
Multicore OCaml
What’s coming in 2021

“KC” Sivaramakrishnan and Anil Madhavapeddy

OCam

The Astrée Static Analyzer

Industry Projects

The Astrée Static Analyzer

Industry Projects

No multicore support!

• Adds native support for concurrency and parallelism to OCaml

Multicore OCaml

• Adds native support for concurrency and parallelism to OCaml

Multicore OCaml

Overlapped
execution

A

B

A

C

B

Time

• Adds native support for concurrency and parallelism to OCaml

Multicore OCaml

Overlapped
execution

A

B

A

C

B

Time

Simultaneous
execution

A
B

C

Time

• Adds native support for concurrency and parallelism to OCaml

Multicore OCaml

Overlapped
execution

A

B

A

C

B

Time

Simultaneous
execution

A
B

C

Time

Effect Handlers

• Adds native support for concurrency and parallelism to OCaml

Multicore OCaml

Overlapped
execution

A

B

A

C

B

Time

Simultaneous
execution

A
B

C

Time

Effect Handlers Domains

Challenges
• Millions of lines of legacy code

✦ Written without concurrency and parallelism in mind

✦ Cost of refactoring sequential code itself is prohibitive

Challenges
• Millions of lines of legacy code

✦ Written without concurrency and parallelism in mind

✦ Cost of refactoring sequential code itself is prohibitive

• Low-latency and predictable performance

✦ Great for applications that require ~10ms latency

Challenges
• Millions of lines of legacy code

✦ Written without concurrency and parallelism in mind

✦ Cost of refactoring sequential code itself is prohibitive

• Low-latency and predictable performance

✦ Great for applications that require ~10ms latency

• Excellent compatibility with debugging and profiling tools

✦ gdb, lldb, perf, libunwind, etc.

Challenges
• Millions of lines of legacy code

✦ Written without concurrency and parallelism in mind

✦ Cost of refactoring sequential code itself is prohibitive

• Low-latency and predictable performance

✦ Great for applications that require ~10ms latency

• Excellent compatibility with debugging and profiling tools

✦ gdb, lldb, perf, libunwind, etc.

Backwards compatibility before scalability

Desiderata
• Feature backwards compatibility

✦ Do not break existing code

Desiderata
• Feature backwards compatibility

✦ Do not break existing code

• Performance backwards compatibility

✦ Existing programs run just as fast using
just the same memory

Desiderata
• Feature backwards compatibility

✦ Do not break existing code

• Performance backwards compatibility

✦ Existing programs run just as fast using
just the same memory

• GC Latency before multicore
scalability

Desiderata
• Feature backwards compatibility

✦ Do not break existing code

• Performance backwards compatibility

✦ Existing programs run just as fast using
just the same memory

• GC Latency before multicore
scalability

• Compatibility with program inspection
tools

Desiderata
• Feature backwards compatibility

✦ Do not break existing code

• Performance backwards compatibility

✦ Existing programs run just as fast using
just the same memory

• GC Latency before multicore
scalability

• Compatibility with program inspection
tools

• Performant concurrent and parallel
programming abstractions

Rest of the talk

• Domains for shared memory parallelism

• Effect handlers for concurrent programming

Domains for Parallelism
• A unit of parallelism

Domains for Parallelism
• A unit of parallelism

• Heavyweight — maps onto a OS thread

✦ Recommended to have 1 domain per core

Domains for Parallelism
• A unit of parallelism

• Heavyweight — maps onto a OS thread

✦ Recommended to have 1 domain per core

• Low-level domain API

✦ Spawn & join, wait & notify

✦ Domain-local storage

✦ Atomic memory operations

✤ Dolan et al, “Bounding Data Races in Space and Time”, PLDI’18

Domains for Parallelism
• A unit of parallelism

• Heavyweight — maps onto a OS thread

✦ Recommended to have 1 domain per core

• Low-level domain API

✦ Spawn & join, wait & notify

✦ Domain-local storage

✦ Atomic memory operations

✤ Dolan et al, “Bounding Data Races in Space and Time”, PLDI’18

• No restrictions on sharing objects between domains

✦ But how does it work?

