ParaFuzz: Fuzzing Multicore
OCaml programs

“KC” Sivaramakrishnan

joint work with
Sumit Padhiyar and Adharsh Kamath

11

MADRAS %=

Multicore OCaml

e Adds native support for concurrency and parallelism to OCaml

Multicore OCaml

e Adds native support for concurrency and parallelism to OCaml

Time

Overlapped
execution

Overlapped
execution

Multicore OCaml

e Adds native support for concurrency and parallelism to OCaml

Time

'

Simultaneous
execution

Time

Multicore OCaml

e Adds native support for concurrency and parallelism to OCaml

Time

Overlapped
execution A
C

Effect Handlers

'

Simultaneous
execution

Time

Multicore OCaml

e Adds native support for concurrency and parallelism to OCaml

Time

Overlapped
execution A
C

Effect Handlers

'

Simultaneous
execution

Domains

Time

Testing Parallel Programs

let test 1 =
let x = Atomic.make 1 1in
let y = Atomic.make @ 1in
let dom = Domain.spawn (fun () —>
if (Atomic.get x = 1@0) then Atomic.set y 2)
in
Atomic.set x 0;
Atomic.set y 1;
Domain.join dom;
assert (Atomic.get y <> 2)

Testing Parallel Programs

let test 1 =
let x = Atomic.make 1 1in
let y = Atomic.make @ 1in
let dom = Domain.spawn (fun () —>
if (Atomic.get x = 1@0) then Atomic.set y 2)
in
Atomic.set x 0;
Atomic.set y 1;
Domain.join dom;
assert (Atomic.get y <> 2)

e The assertion can fail for a particular input and scheduling
combination

Testing Parallel Programs

let test 1 =
let x = Atomic.make 1 1in
let y = Atomic.make @ 1in
let dom = Domain.spawn (fun () —>
if (Atomic.get x = 1@0) then Atomic.set y 2)
in
Atomic.set x 0;
Atomic.set y 1;
Domain.join dom;
assert (Atomic.get y <> 2)

e The assertion can fail for a particular input and scheduling
combination

® [ogic bugs are more than just detecting data races

+ No data races here

Testing Parallel Programs

let test 1 =
let x = Atomic.make 1 in
let y = Atomic.make @ in
let dom = Domain.spawn (fun () —>
if (Atomic.get x = 10) then Atomic.set y 2)
in
Atomic.set x 0;
Atomic.set y 1;
Domain.join dom;
assert (Atomic.get y <> 2)

e The assertion can fail for a particular input and scheduling
combination

® [ogic bugs are more than just detecting data races

+ No data races here

® How can we help test Multicore OCaml programmers detect such bugs?

Existing solutions

® Testing

+ Stress testing — run the program over and over again and hope that
the assertion is triggered

+ Random testing — generate random inputs, and perturb the OS
scheduler (somehow) to trigger bugs

Existing solutions

® Testing

+ Stress testing — run the program over and over again and hope that
the assertion is triggered

+ Random testing — generate random inputs, and perturb the OS
scheduler (somehow) to trigger bugs

e Model checking — SPIN, TLC model checkers

+ Strong guarantees, but not practical with limited time budget

+ Often works on a model of the program and not directly on the
source code

Existing solutions

® Testing

+ Stress testing — run the program over and over again and hope that
the assertion is triggered

+ Random testing — generate random inputs, and perturb the OS
scheduler (somehow) to trigger bugs

e Model checking — SPIN, TLC model checkers

+ Strong guarantees, but not practical with limited time budget

+ Often works on a model of the program and not directly on the
source code

® Formal verification

+ Requires expert knowledge and lots of time and effort

Our Approach

® |gnore concurrency for the moment, and let’s focus on input non-
determinism

Our Approach

® |gnore concurrency for the moment, and let’s focus on input non-
determinism

® Property-based testing

+ Use a generator to generate random inputs to test a function

+ Quick-check

Our Approach

® |gnore concurrency for the moment, and let’s focus on input non-
determinism

® Property-based testing
+ Use a generator to generate random inputs to test a function
+ Quick-check

® Fuzzing
+ Generate random inputs to crash a program

+ AFL — Extremely effective grey-box (coverage-guided) fuzzer

Our Approach

lgnore concurrency for the moment, and let’s focus on input non-
determinism

Property-based testing

+ Use a generator to generate random inputs to test a function
+ Quick-check

Fuzzing

+ Generate random inputs to crash a program

+ AFL — Extremely effective grey-box (coverage-guided) fuzzer
Crowbar = Fuzzing + QuickCheck

+ Coverage-guided property-fuzzing

+ https://github.com/stedolan/crowbar

ParaFuzz

ParaFuzz

® ParaFuzz = Crowbar (Grey-box Fuzzing + Property-based testing) +
Parallelism

ParaFuzz

® ParaFuzz = Crowbar (Grey-box Fuzzing + Property-based testing) +
Parallelism

e How to control parallel thread scheduling?

