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Desiderata
• Feature backwards compatibility

✦ Do not break existing code

• Performance backwards compatibility

✦ Existing programs run just as fast using 
just the same memory

• GC Latency before multicore 
scalability

• Compatibility with program inspection 
tools

• Performant concurrent and parallel 
programming abstractions



Rest of the talk

• Domains for shared memory parallelism

• Effect handlers for concurrent programming
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• A unit of parallelism

• Heavyweight — maps onto a OS thread

✦ Recommended to have 1 domain per core

• Low-level domain API

✦ Spawn & join, wait & notify

✦ Domain-local storage

✦ Atomic memory operations

✤ Dolan et al, “Bounding Data Races in Space and Time”, PLDI’18

• No restrictions on sharing objects between domains

✦ But how does it work?
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mark main

Sweep

sweep

Incremental 
and non-moving

Stock OCaml GC
• A generational, non-moving, incremental, mark-and-sweep GC

Minor 
Heap

Major Heap
• Small (2 MB default)

• Bump pointer allocation

• Survivors copied to major heap

End of major cycle

Mutator

Start of major cycle

Idle

Mark 
Roots

mark roots

• Fast allocations

• Max GC latency < 10 ms, 99th percentile latency < 1 ms
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Multicore OCaml GC

• Stop-the-world parallel minor collection for minor heap

✦ 2 global barriers / minor gc

✦ On 24 cores, ~10 ms pauses
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Multicore OCaml GC

• Mostly-concurrent mark-and-sweep for major collection

✦ All the marking and sweeping work done without synchronization

✦ 3 barriers per cycle (worst case) to agree end of GC phases

✤ 2 barriers for the two kinds of finalisers in OCaml

✦ ~5 ms pauses on 24 cores

Sweep MarkMark 
Roots Mutator

Sweep MarkMark 
Roots

Start of major cycle End of major cycle

mark and sweep phases may overlap

Domain 0

Domain 1
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Sequential performance

coq

irmin

menhir

alt-ergo

• ~1% faster than stock (geomean of normalised running times)

✦ Difference under measurement noise mostly

✦ Outliers due to difference in allocators
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Domainslib for parallel programming
• Domain API exposed by the compiler is too low-level

• Domainslib - https://github.com/ocaml-multicore/domainslib

Domain 0 Domain N…

Task Pool

Async/Await Parallel for

Domainslib

Let’s look at examples!
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Performance: fib(48)

Cores Time (Seconds) Vs Serial Vs Self

1 37.787 0.98 1

2 19.034 1.94 1.99

4 9.723 3.8 3.89

8 5.023 7.36 7.52

16 2.914 12.68 12.97

24 2.201 16.79 17.17
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Conway’s Game of Life
let next () = 
  ... 
  for x = 0 to board_size - 1 do 
    for y = 0 to board_size - 1 do 
      next_board.(x).(y) <- next_cell cur_board x y 
    done 
  done; 
  ...

let next () = 
  ... 
  T.parallel_for pool ~start:0 ~finish:(board_size - 1)  
    ~body:(fun x -> 
       for y = 0 to board_size - 1 do 
         next_board.(x).(y) <- next_cell cur_board x y 
       done); 
  ...



Performance: Game of Life

Cores Time (Seconds) Vs Serial Vs Self

1 24.326 1 1

2 12.290 1.980 1.98

4 6.260 3.890 3.89

8 3.238 7.51 7.51

16 1.726 14.09 14.09

24 1.212 20.07 20.07

Board size = 1024, Iterations = 512
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Parallelism is not Concurrency

• Lwt and Async - concurrent programming libraries in OCaml

✦ Callback-oriented programming with nicer syntax

• Suffers many pitfalls of callback-oriented programming

✦ No backtraces, exceptions can’t be used, monadic syntax

• Go (goroutines) and GHC Haskell (threads) have better 
abstractions — lightweight threads

Parallelism is a performance hack 

whereas 

concurrency is a program structuring mechanism

Should we add lightweight threads to OCaml?
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• A mechanism for programming with user-defined effects

• Modular basis of non-local control-flow mechanisms

✦ Exceptions, generators, lightweight threads, promises, asynchronous IO, 
coroutines

