Minor GC

• Fibers: vm-threads, 1-shot delimited continuations

✦ stack segments on heap

• stack operations are not protected by write barrier!

Concurrency — Minor GC

minor heap (domain x)

major heapcurrent stack

registers

y

x
remembered

fiber set
remembered

set

• Fibers: vm-threads, 1-shot delimited continuations

✦ stack segments on heap

• stack operations are not protected by write barrier!

Concurrency — Minor GC

minor heap (domain x)

major heapcurrent stack

registers

y

x
remembered

fiber set
remembered

set

• Remembered fiber set

✦ Set of fibers in major heap that were ran in the current cycle of domain x

✦ Cleared after minor GC

• Fibers transitively reachable are not promoted automatically

✦ Avoids false promotions

Concurrency — Promotions

minor heap (domain 0)

major heap

r

x f z

Concurrency — Promotions

minor heap (domain 0)

major heap

r x

f remembered
set

z

• Fibers transitively reachable are not promoted automatically

✦ Avoids false promotions

Concurrency — Promotions

minor heap (domain 0)

major heap

r x

f remembered
set

z

• Fibers transitively reachable are not promoted automatically

✦ Avoids false promotions

✦ Promote on continuing foreign fiber

Concurrency — Promotions

minor heap (domain 0)

major heap

r x

f remembered
set

continue f v
@

domain 1

z

• Fibers transitively reachable are not promoted automatically

✦ Avoids false promotions

✦ Promote on continuing foreign fiber

Concurrency — Promotions

minor heap (domain 0)

major heap

r x

f

remembered
set

continue f v
@

domain 1

z

Concurrency — Promotions

• Recall, promotion fast path = move + scan and forward

✦ Do not scan remembered fiber set

✤ Context switches <<< promotions

Concurrency — Promotions

• Recall, promotion fast path = move + scan and forward

✦ Do not scan remembered fiber set

✤ Context switches <<< promotions

• Scan lazily before context switch

✦ Only once per fiber per promotion

✦ In practice, scans a fiber per a batch of promotions

Concurrency — Promotions

Concurrency — Major GC

• (Multicore) OCaml uses deletion barrier

Concurrency — Major GC

• (Multicore) OCaml uses deletion barrier

• Fiber stack pop is a deletion

✦ Before switching to unmarked fiber, complete marking fiber

Concurrency — Major GC

• (Multicore) OCaml uses deletion barrier

• Fiber stack pop is a deletion

✦ Before switching to unmarked fiber, complete marking fiber

• Marking is racy but idempotent

✦ Race between mutator (context switch) and gc (marking) unsafe

Concurrency — Major GC

• (Multicore) OCaml uses deletion barrier

• Fiber stack pop is a deletion

✦ Before switching to unmarked fiber, complete marking fiber

• Marking is racy but idempotent

✦ Race between mutator (context switch) and gc (marking) unsafe

Concurrency — Major GC

Unmarked MarkedMarkingFibers

Summary
• Multicore OCaml GC

✦ Optimize for latency

✦ Independent minor GCs + mostly-concurrent mark-and-sweep

Mutations Concurrency Parallelism

Minor GC rem set rem fiber set local heaps

Promotions o2y rem set lazy
scanning read faults

Major GC deletion
barrier

mark &
switch MCGC

Questions?

Backup Slides

Purely functional GC

stackregisters heap

Purely functional GC

stackregisters heap

• Stop-the-world mark and sweep

Purely functional GC

stackregisters heap0x0000 0xffff

• Stop-the-world mark and sweep

Purely functional GC

stackregisters heap0x0000 0xffff
frontier

• Stop-the-world mark and sweep

Purely functional GC

stackregisters heap0x0000 0xffff
frontier

• Stop-the-world mark and sweep

• 2-pass mark compact

✦ Fast allocations by bumping the frontier

Purely functional GC

stackregisters heap0x0000 0xffff
frontier

• Stop-the-world mark and sweep

• 2-pass mark compact

✦ Fast allocations by bumping the frontier

• All heap pointers go right

Purely functional GC

stackregisters heap0x0000 0xffff
frontier

• Mark roots

Purely functional GC

stackregisters heap0x0000 0xffff
frontier

• Mark roots

• Scan from frontier to start. For each marked object,

• Mark reachable object & reverse pointers

Purely functional GC

stackregisters 0x0000 0xffff
frontier

• Mark roots

• Scan from frontier to start. For each marked object,

• Mark reachable object & reverse pointers

• Scan from start to frontier. For each marked object,

• Copy to next available free space & reverse pointers pointing left

Purely functional GC

stackregisters 0x0000 0xffff
frontier

Purely functional GC

stackregisters 0x0000 0xffff
frontier

• Pros

✦ Simple & fast allocation

✦ Efficient use of space

Purely functional GC

stackregisters 0x0000 0xffff
frontier

• Pros

✦ Simple & fast allocation

✦ Efficient use of space

• Cons

✦ Need to touch all the objects on the heap

✦ Compaction as default is leads to long pause times