Incremental
and non-moving

Stock OCaml GC
• A generational, non-moving, incremental, mark-and-sweep GC

Minor
Heap

Major Heap
• Small (2 MB default)

• Bump pointer allocation

• Survivors copied to major heap

Incremental
and non-moving

Stock OCaml GC
• A generational, non-moving, incremental, mark-and-sweep GC

Minor
Heap

Major Heap
• Small (2 MB default)

• Bump pointer allocation

• Survivors copied to major heap

Mutator

Start of major cycle

Idle

Incremental
and non-moving

Stock OCaml GC
• A generational, non-moving, incremental, mark-and-sweep GC

Minor
Heap

Major Heap
• Small (2 MB default)

• Bump pointer allocation

• Survivors copied to major heap

Mutator

Start of major cycle

Idle

Mark
Roots

mark roots

Mark

mark main

Incremental
and non-moving

Stock OCaml GC
• A generational, non-moving, incremental, mark-and-sweep GC

Minor
Heap

Major Heap
• Small (2 MB default)

• Bump pointer allocation

• Survivors copied to major heap

Mutator

Start of major cycle

Idle

Mark
Roots

mark roots

Mark

mark main

Sweep

sweep

Incremental
and non-moving

Stock OCaml GC
• A generational, non-moving, incremental, mark-and-sweep GC

Minor
Heap

Major Heap
• Small (2 MB default)

• Bump pointer allocation

• Survivors copied to major heap

Mutator

Start of major cycle

Idle

Mark
Roots

mark roots

Mark

mark main

Sweep

sweep

Incremental
and non-moving

Stock OCaml GC
• A generational, non-moving, incremental, mark-and-sweep GC

Minor
Heap

Major Heap
• Small (2 MB default)

• Bump pointer allocation

• Survivors copied to major heap

End of major cycle

Mutator

Start of major cycle

Idle

Mark
Roots

mark roots

Mark

mark main

Sweep

sweep

Incremental
and non-moving

Stock OCaml GC
• A generational, non-moving, incremental, mark-and-sweep GC

Minor
Heap

Major Heap
• Small (2 MB default)

• Bump pointer allocation

• Survivors copied to major heap

End of major cycle

Mutator

Start of major cycle

Idle

Mark
Roots

mark roots

• Fast allocations

Mark

mark main

Sweep

sweep

Incremental
and non-moving

Stock OCaml GC
• A generational, non-moving, incremental, mark-and-sweep GC

Minor
Heap

Major Heap
• Small (2 MB default)

• Bump pointer allocation

• Survivors copied to major heap

End of major cycle

Mutator

Start of major cycle

Idle

Mark
Roots

mark roots

• Fast allocations

• Max GC latency < 10 ms, 99th percentile latency < 1 ms

Free

Multicore OCaml GC
Major Heap

Dom
0

Dom
0

Dom
1

Dom
0

Dom
1

Domain 0 allocation pointer

Domain 1 allocation pointer

Minor Heap

Free

Multicore OCaml GC

• Stop-the-world parallel minor collection for minor heap

✦ 2 global barriers / minor gc

✦ On 24 cores, ~10 ms pauses

Major Heap

Dom
0

Dom
0

Dom
1

Dom
0

Dom
1

Domain 0 allocation pointer

Domain 1 allocation pointer

Minor Heap

Multicore OCaml GC

• Mostly-concurrent mark-and-sweep for major collection

✦ All the marking and sweeping work done without synchronization

✦ 3 barriers per cycle (worst case) to agree end of GC phases

✤ 2 barriers for the two kinds of finalisers in OCaml

✦ ~5 ms pauses on 24 cores

Sweep MarkMark
Roots Mutator

Sweep MarkMark
Roots

Start of major cycle End of major cycle

mark and sweep phases may overlap

Domain 0

Domain 1

Sequential performance

Sequential performance

coq

irmin

menhir

alt-ergo

Sequential performance

coq

irmin

menhir

alt-ergo

• ~1% faster than stock (geomean of normalised running times)

✦ Difference under measurement noise mostly

✦ Outliers due to difference in allocators

Domainslib for parallel programming
• Domain API exposed by the compiler is too low-level

Domainslib for parallel programming
• Domain API exposed by the compiler is too low-level

• Domainslib - https://github.com/ocaml-multicore/domainslib

Domain 0 Domain N…

Task Pool

Async/Await Parallel for

Domainslib

Domainslib for parallel programming
• Domain API exposed by the compiler is too low-level

• Domainslib - https://github.com/ocaml-multicore/domainslib

Domain 0 Domain N…

Task Pool

Async/Await Parallel for

Domainslib

Let’s look at examples!

