
OCaml 5.0
“KC” Sivaramakrishnan

ICFP Keynote

Backwards
Compatibility

Data Races

Implementation
Complexity

Performance
Stability

OCaml 5.0OCaml 4.x

This talk…

What’s in the can? FAQs

Moving to OCaml 5.0Merge Process

OCaml 5.0

Concurrency and Parallelism

Concurrency and Parallelism
Concurrency Parallelism

Concurrency and Parallelism

Overlapped
execution

A

B

A

C

B

Time

Concurrency Parallelism

Effect Handlers

Concurrency and Parallelism

Overlapped
execution

A

B

A

C

B

Time

Simultaneous
execution

A
B

C

Time

Concurrency Parallelism

Effect Handlers Domains

Domains

OCaml OCaml

Domain 0 Domain 1

• Units of parallelism

• Heavy-weight entities

✦ Recommended to have 1 domain per core

Domains

OCaml OCaml

Domain 0 Domain 1

• Units of parallelism

• Heavy-weight entities

✦ Recommended to have 1 domain per core

• API

✦ Create and destroy — Spawn and Join

✦ Blocking synchronisation — Mutex, Condition and
Semaphore

✦ Non-blocking synchronisation — Atomic

✦ Domain-local state

Threads

OCaml C CC

Domains with Threads

OCaml C CC

OCaml C CC

Domain 0

Domain 1

Blocking and non-blocking
synchronisation works

uniformly across threads
and domains

Domainslib
• A library for nested-parallel programming (OpenMP, Cilk, NESL,…)

Domainslib

Task Pool

Async/Await Parallel iter

ChannelsWork-stealing
scheduler

Domain 0

Domain N

…

Domain 0

Domain M

…

Pool 0 Pool 1

Conway’s Game of Life

Conway’s Game of Life

Conway’s Game of Life
let next () =

 ...

 for x = 0 to board_size - 1 do

 for y = 0 to board_size - 1 do

 next_board.(x).(y) <- next_cell cur_board x y

 done

 done;

 ...

Conway’s Game of Life
let next () =

 ...

 for x = 0 to board_size - 1 do

 for y = 0 to board_size - 1 do

 next_board.(x).(y) <- next_cell cur_board x y

 done

 done;

 ...

let next () =

 ...

 T.parallel_for pool ~start:0 ~finish:(board_size - 1)

 ~body:(fun x ->

 for y = 0 to board_size - 1 do

 next_board.(x).(y) <- next_cell cur_board x y

 done);

 ...

Step 0

Step 1

Step 2

Performance: Game of Life

Cores Time (Seconds) Vs Serial

1 24.326 1

2 12.290 1.980

4 6.260 3.890

8 3.238 7.51

16 1.726 14.09

24 1.212 20.07

Board size = 1024, Iterations = 512

Allocation and Collection
• Minor heap allocations require no

synchronization

• Major heap allocator is

✦ Small: Thread-local, size-segmented free list

✦ Large: malloc

Major Heap

Minor

Heap

Minor

Heap

Minor

Heap

Domain 0 Domain 1 Domain 2

Mostly concurrent

Stop-the-world
parallel

Allocation and Collection
• Minor heap allocations require no

synchronization

• Major heap allocator is

✦ Small: Thread-local, size-segmented free list

✦ Large: malloc

• Goal is to match best-fit for sequential
programs

✦ If we’re slower than best-fit, then it is a
performance regression

Major Heap

Minor

Heap

Minor

Heap

Minor

Heap

Domain 0 Domain 1 Domain 2

Mostly concurrent

Stop-the-world
parallel

Concurrent GC
Sweep MarkMark

Roots Mutator

Sweep MarkMark

Roots

Start of major cycle End of major cycle

mark and sweep phases may overlap

Domain 0

Domain 1

Concurrent GC

• Stop-the-world parallel minor GC + non-moving major GC

✦ Objects don’t move while the mutator is running!

Sweep MarkMark

Roots Mutator

Sweep MarkMark

Roots

Start of major cycle End of major cycle

mark and sweep phases may overlap

Domain 0

Domain 1

Concurrent GC

• Stop-the-world parallel minor GC + non-moving major GC

✦ Objects don’t move while the mutator is running!

• No additional rules for the C FFI in OCaml 5.0

✦ Same rules as OCaml 4.x hold even for parallel programs!

