Concurrent and Parallel Programming with
OCaml 5

“KC” Sivaramakrishnan

111)} Tarides

: 5
MADRAS =

OCaml 5

* Native-support for concurrency and
parallelism to OCaml

o Started in 2014 as “Multicore OCaml” project

» OCaml 5.0 released in Dec 2022
> 5.1 — Sep 2023; 5.2 — May 2024; 5.3 — Jan 2025

e This talk

> Concurrency

» Parallelism

Two roads diverged in a wood, and I — : i
- I took the one less traveled by,

il

> EXperience porting from multi-process to multi-core

OCaml supports multicore,

And that has made all the difference!J

OCaml 5

* Native-support for|

language

“Retrofitting Effect Handlers
onto OCaml”, PLDI 2021

A Time

Effect Handlers

concurrency}

{,” Overlapped

\4

Domains

Nk Simultaneous

Time

jto OCaml programming

“Retrofitting Parallelism
onto OCaml”, ICFP 2020

Concurrency

Overlapped

Concurrent Programming

e Computations may be suspended and resumed later

* Many languages provide concurrent programming mechanisms as primitives
+ async/await — JavaScript, Python, Rust, C# 5.0, F#, Swift, ...
+ generators — Python, Javascript, ...
4+ coroutines — C++, Kotlin, Lua, ...
+ futures & promises — JavaScript, Swift, ...

+ Lightweight threads/processes — Haskell, Go, Erlang

® QOften include many different primitives in the same language!

+ JavaScript has async/await, generators, promises, and callbacks

Concurrent Programming in OCaml 4

* No primitive support for concurrent programming

* Lwt and Async - concurrent programming
libraries in OCaml

> Callback-oriented programming with monadic syntax

J. Functional Programming 9 (3): 313-323, May 1999. Printed in the United Kingdom
© 1999 Cambridge University Press

FUNCTIONAL PEARL

A poor man’s concurrency monad

KOEN CLAESSEN

Chalmers University of Technology
(e-mail: koen@cs.chalmers.se)

Concurrent Programming in OCaml 4

* No primitive support for concurrent programming

* Lwt and Async - concurrent programming

libraries in OCaml Normal
calls

> Callback-oriented programming with monadic syntax
* Suffers the pitfalls of callback-orinted programming

> Incomprehensible (“callback hell”), no backtraces,
poor performance, function colouring

Special calling

 Don’t want a zoo of primitives, but need expressivity! .
convention

> Add the smallest primitive that captures many
concurrent programming patterns

Effect handlers

* A mechanism for programming with user-defined effects

* Modular and composable basis of non-local control-flow mechanisms

+ Exceptions, generators, lightweight threads, promises, asynchronous 10O, coroutines as
libraries

e Effect handlers ~= first-class, restartable exceptions

+ Structured programming with delimited continuations

® Direct-style asynchronous I/O

® Generators
® Resumable parsers
https://github.com/ocaml-multicore/effects—examples ® Probabilistic Programming

® Reactive Uls
o ...

Effect handlers

type _ eff += E : string eff

effect declaration let comp () = suspendscunent
print_string "0 "; _///”’)' computation
print_string (perform E);
print_string "3 "

let main () =

try __— computation

comp () _— > delimited continuation

with effect E, k —>
print_string "1 ";

‘///’,,,__——-continue k "2 "
print_string "4 "
resume suspended
computation

____y handler

Stepping through the example

parenfparent

type 'a eff += E : string eff

let comp () =
print_string "0 ";
print_string (perform E);
print_string "3 "

let main () =
pCc— try
comp ()
with effect E, k —>
print_string "1 ";
continue k "2 ";
print_string "4 "

QHBEQE

Sp——

Handlers can be nested

type _ eff 4= A : unit eff
| B : unit eff

let baz () =
PC— perform A

let bar () =
try
baz ()
with effect B, k —>
continue k ()

let foo () =
try
bar ()
with effect A, k —>
continue k ()

