
Multicore Support for

Tezos Blockchain

KC Sivaramakrishnan
Computer Science and Engineering

My research

Programming

Languages

• PL has central place in solving computing problems

My research

Programming

Languages

Systems

• PL has central place in solving computing problems

Concurrent

Parallel

Distributed

Operating

…

My research

Programming

Languages

Systems

• PL has central place in solving computing problems

• PL as a tool to formally reason about complex systems

✦ Develop abstractions for simplifying systems

Concurrent

Parallel

Distributed

Operating

…

My research

Programming

Languages

Systems

• PL has central place in solving computing problems

• PL as a tool to formally reason about complex systems

✦ Develop abstractions for simplifying systems

• Interests: programming language runtimes, distributed
databases, concurrency, secure systems engineering

Concurrent

Parallel

Distributed

Operating

…

Tezos Blockchain
• Public, Permission-less, Proof-of-Stake blockchain capable of

running smart contracts

Tezos Blockchain
• Public, Permission-less, Proof-of-Stake blockchain capable of

running smart contracts

• Tezos Foundation (HQ: Zug, Switzerland) promotes Tezos

Tezos Blockchain
• Public, Permission-less, Proof-of-Stake blockchain capable of

running smart contracts

• Tezos Foundation (HQ: Zug, Switzerland) promotes Tezos

• Had the biggest ICO $232 million of its time

What sets Tezos apart

What sets Tezos apart
• On-chain governance

✦ Participants vote to bring in updates on the chain

✦ Avoids Hard Fork problems — Bitcoin, Bitcoin Lite, Bitcoin Cash, Bitcoin
SV…

What sets Tezos apart
• On-chain governance

✦ Participants vote to bring in updates on the chain

✦ Avoids Hard Fork problems — Bitcoin, Bitcoin Lite, Bitcoin Cash, Bitcoin
SV…

• (Liquid) Proof-of-stake instead of Proof-of-work

✦ Proof-of-work is energy intensive — Bitcoin 129 TWH ~= Norway

What sets Tezos apart
• On-chain governance

✦ Participants vote to bring in updates on the chain

✦ Avoids Hard Fork problems — Bitcoin, Bitcoin Lite, Bitcoin Cash, Bitcoin
SV…

• (Liquid) Proof-of-stake instead of Proof-of-work

✦ Proof-of-work is energy intensive — Bitcoin 129 TWH ~= Norway

• Tezos is amenable for formal verification

✦ Michelson, low-level smart contract language is expressed as a OCaml
GADT

✤ Rules out large classes of errors by construction

✦ Many efforts around full-functional verification of Tezos smart contracts —
Mi-Cho-Coq, Albert

Performance

Transactions

per second:

Confirmation

Latency:

7 30 200 3000 40

1 hour 10 minutes Few seconds Few seconds 30 minutes

Performance

Transactions

per second:

Confirmation

Latency:

7 30 200 3000 40

1 hour 10 minutes Few seconds Few seconds 30 minutes

• Tezos Goal

✦ Increase throughput 100x to 1000x

✦ Latency of ~1 min

Performance

Transactions

per second:

Confirmation

Latency:

7 30 200 3000 40

1 hour 10 minutes Few seconds Few seconds 30 minutes

• Tezos Goal

✦ Increase throughput 100x to 1000x

✦ Latency of ~1 min

• Strategy: Exploit multicore parallelism

Tezos: Implementation Language
Recently turned 25!

Tezos: Implementation Language

The Astrée Static
Analyzer

Industry Projects

Recently turned 25!

OCaml: Langauge of choice

The Astrée Static
Analyzer

Industry Projects

No multicore support!

Recently turned 25!

Multicore OCaml

Multicore OCaml
• Adds native support for concurrency and shared-memory

parallelism to OCaml

Multicore OCaml
• Adds native support for concurrency and shared-memory

parallelism to OCaml
OCaml Labs

Multicore OCaml
• Adds native support for concurrency and shared-memory

parallelism to OCaml

• Research

✦ Concurrent and parallel garbage collector for OCaml [ICFP ’20]

✦ Novel concurrency substrate [PLDI ’21]

✦ Modular memory model [PLDI ’18]

OCaml Labs

Multicore OCaml
• Adds native support for concurrency and shared-memory

parallelism to OCaml

• Research

✦ Concurrent and parallel garbage collector for OCaml [ICFP ’20]

✦ Novel concurrency substrate [PLDI ’21]

✦ Modular memory model [PLDI ’18]

• Challenge

✦ Not just a prototype, but millions of lines of legacy code

✦ Fast and predictable performance

OCaml Labs

Multicore OCaml
• Adds native support for concurrency and shared-memory

parallelism to OCaml

• Research

✦ Concurrent and parallel garbage collector for OCaml [ICFP ’20]

✦ Novel concurrency substrate [PLDI ’21]

✦ Modular memory model [PLDI ’18]

• Challenge

✦ Not just a prototype, but millions of lines of legacy code

✦ Fast and predictable performance

funded by Tezos
Foundation!