Sweep MarkMark

Roots Mutator

Sweep MarkMark

Roots

Start of major cycle End of major cycle

mark and sweep phases may overlap

Domain 0

Domain 1

OCaml memory model
• Simple (comprehensible!) operational memory model

✦ Only atomic and non-atomic locations

✦ DRF-SC

✦ No “out of thin air” values

✦ Squeeze at most perf ⇒ write that module in C, C++ or Rust.

OCaml memory model
• Simple (comprehensible!) operational memory model

✦ Only atomic and non-atomic locations

✦ DRF-SC

✦ No “out of thin air” values

✦ Squeeze at most perf ⇒ write that module in C, C++ or Rust.

• Key innovation: Local data race freedom

✦ Permits compositional reasoning

OCaml memory model
• Simple (comprehensible!) operational memory model

✦ Only atomic and non-atomic locations

✦ DRF-SC

✦ No “out of thin air” values

✦ Squeeze at most perf ⇒ write that module in C, C++ or Rust.

• Key innovation: Local data race freedom

✦ Permits compositional reasoning

• Performance impact

✦ Free on x86 and < 1% on ARM

• Simple (comprehensible!) operational memory model

✦ Only atomic and non-atomic locations

✦ No “out of thin air” values

• Interested in extracting fi

• Key innovation: Local data race freedom

✦ Permits compositional reasoning

• Performance impact

✦ Free on x86 and < 1% on ARM

OCaml memory model

1.19
PLDI ’18

OCaml memory model
• PLDI ’18 paper only formalised compilation to hardware memory models

✦ Omitted object initialisation

OCaml memory model
• PLDI ’18 paper only formalised compilation to hardware memory models

✦ Omitted object initialisation

• OCaml 5.0 extended the work to cover

✦ Object initialisation

✦ Compilation to C11 memory model

OCaml memory model
• PLDI ’18 paper only formalised compilation to hardware memory models

✦ Omitted object initialisation

• OCaml 5.0 extended the work to cover

✦ Object initialisation

✦ Compilation to C11 memory model

• C FFI has been made stronger (by making the access volatile)

#define Field(x, i) (((volatile value *)(x)) [I])

void caml_modify (volatile value *, value);

void caml_initialize (volatile value *, value);

✦ Assumes Linux Kernel Memory Model (LKMM)

✦ Does not break code

OCaml memory model
• C FFI also respects LDRF!

OCaml memory model
• C FFI also respects LDRF!

let msg = ref 0

let flag = Atomic.make false

let t1 =

 msg := 1;

 Atomic.set flag true

let t2 =

 let rf = Atomic.get flag in

 let rm = !msg in

 assert (not (rf = true && rm = 0))

OCaml memory model
• C FFI also respects LDRF!

let msg = ref 0

let flag = Atomic.make false

let t1 =

 msg := 1;

 Atomic.set flag true

let t2 =

 let rf = Atomic.get flag in

 let rm = !msg in

 assert (not (rf = true && rm = 0))

/* t1 implemented in C */

void t1 (value msg, value flag) {

 caml_modify (&Field(msg,0), Val_int(1));

 caml_atomic_exchange (flag, Val_true);

}

ThreadSanitizer

ThreadSanitizer

WARNING: ThreadSanitizer: data race (pid=502344)
 Read of size 8 at 0x7fc0b15fe458 by thread T4 (mutexes: write M0):
 #0 camlDune__exe__Simple_race__fun_600 /workspace_root/simple_race.ml:7 (simple_race.exe+0x51e9b1)
 #1 caml_callback ??:? (simple_race.exe+0x5777f0)
 #2 domain_thread_func domain.c:? (simple_race.exe+0x57b8fc)

 Previous write of size 8 at 0x7fc0b15fe458 by thread T1 (mutexes: write M1):
 #0 camlDune__exe__Simple_race__fun_596 /workspace_root/simple_race.ml:6 (simple_race.exe+0x51e971)
 #1 caml_callback ??:? (simple_race.exe+0x5777f0)
 #2 domain_thread_func domain.c:? (simple_race.exe+0x57b8fc)

Effect handlers
• Structured programming with delimited

continuations

• No effect system, no dedicated syntax

• Provides both deep and shallow handlers

Effect handlers
• Structured programming with delimited

continuations

• No effect system, no dedicated syntax

• Provides both deep and shallow handlers

Example prints “0 1 2 3 4”

