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e Public, Permission-less, Proof-of-Stake blockchain capable of
running smart contracts

e Tezos Foundation (HQ: Zug, Switzerland) promotes Tezos

¢ Had the biggest ICO $232 million of its time

# - Name Price 24h % 7d % Market Cap
1 Bitcoin BT Buy $39,351.94 *1.25% «118% $740,893,297,927
2 & Ethereum ETH Buy $2,795.68  ~0.77% 4 $326,164,955,595

@Tezos $3.86 0.4 -6.60% $3,410 076,550
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® On-chain governance
+ Participants vote to bring in updates on the chain

+ Avoids Hard Fork problems — Bitcoin, Bitcoin Lite, Bitcoin Cash, Bitcoin
SV...

® (Liquid) Proof-of-stake instead of Proof-of-work
+ Proof-of-work is energy intensive — Bitcoin 129 TWH ~= Norway
® Tezos is amenable for formal verification

+ Michelson, low-level smart contract language is expressed as a OCam|
GADT

<+ Rules out large classes of errors by construction

+ Many efforts around full-functional verification of Tezos smart contracts —
Mi-Cho-Coq,Albert
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PayPal
Transactions 7 30 200 3000 40
per second:
Confirmation | hour |0 minutes Few seconds Few seconds 30 minutes

Latency:

® Tezos Goal
+ Increase throughput 100x to 1000x

+ Latency of ~| min

e Strategy: txploit multicore parallelism
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No multicore support!
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e Adds native support for concurrency and shared-memory
parallelism to OCaml

OCaml Labs
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e Research
+ Concurrent and parallel garbage collector for OCaml [ICFP ’20]

+ Novel concurrency substrate [PLDI "21]

funded by Tezos

Foundation!

+ Modular memory model [PLDI | 8]

e Challenge
+ Not just a prototype, but millions of lines of legacy code

+ Fast and predictable performance
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Tezos Protocol

Abstract Network Consensus Transaction
Blockchain Protocol Protocol Protocol

Concrete
Implementation :

Network Shell

® Network protocol — Peer discovery & publishing blocks

® Consensus protocol — Block acceptance, miner reward
schedules

® Transaction protocol — Validity of transaction, blocks
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Tezos + Multicore OCaml

Abstract Network Transaction
Blockchain ; Protocol Protocol

Implement

using
! Multicore
Network Shell : OCaml

Concrete
Implementation

e Offload compute intensive tasks of transaction protocol (block
validation, serialisation) to spare cores

e Block reconciliation in mempool reminiscent of GC

+ Implement parallel GC for block reconciliation

e Exploit deterministic parallelism in inter-contract calls
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Inter-contract call semantics

1 Sequential Execution

fun a OO = Finished b : [d], c]
call c2.bQ)
call c3.cQ) Finished dl: [c]

C2 C3 Finished c : [d2]
storage = .. storage = .. Finished d2 :[ ]

fun b O = fun ¢ O = Parallel Execution
call c4.d0O call c4.d0O

Classic
storage = .. concurrent

programming
fun d O = problem
//modify local storage
return




Thanks!

github.com/ocaml-multicore
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