Recursive Fibonacci - Sequential

let rec fib n =
 if n < 2 then 1
 else fib (n-1) + fib (n-2)

Recursive Fibonacci - Parallel

let fib n =
 let pool = T.setup_pool ~num_domains:(num_domains - 1) in
 let res = fib_par pool n in
 T.teardown_pool pool;
 res

module T = Domainslib.Task

Recursive Fibonacci - Parallel

let fib n =
 let pool = T.setup_pool ~num_domains:(num_domains - 1) in
 let res = fib_par pool n in
 T.teardown_pool pool;
 res

let rec fib_par pool n =
 if n <= 40 then fib_seq n
 else
 let a = T.async pool (fun _ -> fib_par pool (n-1)) in
 let b = T.async pool (fun _ -> fib_par pool (n-2)) in
 T.await pool a + T.await pool b

module T = Domainslib.Task

Recursive Fibonacci - Parallel

let rec fib_seq n =
 if n < 2 then 1
 else fib_seq (n-1) + fib_seq (n-2)

let fib n =
 let pool = T.setup_pool ~num_domains:(num_domains - 1) in
 let res = fib_par pool n in
 T.teardown_pool pool;
 res

let rec fib_par pool n =
 if n <= 40 then fib_seq n
 else
 let a = T.async pool (fun _ -> fib_par pool (n-1)) in
 let b = T.async pool (fun _ -> fib_par pool (n-2)) in
 T.await pool a + T.await pool b

module T = Domainslib.Task

Performance: fib(48)

Cores Time (Seconds) Vs Serial Vs Self

1 37.787 0.98 1

2 19.034 1.94 1.99

4 9.723 3.8 3.89

8 5.023 7.36 7.52

16 2.914 12.68 12.97

24 2.201 16.79 17.17

Conway’s Game of Life

Conway’s Game of Life

Conway’s Game of Life
let next () =
 ...
 for x = 0 to board_size - 1 do
 for y = 0 to board_size - 1 do
 next_board.(x).(y) <- next_cell cur_board x y
 done
 done;
 ...

Conway’s Game of Life
let next () =
 ...
 for x = 0 to board_size - 1 do
 for y = 0 to board_size - 1 do
 next_board.(x).(y) <- next_cell cur_board x y
 done
 done;
 ...

let next () =
 ...
 T.parallel_for pool ~start:0 ~finish:(board_size - 1)
 ~body:(fun x ->
 for y = 0 to board_size - 1 do
 next_board.(x).(y) <- next_cell cur_board x y
 done);
 ...

Performance: Game of Life

Cores Time (Seconds) Vs Serial Vs Self

1 24.326 1 1

2 12.290 1.980 1.98

4 6.260 3.890 3.89

8 3.238 7.51 7.51

16 1.726 14.09 14.09

24 1.212 20.07 20.07

Board size = 1024, Iterations = 512

Parallelism is not Concurrency
Parallelism is a performance hack

whereas

concurrency is a program structuring mechanism

Parallelism is not Concurrency

• Lwt and Async - concurrent programming libraries in OCaml

✦ Callback-oriented programming with nicer syntax

Parallelism is a performance hack

whereas

concurrency is a program structuring mechanism

Parallelism is not Concurrency

• Lwt and Async - concurrent programming libraries in OCaml

✦ Callback-oriented programming with nicer syntax

• Suffers many pitfalls of callback-oriented programming

✦ No backtraces, exceptions can’t be used, monadic syntax

Parallelism is a performance hack

whereas

concurrency is a program structuring mechanism

Parallelism is not Concurrency

• Lwt and Async - concurrent programming libraries in OCaml

✦ Callback-oriented programming with nicer syntax

• Suffers many pitfalls of callback-oriented programming

✦ No backtraces, exceptions can’t be used, monadic syntax

• Go (goroutines) and GHC Haskell (threads) have better
abstractions — lightweight threads

