Concurrent Programming with OCaml 5

“KC” Sivaramakrishnan

111 /} Tarides

: 5
MADRAS =

OCaml 5

* Native-support for concurrency and
parallelism to OCaml
e Started in 2014 as “Multicore OCaml” project
> OCaml 5.0 released in Dec 2022

» 5.1 — Sep 2023; 6.2 — May 2024; 5.3 — Jan
2025

e This talk

> Concurrency

> (if there is time) Experience porting from muilti-
process to multi-core

R

L,

Two roads diverged in a wood, and I —

— I took the one less traveled by,

......

OCaml supports multicore,

And that has made all the difference!J '

OCaml 5

* Native-support for| Jto OCaml

concurrency}

i~ Interleaved N Simultaneous

“Retrofitting Effect Handlers
onto OCaml”, PLDI 2021 A Time

“Retrofitting Parallelism
Time onto OCaml”, ICFP 2020

Effect Handlers Domains

Concurrency

Interleaved

Concurrent Programming

e Computations may be suspended and resumed later

* Many languages provide concurrent programming mechanisms as primitives
+ async/await — JavaScript, Python, Rust, C# 5.0, F#, Swift, ...
+ generators — Python, Javascript, ...
4+ coroutines — C++, Kotlin, Lua, ...
+ futures & promises — JavaScript, Swift, ...

+ Lightweight threads/processes — Haskell, Go, Erlang

® QOften include many different primitives in the same language!

+ JavaScript has async/await, generators, promises, and callbacks

Concurrent Programming in OCaml 4

* No primitive support for concurrent programming

* Lwt and Async - concurrent programming
libraries in OCaml

> Callback-oriented programming with monadic syntax

J. Functional Programming 9 (3): 313-323, May 1999. Printed in the United Kingdom
© 1999 Cambridge University Press

FUNCTIONAL PEARL

A poor man’s concurrency monad

KOEN CLAESSEN

Chalmers University of Technology
(e-mail: koen@cs.chalmers.se)

Concurrent Programming in OCaml 4

* No primitive support for concurrent Normal
programming calls

e Lwt and Async - concurrent programming
libraries in OCaml

> (Callback-oriented programming with monadic

syntax Special calling

. _ _ convention
« Suffers the pitfalls of callback-orinted programming

What Color is Your Function?
> Incomprehensible (“callback hell”), no - Bob Nystrom

backtraces, poor performance, function
colouring

I don’t know about you, but nothing gets me going in the morning quite like a
good old fashioned programming language rant. It stirs the blood to see
someone skewer one of those “blub” languages the plebians use, muddling
through their day with it between furtive visits to StackOverflow.

Don’t want a zoo of primitives but
want expressivity

What'’s the smallest primitive that
expresses many concurrency patterns?

Effect handlers

* A mechanism for programming with user-defined effects

* Modular and composable basis of non-local control-flow mechanisms

+ Exceptions, generators, lightweight threads, promises, asynchronous 10O, coroutines as
libraries

e Effect handlers ~= first-class, restartable exceptions

+ Structured programming with delimited continuations

® Direct-style asynchronous I/O

® Generators
® Resumable parsers
https://github.com/ocaml-multicore/effects—examples ® Probabilistic Programming

® Reactive Uls
o ...

Effect handlers

type _ eff += E : string eff

effect declaration let comp () = suspendscunent
print_string "0 "; _///”’)' computation
print_string (perform E);
print_string "3 "

let main () =

try __— computation

comp () _— > delimited continuation

with effect E, k —>
print_string "1 ";

‘///’,,,__——-continue k "2 "
print_string "4 "
resume suspended
computation

____y handler

Stepping through the example

parenfparent

type 'a eff += E : string eff

let comp () =
print_string "0 ";
print_string (perform E);
print_string "3 "

let main () =
pCc— try
comp ()
with effect E, k —>
print_string "1 ";
continue k "2 ";
print_string "4 "

QHBEQE

Sp——

Handlers can be nested

type _ eff 4= A : unit eff
| B : unit eff

let baz () =
PC— perform A

let bar () =
try
baz ()
with effect B, k —>
continue k ()

let foo () =
try
bar ()
with effect A, k —>
continue k ()