OCaml Labs

Parallel Scalability

50x — 80x speedup on 128-core machine

Hot off the presses!

Tezos Protocol

Network
Protocol

Consensus
Protocol

Transaction
Protocol

Network Shell

Abstract

Blockchain

Concrete

Implementation

Tezos Protocol

• Network protocol — Peer discovery & publishing blocks

Network
Protocol

Consensus
Protocol

Transaction
Protocol

Network Shell

Abstract

Blockchain

Concrete

Implementation

Tezos Protocol

• Network protocol — Peer discovery & publishing blocks

• Consensus protocol — Block acceptance, miner reward
schedules

Network
Protocol

Consensus
Protocol

Transaction
Protocol

Network Shell

Abstract

Blockchain

Concrete

Implementation

Tezos Protocol

• Network protocol — Peer discovery & publishing blocks

• Consensus protocol — Block acceptance, miner reward
schedules

• Transaction protocol — Validity of transaction, blocks

Network
Protocol

Consensus
Protocol

Transaction
Protocol

Network Shell

Abstract

Blockchain

Concrete

Implementation

Tezos + Multicore OCaml

• Offload compute intensive tasks of transaction protocol (block
validation, serialisation) to spare cores

Network
Protocol

Consensus
Protocol

Transaction
Protocol

Network Shell

Abstract

Blockchain

Concrete

Implementation

Implement
using

Multicore
OCaml

Tezos + Multicore OCaml

• Offload compute intensive tasks of transaction protocol (block
validation, serialisation) to spare cores

• Block reconciliation in mempool reminiscent of GC

✦ Implement parallel GC for block reconciliation

Network
Protocol

Consensus
Protocol

Transaction
Protocol

Network Shell

Abstract

Blockchain

Concrete

Implementation

Implement
using

Multicore
OCaml

Tezos + Multicore OCaml

• Offload compute intensive tasks of transaction protocol (block
validation, serialisation) to spare cores

• Block reconciliation in mempool reminiscent of GC

✦ Implement parallel GC for block reconciliation

• Exploit deterministic parallelism in inter-contract calls

Network
Protocol

Consensus
Protocol

Transaction
Protocol

Network Shell

Abstract

Blockchain

Concrete

Implementation

Implement
using

Multicore
OCaml

Inter-contract call semantics
C1

storage = …

fun a () =

 call c2.b()

 call c3.c()

C2

storage = …

fun b () =

 call c4.d()

C3

storage = …

fun c () =

 call c4.d()

C4

storage = …

fun d () =

 //modify local storage

 return

Inter-contract call semantics
C1

storage = …

fun a () =

 call c2.b()

 call c3.c()

C2

storage = …

fun b () =

 call c4.d()

C3

storage = …

fun c () =

 call c4.d()

C4

storage = …

fun d () =

 //modify local storage

 return

Finished a : [b, c]

Finished b : [d1, c]

Finished d1: [c]

Finished c : [d2]

Finished d2 : []

Sequential Execution

Inter-contract call semantics
C1

storage = …

fun a () =

 call c2.b()

 call c3.c()

C2

storage = …

fun b () =

 call c4.d()

C3

storage = …

fun c () =

 call c4.d()

C4

storage = …

fun d () =

 //modify local storage

 return

Finished a : [b, c]

Finished b : [d1, c]

Finished d1: [c]

Finished c : [d2]

Finished d2 : []

Sequential Execution

Parallel Execution

a

b c

d1 d2

Inter-contract call semantics
C1

storage = …

fun a () =

 call c2.b()

 call c3.c()

C2

storage = …

fun b () =

 call c4.d()

C3

storage = …

fun c () =

 call c4.d()

C4

storage = …

fun d () =

 //modify local storage

 return

Finished a : [b, c]

Finished b : [d1, c]

Finished d1: [c]

Finished c : [d2]

Finished d2 : []

Sequential Execution

Parallel Execution

a

b c

d1 d2

Classic
concurrent

programming
problem

Thanks!
github.com/ocaml-multicore

http://github.com/ocaml-multicore