Parallelism is a performance hack

whereas

concurrency is a program structuring mechanism

Parallelism is not Concurrency

• Lwt and Async - concurrent programming libraries in OCaml

✦ Callback-oriented programming with nicer syntax

• Suffers many pitfalls of callback-oriented programming

✦ No backtraces, exceptions can’t be used, monadic syntax

• Go (goroutines) and GHC Haskell (threads) have better
abstractions — lightweight threads

Parallelism is a performance hack

whereas

concurrency is a program structuring mechanism

Should we add lightweight threads to OCaml?

Effect Handlers
• A mechanism for programming with user-defined effects

Effect Handlers
• A mechanism for programming with user-defined effects

• Modular basis of non-local control-flow mechanisms

✦ Exceptions, generators, lightweight threads, promises, asynchronous IO,
coroutines

Effect Handlers
• A mechanism for programming with user-defined effects

• Modular basis of non-local control-flow mechanisms

✦ Exceptions, generators, lightweight threads, promises, asynchronous IO,
coroutines

• Effect declaration separate from interpretation (c.f. exceptions)

Effect Handlers
• A mechanism for programming with user-defined effects

• Modular basis of non-local control-flow mechanisms

✦ Exceptions, generators, lightweight threads, promises, asynchronous IO,
coroutines

• Effect declaration separate from interpretation (c.f. exceptions)

effect E : string

let comp () =
 print_string "0 ";
 print_string (perform E);
 print_string "3 "

let main () =
 try
 comp ()
 with effect E k ->
 print_string "1 ";
 continue k "2 ";
 print_string “4 "

Effect Handlers
• A mechanism for programming with user-defined effects

• Modular basis of non-local control-flow mechanisms

✦ Exceptions, generators, lightweight threads, promises, asynchronous IO,
coroutines

• Effect declaration separate from interpretation (c.f. exceptions)

effect E : string

let comp () =
 print_string "0 ";
 print_string (perform E);
 print_string "3 "

let main () =
 try
 comp ()
 with effect E k ->
 print_string "1 ";
 continue k "2 ";
 print_string “4 "

effect declaration

Effect Handlers
• A mechanism for programming with user-defined effects

• Modular basis of non-local control-flow mechanisms

✦ Exceptions, generators, lightweight threads, promises, asynchronous IO,
coroutines

• Effect declaration separate from interpretation (c.f. exceptions)

effect E : string

let comp () =
 print_string "0 ";
 print_string (perform E);
 print_string "3 "

let main () =
 try
 comp ()
 with effect E k ->
 print_string "1 ";
 continue k "2 ";
 print_string “4 "

computation

effect declaration

Effect Handlers
• A mechanism for programming with user-defined effects

• Modular basis of non-local control-flow mechanisms

✦ Exceptions, generators, lightweight threads, promises, asynchronous IO,
coroutines

• Effect declaration separate from interpretation (c.f. exceptions)

effect E : string

let comp () =
 print_string "0 ";
 print_string (perform E);
 print_string "3 "

let main () =
 try
 comp ()
 with effect E k ->
 print_string "1 ";
 continue k "2 ";
 print_string “4 "

computation

handler

effect declaration

Effect Handlers
• A mechanism for programming with user-defined effects

• Modular basis of non-local control-flow mechanisms

✦ Exceptions, generators, lightweight threads, promises, asynchronous IO,
coroutines

• Effect declaration separate from interpretation (c.f. exceptions)

effect E : string

let comp () =
 print_string "0 ";
 print_string (perform E);
 print_string "3 "

let main () =
 try
 comp ()
 with effect E k ->
 print_string "1 ";
 continue k "2 ";
 print_string “4 "

computation

handler

suspends current
computation

effect declaration

Effect Handlers
• A mechanism for programming with user-defined effects

• Modular basis of non-local control-flow mechanisms

✦ Exceptions, generators, lightweight threads, promises, asynchronous IO,
coroutines