® Linear search through handlers

+ Handler stacks shallow in practice

Lightweight threading

type _ eff += Fork : (unit —> unit) —-> unit eff
| Yield : unit eff

let run main =
(x assume queue of continuations)
let run_next () =
match dequeue () with
| Some k —> continue k ()
| None —> ()
in
let rec spawn f =
[match f () with
() = run_next () (% value case x*)
Effect Handler ; effect Yield, k —> enqueue k; run_next ()

effect (Fork f), k —> enqueue k; spawn f

k]
in
spawn main

let fork f = perform (Fork f)
let yield () = perform Yield

Lightweight threading

let main () =

fork (fun _ —>
print_endline "1l.a";
yield ();
print_endline "1.b");

fork (fun _ —>
print_endline "2.a";
yield ();

print_endline “2.b")

run main

N RPN -
O T O 9

Lightweight threading

let main () =

fork (fun _ —>
print_endline "1l.a";
yield ();
print_endline "1.b");

fork (fun _ —>
print_endline "2.a";
yield ();
print_endline “2.b")

run main

® Direct-style (ho monads)

1l.a ® User-code need not be
2.3 aware of effects
;-E ® No Async vs Sync

distinction

Industrial-strength concurrency

* eio: effects-based direct-style I/0

+ Multiple backends — epoll, select, io_uring (new async io in Linux kernel)

C 25 github.com/ocaml-multicore/eio

O https://github.com... [Model Checking m ICSR Projects Page @ Logbook [Reason

arks @ Convertor @ Department of Co...

[0 README & Code of conduct 3[3 License Vd

API reference | #eio Matrix chat | Dev meetings

Eio — Effects-Based Parallel 10 for OCaml

Eio provides an effects-based direct-style IO stack for OCaml 5. For example, you can use Eio to read and write
files, make network connections, or perform CPU-intensive calculations, running multiple operations at the same
time. It aims to be easy to use, secure, well documented, and fast. A generic cross-platform APl is implemented by
optimised backends for different platforms. Eio replaces existing concurrency libraries such as Lwt (Eio and Lwt

libraries can also be used together).

https://github.com/ocaml-multicore/eio

https://github.com/ocaml-multicore/eio

Industrial-strength concurrency

* eio: effects-based direct-style I/0

+ Multiple backends — epoll, select, io_uring (new async io in Linux kernel)

200000 4 — httpaf_eio OCaml eio
httpaf lwt |
- 175000 {|— httpaf_effects ———— Rust Hyper
§ 150000 1 — cohttp_lwt_unix
“a rust_hyper e ——
% 125000 {1 —— nethttp go OCaml (Http/af + Lwt)
;q 100000
© 75000 -
2 Go NetHttp
¢ 50000 -
OCaml (cohttp + Lwt)
25000 -
0

0 50000 100000 150000 200000250000 300000 350000400000
load requests/second

100 open connections, 60 seconds w/ io_uring

https://github.com/ocaml-multicore/eio

https://github.com/ocaml-multicore/eio

Representing Stack & Continuations

* Program stack is a stack of runtime-managed dynamically growing fibers

> No pointers into the OCaml stack = reallocate fibers on stack overflow

* Stack switching is fast!!

> One shot continuations = No copying of frames

> No callee-saved registers in OCaml = No registers to save and restore at switches

» Few 10s of instructions; 5 to 10ns for stack switch

* Need stack overflow checks in OCaml function prologue

> Branch predictor correctly predicts almost always

Representing Stack & Continuations

e No stack overflow checks in C code

> Need to perform C calls on system stack!

Effect
handler

C

HEINES

oo || :Main entry
&
HEINES

Stack o External call B T

grows C
down frames 3

OCaml Callback
Callback

Frames

System
OCaml 4.xx gta ck OCaml 5.xx

Made fast enough to be
not noticable!

Porting Applications to OCaml 5

Based on work done by Thomas Leonard @ Tarides
https://roscidus.com/blog/blog/2024/@7/22/performance-2/

https://roscidus.com/blog/blog/2024/07/22/performance-2/

Solver service

ocaml-ci — CIl for OCaml projects

> Free to use for the OCaml community

> Build and run tests on a matrix of platforms on every commit

- OCaml compilers (4.02 — 5.2), architectures (32- and 64-bit x86, ARM, PPC64, s390x), OSes (Alpine,
Debian, Fedora, FreeBSD, macOS, OpenSUSE and Ubuntu, in multiple versions)

Select compatible versions of its dependencies

> ~1s per solve; 132 solver runs per commit!

Solves are done by solver-service

» 160-core ARM machine

> Lwt-based; sub-process based parallelism for solves

Port it to OCaml 5 to take advantage of better concurrency and shared-memory parallelism

https://github.com/ocurrent/ocaml-ci/
https://github.com/ocurrent/solver-service

Solver service in OCaml 5

* Used Eio to port from multi-process parallel to shared-memory parallel
> Support for asynchronous |0 (incl io_uring!) and parallelism

> and switches for resource management

e Qutcome

> Simple code, more stable (switches), removal of lots of IPC logic

> No function colouring!