® Linear search through handlers

+ Handler stacks shallow in practice

Lightweight threading

type _ eff += Fork : (unit —> unit) —-> unit eff
| Yield : unit eff

let run main =
(x assume queue of continuations)
let run_next () =
match dequeue () with
| Some k —> continue k ()
| None —> ()
in
let rec spawn f =
match f () with
() = run_next () (% value case x*)
effect Yield, k —> enqueue k; run_next ()
effect (Fork f), k —> enqueue k; spawn f

in
spawn main

let fork f = perform (Fork f)
let yield () = perform Yield

Lightweight threading

let main () =

fork (fun _ —>
print_endline "1l.a";
yield ();
print_endline "1.b");

fork (fun _ —>
print_endline "2.a";
yield ();

print_endline “2.b")

run main

N RPN -
O T O 9

Lightweight threading

let main () =

fork (fun _ —>
print_endline "1l.a";
yield ();
print_endline "1.b");

fork (fun _ —>
print_endline "2.a";
yield ();
print_endline “2.b")

run main

® Direct-style (ho monads)

1l.a ® User-code need not be
2.3 aware of effects
;-E ® No Async vs Sync

distinction

Lightweight threading

* eio: effects-based direct-style I/0

+ Multiple backends — epoll, select, io_uring (new async io in Linux kernel)

C 25 github.com/ocaml-multicore/eio

arks Q Convertor @ Department of Co... O https://github.com... [Model Checking m ICSR Projects Page @ Log book [Reason

[0 README & Code of conduct 3[3 License 7 =

API reference | #eio Matrix chat | Dev meetings

Eio — Effects-Based Parallel 10 for OCaml

Eio provides an effects-based direct-style IO stack for OCaml 5. For example, you can use Eio to read and write
files, make network connections, or perform CPU-intensive calculations, running multiple operations at the same
time. It aims to be easy to use, secure, well documented, and fast. A generic cross-platform APl is implemented by
optimised backends for different platforms. Eio replaces existing concurrency libraries such as Lwt (Eio and Lwt
libraries can also be used together).

https://github.com/ocaml-multicore/eio

https://github.com/ocaml-multicore/eio

Lightweight threading

* eio: effects-based direct-style I/0

+ Multiple backends — epoll, select, io_uring (new async io in Linux kernel)

|

200000 { — httpaf eio OCaml eio

httpaf lwt |

= 175000 1 — httpaf effects ’ ——— Rust Hyper
S 150000 4 cohttp_Iwt unix -
@ rust_hyper /
8 125000 1 — pethttp go OCaml (Http/af + Lwt)
n i
=3
g 100000 -
© 75000 -
B 50000 Go NetHttp
! OCaml (cohttp + Lwt)

25000 A

0+

0 50000 100000 150000 200000250000 300000 350000400000
load requests/second

100 open connections, 60 seconds w/ io_uring

https://github.com/ocaml-multicore/eio

https://github.com/ocaml-multicore/eio

Representing Stack & Continuations

* Program stack is a stack of runtime-managed dynamically growing fibers

> No pointers into the OCaml stack = reallocate fibers on stack overflow

* Stack switching is fast!!

> One shot continuations = No copying of frames

> No callee-saved registers in OCaml = No registers to save and restore at switches

» Few 10s of intructions; 5 to 10ns for stack switch

* Need stack overflow checks in OCaml function prologue

> Branch predictor correctly predicts almost always

Representing Stack & Continuations

e No stack overflow checks in C code

> Need to perform C calls on system stack!

Effect
handler

C

HEINES

oo || :Main entry
&
HEINES

Stack o External call B T

grows C
down frames 3

OCaml Callback
Callback

Frames

System
OCaml 4.xx gta ck OCaml 5.xx

Made fast enough to be
not noticable!

Summary — Effect Handlers

» Effect handlers brings simple, fast, backwards

compatible native concurrency to OCaml

* Support for

> Integration with GDB (DWARF backtraces)

» frame-pointers (perf, eBPF)

* No static type system

>

Unhandled effects are runtime errors (just like
exceptions)!

The OCaml language
+ Language extensions

= The OCaml language

Chapter 12 Language
extensions

24 Effect handlers

24.1 Basics

24.2 Concurrency

24.3 User-level threads
24.4 Control inversion
24.5 Semantics

24.6 Shallow handlers

(Introduced in 5.0)

Effect handlers are a mechanism for modular
programming with user-defined effects. Effect handlers
allow the programmers to describe computations that
perform effectful operations, whose meaning is described
by handlers that enclose the computations. Effect handlers
are a generalization of exception handlers and enable non-
local control-flow mechanisms such as resumable
exceptions, lightweight threads, coroutines, generators and
asynchronous I/0 to be composably expressed. In this
tutorial, we shall see how some of these mechanisms can
be built using effect handlers.