• Effect declaration separate from interpretation (c.f. exceptions)

effect E : string

let comp () =
 print_string "0 ";
 print_string (perform E);
 print_string "3 "

let main () =
 try
 comp ()
 with effect E k ->
 print_string "1 ";
 continue k "2 ";
 print_string “4 "

computation

handler

delimited continuation

suspends current
computation

effect declaration

Effect Handlers
• A mechanism for programming with user-defined effects

• Modular basis of non-local control-flow mechanisms

✦ Exceptions, generators, lightweight threads, promises, asynchronous IO,
coroutines

• Effect declaration separate from interpretation (c.f. exceptions)

effect E : string

let comp () =
 print_string "0 ";
 print_string (perform E);
 print_string "3 "

let main () =
 try
 comp ()
 with effect E k ->
 print_string "1 ";
 continue k "2 ";
 print_string “4 "

computation

handler

delimited continuation

suspends current
computation

resume suspended
computation

effect declaration

Stepping through the example

effect E : string

let comp () =
 print_string "0 ";
 print_string (perform E);
 print_string "3 "

let main () =
 try
 comp ()
 with effect E k ->
 print_string "1 ";
 continue k "2 ";
 print_string “4 "

pc
main

sp

Stepping through the example

effect E : string

let comp () =
 print_string "0 ";
 print_string (perform E);
 print_string "3 "

let main () =
 try
 comp ()
 with effect E k ->
 print_string "1 ";
 continue k "2 ";
 print_string “4 "

pc

main

sp

comp

Stepping through the example

effect E : string

let comp () =
 print_string "0 ";
 print_string (perform E);
 print_string "3 "

let main () =
 try
 comp ()
 with effect E k ->
 print_string "1 ";
 continue k "2 ";
 print_string “4 "

pc

main
sp

parent

Fiber: A piece of stack
+ effect handler

comp

comp

Stepping through the example

effect E : string

let comp () =
 print_string "0 ";
 print_string (perform E);
 print_string "3 "

let main () =
 try
 comp ()
 with effect E k ->
 print_string "1 ";
 continue k "2 ";
 print_string “4 "

pc

main

sp

parent

0

comp

comp

Stepping through the example

effect E : string

let comp () =
 print_string "0 ";
 print_string (perform E);
 print_string "3 "

let main () =
 try
 comp ()
 with effect E k ->
 print_string "1 ";
 continue k "2 ";
 print_string “4 "

pc

main

sp

k

0

comp

comp

Stepping through the example

effect E : string

let comp () =
 print_string "0 ";
 print_string (perform E);
 print_string "3 "

let main () =
 try
 comp ()
 with effect E k ->
 print_string "1 ";
 continue k "2 ";
 print_string “4 "

pc

main

sp k

0

comp

comp

Stepping through the example

effect E : string

let comp () =
 print_string "0 ";
 print_string (perform E);
 print_string "3 "

let main () =
 try
 comp ()
 with effect E k ->
 print_string "1 ";
 continue k "2 ";
 print_string “4 "

pc

main

sp k

0

comp

comp

Stepping through the example

effect E : string

let comp () =
 print_string "0 ";
 print_string (perform E);
 print_string "3 "

let main () =
 try
 comp ()
 with effect E k ->
 print_string "1 ";
 continue k "2 ";
 print_string “4 "

pc

main

sp k

0 1

comp

comp

Stepping through the example

effect E : string

let comp () =
 print_string "0 ";
 print_string (perform E);
 print_string "3 "

let main () =
 try
 comp ()
 with effect E k ->
 print_string "1 ";
 continue k "2 ";
 print_string “4 "

pc

main

sp k

0 1

comp

comp

Stepping through the example

effect E : string

let comp () =
 print_string "0 ";
 print_string (perform E);
 print_string "3 "

let main () =
 try
 comp ()
 with effect E k ->
 print_string "1 ";
 continue k "2 ";
 print_string “4 "

pc

main

sp

k

parent

0 1

comp

comp

Stepping through the example

effect E : string

let comp () =
 print_string "0 ";
 print_string (perform E);
 print_string "3 "

let main () =
 try
 comp ()
 with effect E k ->
 print_string "1 ";
 continue k "2 ";
 print_string “4 "

