
ParaFuzz: Fuzzing Multicore 
OCaml programs

“KC” Sivaramakrishnan


joint work with

Sumit Padhiyar and Adharsh Kamath



• Adds native support for concurrency and parallelism to OCaml

Multicore OCaml



• Adds native support for concurrency and parallelism to OCaml

Multicore OCaml

Overlapped 

execution

A

B

A

C

B

Time



• Adds native support for concurrency and parallelism to OCaml

Multicore OCaml

Overlapped 

execution

A

B

A

C

B

Time

Simultaneous 

execution

A
B

C

Time



• Adds native support for concurrency and parallelism to OCaml

Multicore OCaml

Overlapped 

execution

A

B

A

C

B

Time

Simultaneous 

execution

A
B

C

Time

Effect Handlers



• Adds native support for concurrency and parallelism to OCaml

Multicore OCaml

Overlapped 

execution

A

B

A

C

B

Time

Simultaneous 

execution

A
B

C

Time

Effect Handlers Domains



Testing Parallel Programs



Testing Parallel Programs

• The assertion can fail for a particular input and scheduling 
combination



Testing Parallel Programs

• The assertion can fail for a particular input and scheduling 
combination

• Logic bugs are more than just detecting data races


✦ No data races here



Testing Parallel Programs

• The assertion can fail for a particular input and scheduling 
combination

• Logic bugs are more than just detecting data races


✦ No data races here

• How can we help test Multicore OCaml programmers detect such bugs?



Existing solutions
• Testing


✦ Stress testing — run the program over and over again and hope that 
the assertion is triggered


✦ Random testing — generate random inputs, and perturb the OS 
scheduler (somehow) to trigger bugs



Existing solutions
• Testing


✦ Stress testing — run the program over and over again and hope that 
the assertion is triggered


✦ Random testing — generate random inputs, and perturb the OS 
scheduler (somehow) to trigger bugs

• Model checking — SPIN, TLC model checkers


✦ Strong guarantees, but not practical with limited time budget


✦ Often works on a model of the program and not directly on the 
source code



Existing solutions
• Testing


✦ Stress testing — run the program over and over again and hope that 
the assertion is triggered


✦ Random testing — generate random inputs, and perturb the OS 
scheduler (somehow) to trigger bugs

• Model checking — SPIN, TLC model checkers


✦ Strong guarantees, but not practical with limited time budget


✦ Often works on a model of the program and not directly on the 
source code

• Formal verification

✦ Requires expert knowledge and lots of time and effort



Our Approach
• Ignore concurrency for the moment, and let’s focus on input non-

determinism



Our Approach
• Ignore concurrency for the moment, and let’s focus on input non-

determinism

• Property-based testing


✦ Use a generator to generate random inputs to test a function


✦ Quick-check



Our Approach
• Ignore concurrency for the moment, and let’s focus on input non-

determinism

• Property-based testing


✦ Use a generator to generate random inputs to test a function


✦ Quick-check

• Fuzzing


✦ Generate random inputs to crash a program


✦ AFL — Extremely effective grey-box (coverage-guided) fuzzer 



Our Approach
• Ignore concurrency for the moment, and let’s focus on input non-

determinism

• Property-based testing


✦ Use a generator to generate random inputs to test a function


✦ Quick-check

• Fuzzing


✦ Generate random inputs to crash a program


✦ AFL — Extremely effective grey-box (coverage-guided) fuzzer 

• Crowbar = Fuzzing + QuickCheck


✦ Coverage-guided property-fuzzing


✦ https://github.com/stedolan/crowbar



ParaFuzz



ParaFuzz
• ParaFuzz = Crowbar (Grey-box Fuzzing + Property-based testing) + 

Parallelism



ParaFuzz
• ParaFuzz = Crowbar (Grey-box Fuzzing + Property-based testing) + 

Parallelism

• How to control parallel thread scheduling?



ParaFuzz
• ParaFuzz = Crowbar (Grey-box Fuzzing + Property-based testing) + 

Parallelism

• How to control parallel thread scheduling?

• Idea

✦ Mock parallelism API using an effect handler based scheduler

✦ Yield at every synchronisation point


✤ Use AFL to pick next thread to run from the queue of ready threads



ParaFuzz
• ParaFuzz = Crowbar (Grey-box Fuzzing + Property-based testing) + 

Parallelism

• How to control parallel thread scheduling?

• Idea

✦ Mock parallelism API using an effect handler based scheduler

✦ Yield at every synchronisation point


✤ Use AFL to pick next thread to run from the queue of ready threads

• Synchronisation points


✦ Domain (spawn, join)


✦ Atomic (get, put, compare_and_swap)


✦ Mutex (lock, unlock)


✦ Condition variable (wait, notify, broadcast) — also fuzz wake up order



ParaFuzz
• Idea

✦ Mock parallelism API using an effect handler based scheduler

✦ Use AFL to pick the thread scheduling order at synchronisation points


• Advantages


✦ No false positives


✦ Record and replay


✦ Drop-in replacement for parallel Multicore OCaml programs



Evaluation



Evaluation

Effectiveness

fraction of runs that found the bug

Efficiency

Mean-time to failure



Data races



Data races
• ParaFuzz currently assumes that the programs are data-race-

free (DRF)


✦ DRF programs in OCaml have SC semantics



Data races
• ParaFuzz currently assumes that the programs are data-race-

free (DRF)


✦ DRF programs in OCaml have SC semantics

• OCaml memory model (PLDI’18) also has a simple operational 
model for racy programs


✦ Racy reads may return one of a subset of writes performed to a non-
atomic location



Data races
• ParaFuzz currently assumes that the programs are data-race-

free (DRF)


✦ DRF programs in OCaml have SC semantics

• OCaml memory model (PLDI’18) also has a simple operational 
model for racy programs


✦ Racy reads may return one of a subset of writes performed to a non-
atomic location

• Extend ParaFuzz to racy programs


✦ Use AFL to pick the value that a read should return


✦ Force a yield at non-atomic reads and writes



Data races
• ParaFuzz currently assumes that the programs are data-race-

free (DRF)


✦ DRF programs in OCaml have SC semantics

• OCaml memory model (PLDI’18) also has a simple operational 
model for racy programs


✦ Racy reads may return one of a subset of writes performed to a non-
atomic location

• Extend ParaFuzz to racy programs


✦ Use AFL to pick the value that a read should return


✦ Force a yield at non-atomic reads and writes

• Can we make it fast?