Parallelism

Domains

Chapter 10 Memory model:
The hard bits

* A unit of parallelism

 Heavyweight — maps onto an OS thread

This chapter describes the details of OCaml relaxed

> Aim to have 1 domain per physical core memory model. The relaxed memory model describes
what values an OCaml program is allowed to witness
o Stdlib exXposes when reading a memory location. If you are interested in
high-level parallel programming in OCaml, please have a
> Spawn & join, Mutex, Condition, domain-local storage look at the parallel programming chapter 9.
» Atomic references This chapter is aimed at experts who would like to
understand the details of the 0Caml memory model from
e Relaxed mem ory m odel a practitioner’s perspect.lve. For a formal definition of the
OCaml memory model, its guarantees and the compilation
» Data-race-free programs have sequential consistency to hardware memory models, please have a look at the

PLDI 2018 paper on Bounding Data Races in Space and Time.
The memory model presented in this chapter is an
extension of the one presented in the PLDI 2018 paper. This
chapter also covers some pragmatic aspects of the memory
model that are not covered in the paper.

» Programs with data races are type/memory safe!

- Unlike C++, unsafe Rust

- Important when porting sequential code to be
made parallel

OCaml 4 GC

* Generational, mark-and-sweep, incremental GC

/> '+ Small 2 MB default)

:» Bump pointer allocation
Incremental and : . : .
:® Survivors copied to major

: non-movin E : :
N T

--

|dle mark roots mark main sweep

Mark
Roots

Mutator

Start of major cycle End of major cycle

* Fast local allocations
* Max GC latency < 10 ms, 99th percentile latency < 1 ms

OCaml 5 minor GC

Allocation

Dom O Minor Heap Arena (2 mb) Pointer

Dom | Minor Heap Arena (2 mb)

* Private minor heap arenas per domain

» Fast allocations without synchronisation

* No restrictions on pointers between minor heap arenas and major heap

OCaml 5 minor GC

Allocation

Dom O Minor Heap Arena (2 mb) Pointer

Dom | Minor Heap Arena (2 mb)

o Stop-the-world parallel collection for minor heaps

> 2 barriers / minor gc; (some) work sharing between gc threads

* On 24 cores, w/ default heap size (2MB / arena), < 10 ms pause for completeing
minor GC

OCaml 5 major GC

| Mark
Domain 0 § -1 - Mutator Sweep

', mark and sweep phases may overlap

Mark

Domain |
Roots

Sweep

Start of major cycle

e Mostly concurrent mark-and-sweep GC

» 3 barriers / cycle (when not using ephemerons)

> 1 each at the end of mark, finalise_first, finalise_last phases

 On 24 cores, <5 ms pauses at barriers

> Only to agree that the phase has ended

End of major cycle

Scalability

LU_decomposition (487)

game_of_life (78)

minilight (87)

0 20 40 60

num_domains

binarytrees5 (200)

grammatrix (104)

nbody (124)

20 40
num_domains

evolutionary_algorithm (325)

r

/

mandelbrot6 (109)

spectralnorm2 (402)

0 20 40 60

num_domains

floyd_warshall (266)

matrix_multiplication (92)

test_decompress (45)

0 20 40 60

num_domains

Backwards compatibility

* Both effect handlers and GC designed for
backwards compatibility

> Performance, tooling support, features (almost all of
them)

e Performance

> OCaml 5 is designed to run sequential programs as well
as OCaml 4

> Any significant performance regressions (5%+) is a bug;
please report it!

Backwards compatibility

e Feature set

> All of the language including finalisers, weak references,
ephemerons, systhreads supported

- Compaction (manual) is manual, no naked pointers
> Programs with data races are type and memory safe!

> Racy use of Stdlib may yield surprising results, but will
not crash!

- think Queue, Hashtbl, Lazy, Unix, etc.
» Existing tools continue to work

> GDB, perf, eBFP, statmemprof

Porting Applications to OCaml 5

Based on work done by Thomas Leonard @ Tarides
https://roscidus.com/blog/blog/2024/@7/22/performance-2/

https://roscidus.com/blog/blog/2024/07/22/performance-2/

Solver service

ocaml-ci — CIl for OCaml projects

> Free to use for the OCaml community

> Build and run tests on a matrix of platforms on every commit

- OCaml compilers (4.02 — 5.2), architectures (32- and 64-bit x86, ARM, PPC64, s390x), OSes (Alpine,
Debian, Fedora, FreeBSD, macOS, OpenSUSE and Ubuntu, in multiple versions)

Select compatible versions of its dependencies

> ~1s per solve; 132 solver runs per commit!