pc
main

sp

k

parent

0 1 2

Stepping through the example

effect E : string

let comp () =
 print_string "0 ";
 print_string (perform E);
 print_string "3 "

let main () =
 try
 comp ()
 with effect E k ->
 print_string "1 ";
 continue k "2 ";
 print_string “4 " pc

main

sp k

0 1 2 3

Stepping through the example

effect E : string

let comp () =
 print_string "0 ";
 print_string (perform E);
 print_string "3 "

let main () =
 try
 comp ()
 with effect E k ->
 print_string "1 ";
 continue k "2 ";
 print_string “4 "

pc

main

sp k

0 1 2 3 4

Lightweight Threading
effect Fork : (unit -> unit) -> unit
effect Yield : unit

Lightweight Threading
effect Fork : (unit -> unit) -> unit
effect Yield : unit

let run main =
 ... (* assume queue of continuations *)
 let run_next () =
 match dequeue () with
 | Some k -> continue k ()
 | None -> ()
 in
 let rec spawn f =
 match f () with
 | () -> run_next ()
 | effect Yield k -> enqueue k; run_next ()
 | effect (Fork f) k -> enqueue k; spawn f
 in
 spawn main

Lightweight Threading
effect Fork : (unit -> unit) -> unit
effect Yield : unit

let run main =
 ... (* assume queue of continuations *)
 let run_next () =
 match dequeue () with
 | Some k -> continue k ()
 | None -> ()
 in
 let rec spawn f =
 match f () with
 | () -> run_next ()
 | effect Yield k -> enqueue k; run_next ()
 | effect (Fork f) k -> enqueue k; spawn f
 in
 spawn main

let fork f = perform (Fork f)
let yield () = perform Yield

Lightweight threading

let main () =
 fork (fun _ -> print_endline "1.a"; yield (); print_endline "1.b");
 fork (fun _ -> print_endline "2.a"; yield (); print_endline “2.b")
;;
run main

Lightweight threading

let main () =
 fork (fun _ -> print_endline "1.a"; yield (); print_endline "1.b");
 fork (fun _ -> print_endline "2.a"; yield (); print_endline “2.b")
;;
run main

1.a
2.a
1.b
2.b

Lightweight threading

let main () =
 fork (fun _ -> print_endline "1.a"; yield (); print_endline "1.b");
 fork (fun _ -> print_endline "2.a"; yield (); print_endline “2.b")
;;
run main

1.a
2.a
1.b
2.b

• Direct-style (no monads)
• User-code need not be aware of effects

Generators
• Generators — non-continuous traversal of data structure by

yielding values

✦ Primitives in JavaScript and Python

✦ Can be derived automatically from iterator using effect handlers

Generators
• Generators — non-continuous traversal of data structure by

yielding values

✦ Primitives in JavaScript and Python

✦ Can be derived automatically from iterator using effect handlers

• Task — traverse a complete binary-tree of depth 25

✦ 226 stack switches

Generators
• Generators — non-continuous traversal of data structure by

yielding values

✦ Primitives in JavaScript and Python

✦ Can be derived automatically from iterator using effect handlers

• Task — traverse a complete binary-tree of depth 25

✦ 226 stack switches

• Iterator — idiomatic recursive traversal

Generators
• Generators — non-continuous traversal of data structure by

yielding values

✦ Primitives in JavaScript and Python

✦ Can be derived automatically from iterator using effect handlers

• Task — traverse a complete binary-tree of depth 25

✦ 226 stack switches

• Iterator — idiomatic recursive traversal

• Generator

✦ Hand-written generator (hw-generator)

✤ CPS translation + defunctionalization to remove intermediate closure allocation

✦ Generator using effect handlers (eh-generator)

Performance: Generators

Variant Time (milliseconds)

Iterator (baseline) 202

hw-generator 837 (3.76x)

eh-generator 1879 (9.30x)

Multicore OCaml

Performance: Generators

Variant Time (milliseconds)

Iterator (baseline) 202

hw-generator 837 (3.76x)

eh-generator 1879 (9.30x)

Multicore OCaml

Variant Time (milliseconds)

Iterator (baseline) 492

generator 43842 (89.1x)

nodejs 14.07

Performance: WebServer
• Effect handlers for asynchronous I/O in direct-style

✦ https://github.com/kayceesrk/ocaml-aeio/

• Variants

✦ Go + net/http (GOMAXPROCS=1)

