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Outline
• Difficult to appreciate GC choices in isolation

• Begin with a GC for a sequential purely functional language

✦ Gradually add mutations, parallelism and concurrency
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Purely functional

• Stop-the-world mark and sweep

• Tri-color marking

✦ States: White (Unmarked), Grey (Marking), Black (Marked) 

• White —> Grey (mark stack) —> Black

• Mark stack is empty => done

• Tri-color invariant: No black object points to a white object
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Purely functional

• Pros

✦ Simple

✦ Can perform the GC incrementally

✤ …|—mutator—|—mark—|—mutator—|—mark—|—mutator—|—sweep—|…

• Cons

✦ Need to maintain free-list of objects => allocations overheads + fragmentation
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Generational GC
• Generational Hypothesis

✦ Young objects are much more likely to die than old objects

minor heap

major heap

stackregisters
frontier

• Minor heap collected by copying collection

✦ Survivors promoted to major heap

• Roots are registers and stack

✦ purely functional => no pointers from major to minor
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Mutations — Minor GC
• Old objects might point to young objects

• Must know those pointers for minor GC

✦ (Naively) scan the major GC for such pointers

• Intercept mutations with write barrier
(* Before r := x *)
let write_barrier (r, x) =
  if is_major r && is_minor x then
    remembered_set.add r

• Remembered set

✦ Set of major heap addresses that point to minor heap

✦ Used as root for minor collection

✦ Cleared after minor collection.

minor heap

major heap
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Mutations — Major GC
• Mutations are problematic if both conditions hold

1. Exists Black —> White

2. All Grey —> White* —> White paths are deleted

A CA

• Insertion/Dijkstra/Incremental barrier prevents 1A C

B

CA

B

• Deletion/Yuasa/snapshot-at-beginning prevents 2
(* Before r := x *)
let write_barrier (r, x) =
  if is_major r && is_minor x then
    remembered_set.add r
  else if is_major r && is_major x then
    mark(!r)
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Parallelism — Minor GC
• Domain.spawn : (unit -> unit) -> unit

• Collect each domain’s young garbage independently?

• Invariant: Minor heap objects are only accessed by owning domain

• Doligez-Leroy POPL’93

✦ No pointers between minor heaps

✦ No pointers from major to minor heaps

• Before r := x, if is_major(r) && is_minor(x), then promote(x).

• Too much promotion. Ex: work-stealing queue
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Parallelism — Minor GC
major heap

domain n

minor heap(s)

• Weaker invariant

✦ No pointers between minor heaps

✦ Objects in foreign minor heap are not accessed directly

• Read barrier. If the value loaded is 

✦ integers, object in shared heap or own minor heap => continue

✦ object in foreign minor heap => Read fault (Interrupt + promote)

domain 0 …
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Efficient read barrier check
• Given x, is x an integer1 or in shared heap2 or own minor heap3

• Careful VM mapping + bit-twiddling

• Example: 16-bit address space, 0xPQRS

✦ Minor area 0x4200 — 0x42ff
✦ Domain 0 : 0x4220 — 0x422f
✦ Domain 1 : 0x4250 — 0x425f
✦ Domain 2 : 0x42a0 — 0x42af

• Integer low_bit(S) = 0x1, Minor PQ = 0x42, R determines domain

• Compare with y, where y lies within domain => allocation pointer!

✦ On amd64, allocation pointer is in r15 register

0x4200 0x42ff

0 1 2

0x4220 0x422f

0x4250 0x425f

0x42a0 0x42af
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Efficient read barrier check
# %rax holds x (value of interest)
xor %r15, %rax
sub 0x0010, %rax
test 0xff01, %rax
# Any bit set => ZF not set => not foreign minor

# PQR(%r15) = PQR(%rax)
xor %r15, %rax
# PQR(%rax) is zero
sub 0x0010, %rax
# PQ(%rax) is non-zero
test 0xff01, %rax
# ZF not set

Own minor heap

# PQ(%r15) = PQ(%rax)
# S(%r15) = S(%rax) = 0
# R(%r15) != R(%rax)
xor %r15, %rax
# R(%rax) is non-zero, rest 0
sub 0x0010, %rax
# rest 0
test 0xff01, %rax
# ZF set

Foreign minor heap
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• How do you promote objects to the major heap on read fault?

• Several alternatives

1. Copy the object to major heap. 

✤ Mutable objects,  Abstract_tag, …

2. Move the object closure + minor GC.

✤ False promotions, latency, …

3. Move the object closure + scan the minor GC

✤ Need to examine all objects on minor GC

• Hypothesis: most objects promoted on read faults are young.

✦ 95% promoted objects among the youngest 5%

• Combine 2 & 3

Promotion
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❖ Scan roots = registers + current stack + remembered set
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• If promoted object among youngest x%, 

✦ move + fix pointers to promoted object
❖ Scan roots = registers + current stack + remembered set

❖ Younger minor objects

❖ Older minor objects referring to younger objects (mutations!)

• Otherwise, move + minor GC

Promotion

(* r := x *)
let write_barrier (r, x) =
  if is_major r && is_minor x then
    remembered_set.add r
  else if is_major r && is_major x then
    mark(!r)
  else if is_minor r && is_minor x && addr r > addr x then
    promotion_set.add r
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• Fibers: vm-threads, 1-shot delimited continuations

✦ stack segments on heap

• stack operations are not protected by write barrier!

Concurrency — Minor GC

minor heap (domain x)

major heapcurrent stack

registers

y

x
remembered 

fiber set
remembered 

set

• Remembered fiber set

✦ Set of fibers in major heap that were ran in the current cycle of domain x

✦ Cleared after minor GC
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• Fibers transitively reachable are not promoted automatically

✦ Avoids false promotions

✦ Promote on continuing foreign fiber
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• Recall, promotion fast path = move + scan and forward

✦ Do not scan remembered fiber set

✤ Context switches <<< promotions

• Scan lazily before context switch

✦ Only once per fiber per promotion

✦ In practice, scans a fiber per a batch of promotions

Concurrency — Promotions
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• (Multicore) OCaml uses deletion barrier

• Fiber stack pop is a deletion

✦ Before switching to unmarked fiber, complete marking fiber

• Marking is racy but idempotent

✦ Race between mutator (context switch) and gc (marking) unsafe

Concurrency — Major GC

Unmarked MarkedMarkingFibers



Summary
• Multicore OCaml GC

✦ Optimize for latency

✦ Independent minor GCs + mostly-concurrent mark-and-sweep

Mutations Concurrency Parallelism

Minor GC rem set rem fiber set local heaps

Promotions o2y rem set lazy 
scanning read faults

Major GC deletion 
barrier

mark & 
switch MCGC
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• Stop-the-world mark and sweep

• 2-pass mark compact

✦ Fast allocations by bumping the frontier

• All heap pointers go right
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Purely functional GC

stackregisters 0x0000 0xffff
frontier

• Mark roots

• Scan from frontier to start. For each marked object, 

• Mark reachable object & reverse pointers

• Scan from start to frontier. For each marked object, 

• Copy to next available free space & reverse pointers pointing left
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Purely functional GC

stackregisters 0x0000 0xffff
frontier

• Pros

✦ Simple & fast allocation

✦ Efficient use of space

• Cons

✦ Need to touch all the objects on the heap

✦ Compaction as default is leads to long pause times


