Multicore Support for
Tezos Blockchain

KC Sivaramakrishnan
Computer Science and Engineering

11

MADRAS %=*

My research

e PL has central place in solving computing problems

My research

Concurrent
Parallel
Systems Distributed

Operating

e PL has central place in solving computing problems

My research

Concurrent
Parallel
Systems Distributed

Operating

e PL has central place in solving computing problems

e PL as a tool to formally reason about complex systems

+ Develop abstractions for simplifying systems

My research

Concurrent
Parallel
Systems Distributed

Operating

e PL has central place in solving computing problems
e PL as a tool to formally reason about complex systems

+ Develop abstractions for simplifying systems

® Interests: programming language runtimes, distributed
databases, concurrency, secure systems engineering

Tezos Blockchain

e Public, Permission-less, Proof-of-Stake blockchain capable of
running smart contracts

Tezos Blockchain

e Public, Permission-less, Proof-of-Stake blockchain capable of
running smart contracts

e Tezos Foundation (HQ: Zug, Switzerland) promotes Tezos

Tezos Blockchain

e Public, Permission-less, Proof-of-Stake blockchain capable of
running smart contracts

e Tezos Foundation (HQ: Zug, Switzerland) promotes Tezos

¢ Had the biggest ICO $232 million of its time

- Name Price 24h % 7d % Market Cap
1 Bitcoin BT Buy $39,351.94 *1.25% «118% $740,893,297,927
2 & Ethereum ETH Buy $2,795.68 ~0.77% 4 $326,164,955,595

@Tezos $3.86 0.4 -6.60% $3,410 076,550

WWhat sets lezos apart

WWhat sets lezos apart

® On-chain governance
+ Participants vote to bring in updates on the chain

+ Avoids Hard Fork problems — Bitcoin, Bitcoin Lite, Bitcoin Cash, Bitcoin
SV...

WWhat sets lezos apart

® On-chain governance
+ Participants vote to bring in updates on the chain

+ Avoids Hard Fork problems — Bitcoin, Bitcoin Lite, Bitcoin Cash, Bitcoin
SV...

® (Liquid) Proof-of-stake instead of Proof-of-work

+ Proof-of-work is energy intensive — Bitcoin 129 TWH ~= Norway

WWhat sets lezos apart

® On-chain governance
+ Participants vote to bring in updates on the chain

+ Avoids Hard Fork problems — Bitcoin, Bitcoin Lite, Bitcoin Cash, Bitcoin
SV...

® (Liquid) Proof-of-stake instead of Proof-of-work
+ Proof-of-work is energy intensive — Bitcoin 129 TWH ~= Norway
® Tezos is amenable for formal verification

+ Michelson, low-level smart contract language is expressed as a OCam|
GADT

<+ Rules out large classes of errors by construction

+ Many efforts around full-functional verification of Tezos smart contracts —
Mi-Cho-Coq,Albert

Performance

VISA

(PayPal

Transactions 7 30 200 3000 40
per second:
Confirmation | hour |0 minutes Few seconds Few seconds 30 minutes

Latency:

Performance

S P

PayPal
Transactions 7 30 200 3000 40
per second:
Confirmation | hour |0 minutes Few seconds Few seconds 30 minutes

Latency:

® Tezos Goal
+ Increase throughput 100x to 1000x

+ Latency of ~| min

Performance

S P

PayPal
Transactions 7 30 200 3000 40
per second:
Confirmation | hour |0 minutes Few seconds Few seconds 30 minutes

Latency:

® Tezos Goal
+ Increase throughput 100x to 1000x

+ Latency of ~| min

e Strategy: txploit multicore parallelism

Tezos: Implementation Language

Recently turned 25!

- /\

OCaml

Tezos: Implementation Language

Industry

docker

-B k Tarides

vl

OCaml

k Bloomberg J

Recently turned 25!

Projects

/ T \
)
The Astrée Static
Analyzer

‘ K flow

V'V ES
0
K COMPCERT /

No multicore support!

Multicore OCaml

Multicore OCaml

¢ Adds native support for concurrency and shared-memory
parallelism to OCaml

Multicore OCaml

e Adds native support for concurrency and shared-memory
parallelism to OCaml

OCaml Labs

Jane Street
@ A Segfault

II'T \-Opsian “* Systems

A o)
N &

2.3 UNIVERSITY OF

‘ﬁt‘

Multicore OCaml

e Adds native support for concurrency and shared-memory
parallelism to OCaml

OCaml Labs

Jane Street
@ A Segfault

« opsian Ox1F42B SVStems

[I'T

MADRAS

e Research

+ Concurrent and parallel garbage collector for OCaml [ICFP ’20]
+ Novel concurrency substrate [PLDI "21]

+ Modular memory model [PLDI | 8]