✦ OCaml + http/af + Lwt (explicit callbacks)

✦ OCaml + http/af + Effect handlers (MC)

• Performance measured using wrk2

https://github.com/kayceesrk/ocaml-aeio/

Performance: WebServer
• Effect handlers for asynchronous I/O in direct-style

✦ https://github.com/kayceesrk/ocaml-aeio/

• Variants

✦ Go + net/http (GOMAXPROCS=1)

✦ OCaml + http/af + Lwt (explicit callbacks)

✦ OCaml + http/af + Effect handlers (MC)

• Performance measured using wrk2

https://github.com/kayceesrk/ocaml-aeio/

Performance: WebServer
• Effect handlers for asynchronous I/O in direct-style

✦ https://github.com/kayceesrk/ocaml-aeio/

• Variants

✦ Go + net/http (GOMAXPROCS=1)

✦ OCaml + http/af + Lwt (explicit callbacks)

✦ OCaml + http/af + Effect handlers (MC)

• Performance measured using wrk2

• Direct style (no monadic syntax)
• Can use OCaml exceptions!
• Backtrace per thread (request)
• gdb & perf work!

https://github.com/kayceesrk/ocaml-aeio/

Upstreaming Plan

Upstreaming Plan
1. Domains-only multicore to be upstreamed first

Upstreaming Plan
1. Domains-only multicore to be upstreamed first

2. Runtime support for effect handlers

• No effect syntax but all the compiler and runtime bits in

Upstreaming Plan
1. Domains-only multicore to be upstreamed first

2. Runtime support for effect handlers

• No effect syntax but all the compiler and runtime bits in

3. Effect system

a. Track user-defined effects in the type

b. Track ambinet effects (ref, IO) in the type

c. OCaml becomes a pure language (in the Haskell sense).

Upstreaming Plan
1. Domains-only multicore to be upstreamed first

2. Runtime support for effect handlers

• No effect syntax but all the compiler and runtime bits in

3. Effect system

a. Track user-defined effects in the type

b. Track ambinet effects (ref, IO) in the type

c. OCaml becomes a pure language (in the Haskell sense).

let foo () = print_string "hello, world"

val foo : unit -[io]-> unit Syntax is still in
the works

Multicore OCaml + Tezos
• Thanks to Tezos Foundation for funding Multicore OCaml

development!

Multicore OCaml + Tezos
• Thanks to Tezos Foundation for funding Multicore OCaml

development!

• Multicore + Tezos

✦ Parallel Lwt preemptive tasks

✦ Direct-style asynchronous IO library

✤ Bridge the gap between Async and Lwt

✦ Parallelising Irmin (storage layer of Tezos)

Multicore OCaml + Tezos
• Thanks to Tezos Foundation for funding Multicore OCaml

development!

• Multicore + Tezos

✦ Parallel Lwt preemptive tasks

✦ Direct-style asynchronous IO library

✤ Bridge the gap between Async and Lwt

✦ Parallelising Irmin (storage layer of Tezos)

• An end-to-end Multicore Tezos demonstrator (mid-2021)

Thanks!

• Multicore OCaml — https://github.com/ocaml-multicore/ocaml-
multicore

• Effects Examples — https://github.com/ocaml-multicore/effects-
examples

• Sivaramakrishnan et al, “Retrofitting Parallelism onto OCaml", ICFP 2020

• Dolan et al, “Concurrent System Programming with Effect Handlers”, TFP
2017

$ opam switch create 4.10.0+multicore \
 --packages=ocaml-variants.4.10.0+multicore \
 --repositories=multicore=git+https://github.com/ocaml-multicore/multicore-opam.git,default

Install Multicore OCaml

https://github.com/ocaml-multicore/ocaml-multicore
https://github.com/ocaml-multicore/ocaml-multicore
https://github.com/ocaml-multicore/effects-examples
https://github.com/ocaml-multicore/effects-examples
https://kcsrk.info/papers/retro-parallel_icfp_20.pdf
https://link.springer.com/chapter/10.1007/978-3-319-89719-6_6