Effect handlers
• Structured programming with delimited

continuations

• No effect system, no dedicated syntax

• Provides both deep and shallow handlers

Example prints “0 1 2 3 4”

• Same type safety as the earlier syntactic
version

Eio — Direct-style effect-based concurrency

HTTP server performance using 24 cores HTTP server scaling maintaining a constant load of
1.5 million requests per second

Integration with Lwt & Async
• Lwt_eio allows running Lwt and Eio code together

✦ Only sequential

✦ Cancellation semantics is also integrated

✦ Incrementally port Lwt applications to Eio

Integration with Lwt & Async
• Lwt_eio allows running Lwt and Eio code together

✦ Only sequential

✦ Cancellation semantics is also integrated

✦ Incrementally port Lwt applications to Eio

• Very experimental Async_eio running Async and Eio
code together

✦ Required changes to Async

Merge Process
• Multicore OCaml was maintained as a separate fork of the compiler

✦ Multiple tricky rebases to keep the fork up to date with trunk

Merge Process
• Multicore OCaml was maintained as a separate fork of the compiler

✦ Multiple tricky rebases to keep the fork up to date with trunk

• Single PR to merge multicore change

✦ Not worth splitting into multiple PR — context loss

Merge Process
• Multicore OCaml was maintained as a separate fork of the compiler

✦ Multiple tricky rebases to keep the fork up to date with trunk

• Single PR to merge multicore change

✦ Not worth splitting into multiple PR — context loss

• Asynchronous & Synchronous review phases (Nov 2021)

Merge Process

OCaml 5.0 — an MVP release
• Many features broken and are being added back

✦ This will continue after 5.0 gets released

OCaml 5.0 — an MVP release
• Many features broken and are being added back

✦ This will continue after 5.0 gets released

• Platform support

✦ 32-bit will be bytecode only

✦ On 64-bit,

✤ x86-64 + Linux, macOS, Windows, OpenBSD, FreeBSD

✤ Arm64 + Linux, macOS (Apple Silicon)

✤ RISC-V (PR open)

✦ JavaScript (jsoo) — effect handlers are not
supported yet!

OCaml 5.0 — an MVP release
• GC performance improvements TBD

✦ Decoupling major slice from minor GC

✦ Mark stack prefetching

✦ Best-fit vs multicore allocator

OCaml 5.0 — an MVP release
• GC performance improvements TBD

✦ Decoupling major slice from minor GC

✦ Mark stack prefetching

✦ Best-fit vs multicore allocator

• Statmemprof

✦ Work in progress for reinstating asynchronous action
safety

Tidying
• We tidied up accumulated deprecations

✦ String.uppercase, lowercase, capitalize, uncapitalize

✦ Stream, Genlex ~> camlp-streams

✦ Pervasives, ThreadUnix modules deleted

• Major version jump to make good changes

✦ C function names are all prefixed uniformly

✦ Additional libraries Unix, Str installed as findlib packages

OPAM Health Check

OPAM Health Check

http://check.ocamllabs.io/

http://check.ocamllabs.io/

Sandmark Nightly Service

Normalised Time

sandmark.tarides.com

http://sandmark.tarides.com

Sandmark Nightly Service

Instructions Retired

OCaml 5.0 needs you!
• OCaml 4 will have longer term support than usual

• Even if you don’t plan to use concurrency and
parallelism, switch to OCaml 5.0

✦ Only then can we move away from OCaml 4.x

OCaml 5.0 needs you!
• OCaml 4 will have longer term support than usual

• Even if you don’t plan to use concurrency and
parallelism, switch to OCaml 5.0

✦ Only then can we move away from OCaml 4.x

• Sequential programs must work with same perf on 5.0

✦ Test, deploy, evaluate, benchmark sequential programs in 5.0

✦ Report bugs & performance regressions

OCaml 5.0 needs you!
• OCaml 4 will have longer term support than usual

• Even if you don’t plan to use concurrency and
parallelism, switch to OCaml 5.0

✦ Only then can we move away from OCaml 4.x

• Sequential programs must work with same perf on 5.0

✦ Test, deploy, evaluate, benchmark sequential programs in 5.0

✦ Report bugs & performance regressions

• What is stopping you from switching to
OCaml 5.0?

✦ Let us know so that we can work on it!