- Reclaim the use of try..with, for and while loops!

e Used TSan to ensure that data races are removed

ThreadSanitizer (since 5.2)

* Detect data races dynamically

* Part of the LLVM project — C++, Go, Swift

let a = ref @ and b = ref 0 WARNING: ThreadSanitizer: data race (pid=3808831)
Write of size 8 at 0x8febel by thread Tl (mutexes: write M9

let d1 () =

a = 1;
'b

~

let d2 () =2s._

b :1= 1;
la

let () =

let h = Domain.spawn d2 1in

let rl
let r2
assert

(

~
-~
-~
L}
..
..
-

dl () in
Domain.join h in

not

(rl =06& r2 =0)) ...

#0
#1
#2
7#3

#0

camlSimple race.d2 274 simple race.ml:8 (simple race.e:
camlDomain.body 706 stdlib/domajn.ml:211 (simple race.:
caml start program <null> (simple race.exe+0x47cf37)

caml callback exn runtime/ca}iﬁack.c:l97 (simple race.:
domain thread func runtjime/domain.c:1167 (simple race.:

-

T Previous read of size 8 at 0x8febelO by main thread (mutexes

camlSimple race.dl 271 simple race.ml:5 (simple race.e:

caml start program <null> (simple race.exe+0x47cf37)

Eio solver service performance

* ... was underwhelminginitially

S0
45
40

W
(&)

w
o

- Processes

== DOmains

N
o

Solves per second
N
&y

—
(&)

10

0 10 20 30 40 50 60 70 80
Workers (CPUs)

Performance analysis

* perf (incl. call graph), eBFP works

» Frame-pointers across effect handlers!

e Runtime Events

> Every OCaml 5 program has tracing support built-in

» Events are written to a shared ring buffer that can be read by an external process

$ olly trace foo.trace foo.exe

interrupt_remote

stw_handler

stw_api_barrier minor_leave_barrier

stw_leader

minor_leave_barrier

Problem indentified

e Switch from sched other to sched rr

 git log for each solve to find earliest commit

> 50ms penalty for STW subprocess spawn

> Avoid by implementing it in OCaml

Requests per second

50

45

40

w
(43}

W
o

N
[¢)]

N
o

=
o

=
o

ol

o

The real service on the ARM server

—B-Processes, sched-other
—o—Processes, sched-rr
A-Domains, sched-other (original)
=>~Domains, sched-rr
=¥=Domains, sched-rr, ocaml-git (dubious; loaded?)
®-Domains, sched-rr, ocaml-git, new opam | d
—=—Domains, sched-other, ocaml-git, new opam

e
" A
10 20 30 40

Workers

>

50

»

—i

/
—~

@ /

60

70

80

Still some work to do

Takeaways for introducing shared-memory paralleism

* Use Eio for concurrency and parallelism in OCaml 5

> Makes your asynchronous IO program more reliable

 QOther libraries

» Saturn: Verified multicore safe data structures

> Kcas: Software transactional memory for OCaml

e Use TSan to remove data races

» Data races will not lead to crashes

* Expect that the initial performance may be underwhelming

> Existing external tools such as perf, eBPF based profiling,
statmemprof continue to work

Two roads diverged in a wood, and I -

— I took the one less traveled by,

+ I took both in paranél'iaec'adé%

> New tools are available on OCaml 5 enabled through runtime
events — Olly, eio-trace, etc.

OCaml supports multicore,

And that has made all the difference.

https://github.com/ocaml-multicore/saturn
https://github.com/ocaml-multicore/kcas

Future

Data Rac

AINA LINN C
BENJAMIN P
LAILA ELBEF
LEO WHITE,
STEPHEN D(
RICHARD A.
CHRIS CASI)
FRANCOIS P
DEREK DREY

We present DRE
threaded OCaml

Oxidizing OCaml with Modal Memory Management

A Mechanically Verified Garbage Collector for
OCaml JAR 2025

Sheera Shamsu!, Dipesh Kafle?, Dhruv Maroo!, Kartik Nagar®, \ 2025
3 KC Sivaramakrishnan?*

Karthikeyan Bhargavan®,
ITIT Madras, Chennai, 600036, India.
2NIT Trichy, Trichy, 620015, India.

SInria, Paris, 75014, France.
4Tarides and IIT Madras, Chennai, 600036, India.

ational effects.
S r . —mmmemmmmy—==-11, Dut using a

tradltlonal effect system would require adding extensive effect annotations to the millions of lines of existing
code in these languages. Recent proposals seek to address this problem by removing the need for explicit effect
polymorphism. However, they typically rely on fragile syntactic mechanisms or on introducing a separate
notion of second-class function. We introduce a novel semantic approach based on modal effect types.

