
“KC” Sivaramakrishnan

Concurrent Programming with OCaml 5

OCaml 5
• Native-support for concurrency and

parallelism to OCaml

• Started in 2014 as “Multicore OCaml” project

‣ OCaml 5.0 released in Dec 2022

‣ 5.1 — Sep 2023; 5.2 — May 2024; 5.3 — Jan
2025

• This talk

‣ Concurrency

‣ (if there is time) Experience porting from multi-
process to multi-core

OCaml 5
• Native-support for concurrency and parallelism to OCaml

Interleaved

A

B

A

C

B

Time

Simultaneous

A
B

C
Time

“Retrofitting Effect Handlers
onto OCaml”, PLDI 2021

Effect Handlers Domains

“Retrofitting Parallelism
onto OCaml”, ICFP 2020

Concurrency

Interleaved

A

B

A

C

B

Time

• Computations may be suspended and resumed later

• Many languages provide concurrent programming mechanisms as primitives

✦ async/await — JavaScript, Python, Rust, C# 5.0, F#, Swift, …

✦ generators — Python, Javascript, …

✦ coroutines — C++, Kotlin, Lua, …

✦ futures & promises — JavaScript, Swift, …

✦ Lightweight threads/processes — Haskell, Go, Erlang

• Often include many different primitives in the same language!
✦ JavaScript has async/await, generators, promises, and callbacks

Concurrent Programming

Concurrent Programming in OCaml 4
• No primitive support for concurrent programming

• Lwt and Async - concurrent programming
libraries in OCaml

‣ Callback-oriented programming with monadic syntax

Concurrent Programming in OCaml 4
• No primitive support for concurrent

programming

• Lwt and Async - concurrent programming
libraries in OCaml

‣ Callback-oriented programming with monadic
syntax

• Suffers the pitfalls of callback-orinted programming

‣ Incomprehensible (“callback hell”), no
backtraces, poor performance, function
colouring

Synchronous Asynchronous

Normal
calls

Special calling
convention

- Bob Nystrom

Don’t want a zoo of primitives but
want expressivity

What’s the smallest primitive that
expresses many concurrency patterns?

Effect handlers
• A mechanism for programming with user-defined effects

• Modular and composable basis of non-local control-flow mechanisms

✦ Exceptions, generators, lightweight threads, promises, asynchronous IO, coroutines as

libraries

• Effect handlers ~= first-class, restartable exceptions
✦ Structured programming with delimited continuations

https://github.com/ocaml-multicore/effects-examples

• Direct-style asynchronous I/O

• Generators

• Resumable parsers

• Probabilistic Programming

• Reactive UIs

• ….

Effect handlers
type _ eff += E : string eff

let comp () =
 print_string "0 ";
 print_string (perform E);
 print_string "3 "

let main () =
 try
 comp ()
 with effect E, k ->
 print_string "1 ";
 continue k "2 ";
 print_string "4 "

computation

handler

delimited continuation

suspends current
computation

resume suspended
computation

effect declaration

Fiber: A piece of stack
+ effect handler

type 'a eff += E : string eff

let comp () =
 print_string "0 ";
 print_string (perform E);
 print_string "3 "

let main () =
 try
 comp ()
 with effect E, k ->
 print_string "1 ";
 continue k "2 ";
 print_string "4 "

comp

comp

pc

main

sp k

parentparent

0 1 2 3 4

Stepping through the example

Handlers can be nested

• Linear search through handlers
✦ Handler stacks shallow in practice

type _ eff += A : unit eff
 | B : unit eff

let baz () =
 perform A

let bar () =
 try
 baz ()
 with effect B, k ->
 continue k ()

let foo () =
 try
 bar ()
 with effect A, k ->
 continue k ()

foo bar baz

sp

parent
parent

pc

k

type _ eff += Fork : (unit -> unit) -> unit eff
 | Yield : unit eff

let fork f = perform (Fork f)
let yield () = perform Yield

Lightweight threading

let run main =
 ... (* assume queue of continuations *)
 let run_next () =
 match dequeue () with
 | Some k -> continue k ()
 | None -> ()
 in
 let rec spawn f =
 match f () with
 | () -> run_next () (* value case *)
 | effect Yield, k -> enqueue k; run_next ()
 | effect (Fork f), k -> enqueue k; spawn f
 in
 spawn main

Effect Handler

let main () =
 fork (fun _ ->
 print_endline "1.a";
 yield ();
 print_endline "1.b");
 fork (fun _ ->
 print_endline "2.a";
 yield ();
 print_endline “2.b")
;;
run main

1.a
2.a
1.b
2.b

Lightweight threading

let main () =
 fork (fun _ ->
 print_endline "1.a";
 yield ();
 print_endline "1.b");
 fork (fun _ ->
 print_endline "2.a";
 yield ();
 print_endline “2.b")
;;
run main

1.a
2.a
1.b
2.b

• Direct-style (no monads)
• User-code need not be

aware of effects
• No Async vs Sync

distinction

Ability to specialise
scheduler

unlike GHC Haskell / Go

Lightweight threading

https://github.com/ocaml-multicore/eio

• eio: effects-based direct-style I/O

✦ Multiple backends — epoll, select, io_uring (new async io in Linux kernel)

Industrial-strength concurrency

https://github.com/ocaml-multicore/eio

• eio: effects-based direct-style I/O

✦ Multiple backends — epoll, select, io_uring (new async io in Linux kernel)

100 open connections, 60 seconds w/ io_uring

OCaml eio

Rust Hyper

OCaml (Http/af + Lwt)

Go NetHttp
OCaml (cohttp + Lwt)

https://github.com/ocaml-multicore/eio

Industrial-strength concurrency

https://github.com/ocaml-multicore/eio

Representing Stack & Continuations
• Program stack is a stack of runtime-managed dynamically growing fibers

‣ No pointers into the OCaml stack ➔ reallocate fibers on stack overflow

• Stack switching is fast!!