• Effect declaration separate from interpretation (c.f. exceptions)
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let comp () =                                                                        
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Lightweight Threading
effect Fork  : (unit -> unit) -> unit 
effect Yield : unit

let run main = 
  ... (* assume queue of continuations *) 
  let run_next () = 
    match dequeue () with 
    | Some k -> continue k () 
    | None -> () 
  in 
  let rec spawn f = 
    match f () with 
     | () -> run_next () 
     | effect Yield k -> enqueue k; run_next () 
     | effect (Fork f) k -> enqueue k; spawn f 
   in 
   spawn main

let fork f = perform (Fork f) 
let yield () = perform Yield
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Lightweight threading

let main () =  
  fork (fun _ -> print_endline "1.a"; yield (); print_endline "1.b"); 
  fork (fun _ -> print_endline "2.a"; yield (); print_endline “2.b") 
;; 
run main 

1.a 
2.a 
1.b 
2.b

• Direct-style (no monads) 
• User-code need not be aware of effects
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Generators
• Generators — non-continuous traversal of data structure by 

yielding values

✦ Primitives in JavaScript and Python

✦ Can be derived automatically from iterator using effect handlers

• Task — traverse a complete binary-tree of depth 25

✦ 226 stack switches

• Iterator — idiomatic recursive traversal

• Generator

✦ Hand-written generator (hw-generator)

✤ CPS translation + defunctionalization to remove intermediate closure allocation

✦ Generator using effect handlers (eh-generator) 
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Variant Time (milliseconds)

Iterator (baseline) 202

hw-generator 837 (3.76x)

eh-generator 1879 (9.30x)

Multicore OCaml

Variant Time (milliseconds)

Iterator (baseline) 492

generator 43842 (89.1x)

nodejs 14.07  



Performance: WebServer
• Effect handlers for asynchronous I/O in direct-style

✦ https://github.com/kayceesrk/ocaml-aeio/

• Variants

✦ Go + net/http (GOMAXPROCS=1)
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Performance: WebServer
• Effect handlers for asynchronous I/O in direct-style

✦ https://github.com/kayceesrk/ocaml-aeio/

• Variants

✦ Go + net/http (GOMAXPROCS=1)

✦ OCaml + http/af + Lwt (explicit callbacks)

✦ OCaml + http/af + Effect handlers (MC)

• Performance measured using wrk2

• Direct style (no monadic syntax) 
• Can use OCaml exceptions! 
• Backtrace per thread (request) 
• gdb & perf work!

https://github.com/kayceesrk/ocaml-aeio/
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Upstreaming Plan
1. Domains-only multicore to be upstreamed first

2. Runtime support for effect handlers

• No effect syntax but all the compiler and runtime bits in

3. Effect system

a. Track user-defined effects in the type

b. Track ambinet effects (ref, IO) in the type

c. OCaml becomes a pure language (in the Haskell sense).

let foo () = print_string "hello, world"

val foo : unit -[ io ]-> unit Syntax is still in 
the works
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Multicore OCaml + Tezos
• Thanks to Tezos Foundation for funding Multicore OCaml 

development!

• Multicore + Tezos

✦ Parallel Lwt preemptive tasks 

✦ Direct-style asynchronous IO library

✤ Bridge the gap between Async and Lwt

✦ Parallelising Irmin (storage layer of Tezos)

• An end-to-end Multicore Tezos demonstrator (mid-2021)



Thanks!

• Multicore OCaml — https://github.com/ocaml-multicore/ocaml-
multicore

• Effects Examples — https://github.com/ocaml-multicore/effects-
examples

• Sivaramakrishnan et al, “Retrofitting Parallelism onto OCaml", ICFP 2020

• Dolan et al, “Concurrent System Programming with Effect Handlers”, TFP 
2017 

$ opam switch create 4.10.0+multicore \ 
    --packages=ocaml-variants.4.10.0+multicore \ 
    --repositories=multicore=git+https://github.com/ocaml-multicore/multicore-opam.git,default

Install Multicore OCaml

https://github.com/ocaml-multicore/ocaml-multicore
https://github.com/ocaml-multicore/ocaml-multicore
https://github.com/ocaml-multicore/effects-examples
https://github.com/ocaml-multicore/effects-examples
https://kcsrk.info/papers/retro-parallel_icfp_20.pdf
https://link.springer.com/chapter/10.1007/978-3-319-89719-6_6