Multicore OCaml

e Adds native support for concurrency and shared-memory
parallelism to OCaml

OCaml Labs

Jane Street

@ A Segfault
o exiFa2s. SYStems

-\~ Opsian

[I'T

MADRAS

e Research
+ Concurrent and parallel garbage collector for OCaml [ICFP ’20]
+ Novel concurrency substrate [PLDI "21]

+ Modular memory model [PLDI | 8]

e Challenge
+ Not just a prototype, but millions of lines of legacy code

+ Fast and predictable performance

Multicore OCaml

e Adds native support for concurrency and shared-memory
parallelism to OCaml

OCaml Labs

Jane Street
@ A Segfault

[IT & \-Opsian “* Systems

e Research
+ Concurrent and parallel garbage collector for OCaml [ICFP ’20]

+ Novel concurrency substrate [PLDI "21]

funded by Tezos

Foundation!

+ Modular memory model [PLDI | 8]

e Challenge
+ Not just a prototype, but millions of lines of legacy code

+ Fast and predictable performance

80

name = LU_decompos

Parallel Scalability

ition_multicore 4096

80

Hot off the presses!

name = matrix_multiplication_multicore. 2048

n
P

speedu

80

name = spectralnorm2_multicore 32_768

50x — 80x speedup on |28-core machine

60 80

num_domains

100

120

Tezos Protocol

Abstract Network Consensus Transaction
Blockchain Protocol Protocol Protocol

Concrete
Implementation :

Network Shell

Tezos Protocol

Abstract Network Consensus Transaction
Blockchain Protocol Protocol Protocol

Concrete
Implementation :

Network Shell

® Network protocol — Peer discovery & publishing blocks

Tezos Protocol

Abstract Network Consensus Transaction
Blockchain Protocol Protocol Protocol

Concrete
Implementation :

Network Shell

® Network protocol — Peer discovery & publishing blocks

® Consensus protocol — Block acceptance, miner reward
schedules

Tezos Protocol

Abstract Network Consensus Transaction
Blockchain Protocol Protocol Protocol

Concrete
Implementation :

Network Shell

® Network protocol — Peer discovery & publishing blocks

® Consensus protocol — Block acceptance, miner reward
schedules

® Transaction protocol — Validity of transaction, blocks

Tezos + Multicore OCaml

Abstract Network Consensus Transaction
Blockchain Protocol Protocol Protocol
' Implement
. , using
Concrete E E |V|u|tICOI’e

Network Shell : OCaml

Implementation :

e Offload compute intensive tasks of transaction protocol (block
validation, serialisation) to spare cores

Tezos + Multicore OCaml

Abstract Network Transaction
Blockchain ; Protocol Protocol

Implement

. . using
5 : Multicore
Concrete Network Shell g OCaml

Implementation

e Offload compute intensive tasks of transaction protocol (block
validation, serialisation) to spare cores

e Block reconciliation in mempool reminiscent of GC

+ Implement parallel GC for block reconciliation

Tezos + Multicore OCaml

Abstract Network Transaction
Blockchain ; Protocol Protocol

Implement

using
! Multicore
Network Shell : OCaml

Concrete
Implementation

e Offload compute intensive tasks of transaction protocol (block
validation, serialisation) to spare cores

e Block reconciliation in mempool reminiscent of GC

+ Implement parallel GC for block reconciliation

e Exploit deterministic parallelism in inter-contract calls

Inter-contract call semantics

Cl
storage = ..

fun a () =
call c2.bQ)
call c3.cO)

C2 C3

storage = .. storage = ..

fun b O = fun ¢ O =
call c4.d0O call c4.d0O

storage = ..

fun d OO =
//modify local storage
return

Inter-contract call semantics

1 Sequential Execution

fun a OO = Finished b : [d], c]
call c2.bQ)
call c3.cQ) Finished dl: [c]

C2 C3 Finished c : [d2]

storage = .. storage = .. Finished d2 : []

fun b O = fun ¢ O =
call c4.d0O call c4.d0O

storage = ..

fun d OO =
//modify local storage
return

Inter-contract call semantics

1 Sequential Execution

Finished a : [b,]

storage = ..

fun a OO = Finished b : [d], c]

call c2.bQ)
call c3.cQ) Finished dl: [c]

C2 C3 Finished c : [d2]

storage = .. storage = .. Finished d2 : []

fun b O = fun ¢ O = Parallel Execution
call c4.d0O call c4.d0O

storage = ..

fun d OO =
//modify local storage
return

Inter-contract call semantics

1 Sequential Execution

fun a OO = Finished b : [d], c]
call c2.bQ)
call c3.cQ) Finished dl: [c]

C2 C3 Finished c : [d2]
storage = .. storage = .. Finished d2 :[]

fun b O = fun ¢ O = Parallel Execution
call c4.d0O call c4.d0O

Classic
storage = .. concurrent

programming
fun d O = problem
//modify local storage
return

Thanks!

github.com/ocaml-multicore

http://github.com/ocaml-multicore