Solves are done by solver-service

» 160-core ARM machine

> Lwt-based; sub-process based parallelism for solves

Port it to OCaml 5 to take advantage of better concurrency and shared-memory parallelism

https://github.com/ocurrent/ocaml-ci/
https://github.com/ocurrent/solver-service

Solver service in OCaml 5

* Used Eio to port from multi-process parallel to shared-memory parallel
> Support for asynchronous |0 (incl io_uring!) and parallelism

> and switches for resource management

e Qutcome

> Simple code, more stable (switches), removal of lots of communication logic

> No function colouring!

- Reclaim the use of try..with, for and while loops!

e Used TSan to ensure that data races are removed

ThreadSanitizer (since 5.2)

* Detect data races dynamically

* Part of the LLVM project — C++, Go, Swift

let a = ref @ and b = ref 0 WARNING: ThreadSanitizer: data race (pid=3808831)
Write of size 8 at 0x8febel by thread Tl (mutexes: write M9

let d1 () =

a = 1;
'b

~

let d2 () =2s._

b :1= 1;
la

let () =

let h = Domain.spawn d2 1in

let rl
let r2
assert

(

~
-~
-~
L}
..
..
-

dl () in
Domain.join h in

not

(rl =06& r2 =0)) ...

#0
#1
#2
7#3

#0

camlSimple race.d2 274 simple race.ml:8 (simple race.e:
camlDomain.body 706 stdlib/domajn.ml:211 (simple race.:
caml start program <null> (simple race.exe+0x47cf37)

caml callback exn runtime/ca}iﬁack.c:l97 (simple race.:
domain thread func runtjime/domain.c:1167 (simple race.:

-

T Previous read of size 8 at 0x8febelO by main thread (mutexes

camlSimple race.dl 271 simple race.ml:5 (simple race.e:

caml start program <null> (simple race.exe+0x47cf37)

Eio solver service performance

* ... was underwhelminginitially

S0
45
40

W
(&)

w
o

- Processes

== DOmains

N
o

Solves per second
N
&y

—
(&)

10

0 10 20 30 40 50 60 70 80
Workers (CPUs)

Performance analysis

* perf (incl. call graph), eBFP works

» Frame-pointers across effect handlers!

e Runtime Events

> Every OCaml 5 program has tracing support built-in

» Events are written to a shared ring buffer that can be read by an external process

$ olly trace foo.trace foo.exe

interrupt_remote

stw_handler

stw_api_barrier minor_leave_barrier

stw_leader

minor_leave_barrier

Problem indentified

e Switch from sched other to sched rr

 git log for each solve to find earliest commit

> 50ms penalty for STW subprocess spawn

> Avoid by implementing it in OCaml

Requests per second

50

45

40

w
(43}

W
o

N
[¢)]

N
o

=
o

=
o

ol

o

The real service on the ARM server

—B-Processes, sched-other
—o—Processes, sched-rr
A-Domains, sched-other (original)
=>~Domains, sched-rr
=¥=Domains, sched-rr, ocaml-git (dubious; loaded?)
®-Domains, sched-rr, ocaml-git, new opam | d
—=—Domains, sched-other, ocaml-git, new opam

e
" A
10 20 30 40

Workers

>

50

»

—i

/
—~

@ /

60

70

80

Still some work to do

Takeaways for introducing shared-memory paralleism

* Use Eio for concurrency and parallelism in OCaml 5

> Makes your asynchronous IO program more reliable

 QOther libraries

» Saturn: Verified multicore safe data structures

> Kcas: Software transactional memory for OCaml

e Use TSan to remove data races

» Data races will not lead to crashes

* Expect that the initial performance may be underwhelming

> Existing external tools such as perf, eBPF based profiling,
statmemprof continue to work

Two roads diverged in a wood, and I -

— I took the one less traveled by,

+ I took both in paranél'iaec'adé%

> New tools are available on OCaml 5 enabled through runtime
events — Olly, eio-trace, etc.

OCaml supports multicore,

And that has made all the difference.

https://github.com/ocaml-multicore/saturn
https://github.com/ocaml-multicore/kcas

