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Tezos Blockchain
• Public, Permission-less, Proof-of-Stake blockchain capable of 

running smart contracts

• Tezos Foundation (HQ: Zug, Switzerland) promotes Tezos

• Had the biggest ICO $232 million of its time
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✦ Participants vote to bring in updates on the chain


✦ Avoids Hard Fork problems — Bitcoin, Bitcoin Lite, Bitcoin Cash, Bitcoin 
SV…

• (Liquid) Proof-of-stake instead of Proof-of-work


✦ Proof-of-work is energy intensive — Bitcoin 129 TWH ~= Norway

• Tezos is amenable for formal verification

✦ Michelson, low-level smart contract language is expressed as a OCaml 
GADT


✤ Rules out large classes of errors by construction


✦ Many efforts around full-functional verification of Tezos smart contracts — 
Mi-Cho-Coq, Albert



Performance

Transactions 

per second:

Confirmation

Latency:

7 30 200 3000 40

1 hour 10 minutes Few seconds Few seconds 30 minutes



Performance

Transactions 

per second:

Confirmation

Latency:

7 30 200 3000 40

1 hour 10 minutes Few seconds Few seconds 30 minutes

• Tezos Goal

✦ Increase throughput 100x to 1000x


✦ Latency of ~1 min



Performance

Transactions 

per second:

Confirmation

Latency:

7 30 200 3000 40

1 hour 10 minutes Few seconds Few seconds 30 minutes

• Tezos Goal

✦ Increase throughput 100x to 1000x


✦ Latency of ~1 min

• Strategy: Exploit multicore parallelism
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OCaml: Langauge of choice

The Astrée Static 
Analyzer

Industry Projects

No multicore support!

Recently turned 25!
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Multicore OCaml
• Adds native support for concurrency and shared-memory 

parallelism to OCaml

• Research


✦ Concurrent and parallel garbage collector for OCaml [ICFP ’20]


✦ Novel concurrency substrate [PLDI ’21]


✦ Modular memory model [PLDI ’18]

• Challenge


✦ Not just a prototype, but millions of lines of legacy code

✦ Fast and predictable performance

funded by Tezos 
Foundation!

OCaml Labs



Parallel Scalability

50x — 80x speedup on 128-core machine

Hot off the presses!
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Tezos Protocol

• Network protocol — Peer discovery & publishing blocks

• Consensus protocol — Block acceptance, miner reward 
schedules

• Transaction protocol — Validity of transaction, blocks
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Tezos + Multicore OCaml

• Offload compute intensive tasks of transaction protocol (block 
validation, serialisation) to spare cores

• Block reconciliation in mempool reminiscent of GC


✦ Implement parallel GC for block reconciliation 

• Exploit deterministic parallelism in inter-contract calls

Network 
Protocol

Consensus 
Protocol

Transaction 
Protocol

Network Shell

Abstract 

Blockchain

Concrete

Implementation

Implement 
using


Multicore 
OCaml
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Thanks!
github.com/ocaml-multicore

http://github.com/ocaml-multicore