ParaFuzz

® ParaFuzz = Crowbar (Grey-box Fuzzing + Property-based testing) +
Parallelism

e How to control parallel thread scheduling?

® |dea
+ Mock parallelism APl using an effect handler based scheduler
+ VYield at every synchronisation point

<+ Use AFL to pick next thread to run from the queue of ready threads

ParaFuzz

® ParaFuzz = Crowbar (Grey-box Fuzzing + Property-based testing) +
Parallelism

e How to control parallel thread scheduling?
® |dea

+ Mock parallelism APl using an effect handler based scheduler

+ VYield at every synchronisation point

<+ Use AFL to pick next thread to run from the queue of ready threads

® Synchronisation points

+ Domain (spawn, join)

+ Atomic (get, put, compare_and_swap)

+ Mutex (lock, unlock)

+ Condition variable (wait, notify, broadcast) — also fuzz wake up order

ParaFuzz

® |dea

+ Mock parallelism APl using an effect handler based scheduler

+ Use AFL to pick the thread scheduling order at synchronisation points

Execution path

AFL

Input

Thread execution
order

Instrumented
program

|

Thread

e Advantages
+ No false positives

+ Record and replay

Y

Scheduler

schedule

+ Drop-in replacement for parallel Multicore OCaml programs

Evaluation

let test 1 =
let x = Atomic.make 1 in
let y = Atomic.make @ in
let dom = Domain.spawn (fun () —>
if (Atomic.get x = 10) then Atomic.set y 2)
in
Atomic.set x 0;
Atomic.set y 1;
Domain.join dom;
assert (Atomic.get y <> 2)

Testing Executions Time

Technique (millions) (minutes) Bug Found
ParaFuzz 0.55 10.5 Yes
Random 108.6 60 No

Stress 25.2 60 No

Evaluation

Name(abbreviation)

Bug type

motivating-example(MX)
effective-random-testing-example (ERT)

mysql-bug(SQL)
circular-list(CL)
deadlock3(D3)
buffer-if(BI)
buffer-notify(BN)
RAX-jpf(RAX)
domainslib(DL)

race-condition
race-condition
deadlock
deadlock
deadlock
deadlock
deadlock
race-condition
race-condition

Stress Random ParaFuzz

SQL 0.00 0.00 1.00
CL 0.00 0.00 0.96
D3 0.00 0.00 1.00
BI 0.00 0.03 1.00
BN 0.00 0.00 1.00

RAX 0.00 0.00 1.00
DL 0.00 1.00 1.00
MX 0.00 0.00 1.00

ERT 0.00 0.00 1.00
Avg 000 0.003 0.99

Effectiveness

fraction of runs that found the bug

Stress Random ParaFuzz
SQL - - 734.26
CL - - 971.16
D3 - - 469.63
BI - 100.76 20.36
BN - - 875.4
RAX - - 111
DL - 0 0
MX - - 625.36
ERT - - 88.83
Efficiency

Mean-time to failure

Data races

Data races

e ParaFuzz currently assumes that the programs are data-race-
free (DRF)

+ DRF programs in OCaml have SC semantics

Data races

e ParaFuzz currently assumes that the programs are data-race-
free (DRF)

+ DRF programs in OCaml have SC semantics

e OCaml memory model (PLDI’18) also has a simple operational
model for racy programs

+ Racy reads may return one of a subset of writes performed to a non-
atomic location

Data races

e ParaFuzz currently assumes that the programs are data-race-
free (DRF)

+ DRF programs in OCaml have SC semantics

e OCaml memory model (PLDI’18) also has a simple operational
model for racy programs

+ Racy reads may return one of a subset of writes performed to a non-
atomic location

e Extend ParaFuzz to racy programs
+ Use AFL to pick the value that a read should return

+ Force ayield at non-atomic reads and writes

Data races

ParaFuzz currently assumes that the programs are data-race-
free (DRF)

+ DRF programs in OCaml have SC semantics

OCaml memory model (PLDI’18) also has a simple operational
model for racy programs

+ Racy reads may return one of a subset of writes performed to a non-
atomic location

Extend ParaFuzz to racy programs
+ Use AFL to pick the value that a read should return

+ Force ayield at non-atomic reads and writes

Can we make it fast?