‣ One shot continuations ➔ No copying of frames

‣ No callee-saved registers in OCaml ➔ No registers to save and restore at switches

‣ Few 10s of instructions; 5 to 10ns for stack switch

• Need stack overflow checks in OCaml function prologue

‣ Branch predictor correctly predicts almost always

Representing Stack & Continuations
• No stack overflow checks in C code

‣ Need to perform C calls on system stack!

C
frames

C
frames

Fiber 1
(Many
OCaml

Frames)

Fiber 2

C
frames Fiber 3

Main
entry

Effect
handler

External Call

Callback

System
Stack OCaml 5.xx

C
frames
OCaml
Frames

C
frames
OCaml
Frames

OCaml 4.xx

Stack
grows
down

Main entry

External call

Callback

Made fast enough to be
not noticable!

Porting Applications to OCaml 5

Based on work done by Thomas Leonard @ Tarides
https://roscidus.com/blog/blog/2024/07/22/performance-2/

https://roscidus.com/blog/blog/2024/07/22/performance-2/

Solver service
• ocaml-ci — CI for OCaml projects

‣ Free to use for the OCaml community

‣ Build and run tests on a matrix of platforms on every commit

- OCaml compilers (4.02 — 5.2), architectures (32- and 64-bit x86, ARM, PPC64, s390x), OSes (Alpine,
Debian, Fedora, FreeBSD, macOS, OpenSUSE and Ubuntu, in multiple versions)

• Select compatible versions of its dependencies

‣ ~1s per solve; 132 solver runs per commit!

• Solves are done by solver-service

‣ 160-core ARM machine

‣ Lwt-based; sub-process based parallelism for solves

• Port it to OCaml 5 to take advantage of better concurrency and shared-memory parallelism

https://github.com/ocurrent/ocaml-ci/
https://github.com/ocurrent/solver-service

Solver service in OCaml 5
• Used Eio to port from multi-process parallel to shared-memory parallel

‣ Support for asynchronous IO (incl io_uring!) and parallelism

‣ Structured concurrency and switches for resource management

• Outcome

‣ Simple code, more stable (switches), removal of lots of IPC logic

‣ No function colouring!

- Reclaim the use of try…with, for and while loops!

• Used TSan to ensure that data races are removed

ThreadSanitizer (since 5.2)
• Detect data races dynamically

• Part of the LLVM project — C++, Go, Swift

 1 let a = ref 0 and b = ref 0
 2
 3 let d1 () =
 4 a := 1;
 5 !b
 6
 7 let d2 () =
 8 b := 1;
 9 !a
 10
 11 let () =
 12 let h = Domain.spawn d2 in
 13 let r1 = d1 () in
 14 let r2 = Domain.join h in
 15 assert (not (r1 = 0 && r2 = 0))

==================
WARNING: ThreadSanitizer: data race (pid=3808831)
 Write of size 8 at 0x8febe0 by thread T1 (mutexes: write M90):
 #0 camlSimple_race.d2_274 simple_race.ml:8 (simple_race.exe+0x420a72)
 #1 camlDomain.body_706 stdlib/domain.ml:211 (simple_race.exe+0x440f2f)
 #2 caml_start_program <null> (simple_race.exe+0x47cf37)
 #3 caml_callback_exn runtime/callback.c:197 (simple_race.exe+0x445f7b)
 #4 domain_thread_func runtime/domain.c:1167 (simple_race.exe+0x44a113)

 Previous read of size 8 at 0x8febe0 by main thread (mutexes: write M86):
 #0 camlSimple_race.d1_271 simple_race.ml:5 (simple_race.exe+0x420a22)
 #1 camlSimple_race.entry simple_race.ml:13 (simple_race.exe+0x420d16)
 #2 caml_program <null> (simple_race.exe+0x41ffb9)
 #3 caml_start_program <null> (simple_race.exe+0x47cf37)
[...]

Eio solver service performance
• … was underwhelming ….initially

Performance analysis
• perf (incl. call graph), eBFP works

‣ Frame-pointers across effect handlers!

• Runtime Events

‣ Every OCaml 5 program has tracing support built-in

‣ Events are written to a shared ring buffer that can be read by an external process

$ olly trace foo.trace foo.exe https://perfetto.dev/

Problem indentified
• Switch from sched_other to sched_rr

• git log for each solve to find earliest commit
‣ 50ms penalty for STW subprocess spawn

‣ Avoid by implementing it in OCaml

Still some work to do

Takeaways for introducing shared-memory parallellism
• Use Eio for concurrency and parallelism in OCaml 5

‣ Makes your asynchronous IO program more reliable

• Other libraries

‣ Saturn: Verified multicore safe data structures

‣ Kcas: Software transactional memory for OCaml

• Use TSan to remove data races

‣ Data races will not lead to crashes

• Expect that the initial performance may be underwhelming

‣ Existing external tools such as perf, eBPF based profiling,
statmemprof continue to work

‣ New tools are available on OCaml 5 enabled through runtime
events — Olly, eio-trace, etc.

https://github.com/ocaml-multicore/saturn
https://github.com/ocaml-multicore/kcas

ICFP 2024

Future

POPL 2025

OOPSLA 2025

JAR 2025

