
ParaFuzz: Fuzzing Multicore 
OCaml programs

“KC” Sivaramakrishnan

joint work with
Sumit Padhiyar and Adharsh Kamath



• Adds native support for concurrency and parallelism to OCaml

Multicore OCaml



• Adds native support for concurrency and parallelism to OCaml

Multicore OCaml

Overlapped 
execution

A

B

A

C

B

Time



• Adds native support for concurrency and parallelism to OCaml

Multicore OCaml

Overlapped 
execution

A

B

A

C

B

Time

Simultaneous 
execution

A
B

C

Time



• Adds native support for concurrency and parallelism to OCaml

Multicore OCaml

Overlapped 
execution

A

B

A

C

B

Time

Simultaneous 
execution

A
B

C

Time

Effect Handlers



• Adds native support for concurrency and parallelism to OCaml

Multicore OCaml

Overlapped 
execution

A

B

A

C

B

Time

Simultaneous 
execution

A
B

C

Time

Effect Handlers Domains



Testing Parallel Programs



Testing Parallel Programs

• The assertion can fail for a particular input and scheduling 
combination



Testing Parallel Programs

• The assertion can fail for a particular input and scheduling 
combination

• Logic bugs are more than just detecting data races

✦ No data races here



Testing Parallel Programs

• The assertion can fail for a particular input and scheduling 
combination

• Logic bugs are more than just detecting data races

✦ No data races here

• How can we help test Multicore OCaml programmers detect such bugs?



Existing solutions
• Testing

✦ Stress testing — run the program over and over again and hope that 
the assertion is triggered

✦ Random testing — generate random inputs, and perturb the OS 
scheduler (somehow) to trigger bugs



Existing solutions
• Testing

✦ Stress testing — run the program over and over again and hope that 
the assertion is triggered

✦ Random testing — generate random inputs, and perturb the OS 
scheduler (somehow) to trigger bugs

• Model checking — SPIN, TLC model checkers

✦ Strong guarantees, but not practical with limited time budget

✦ Often works on a model of the program and not directly on the 
source code



Existing solutions
• Testing

✦ Stress testing — run the program over and over again and hope that 
the assertion is triggered

✦ Random testing — generate random inputs, and perturb the OS 
scheduler (somehow) to trigger bugs

• Model checking — SPIN, TLC model checkers

✦ Strong guarantees, but not practical with limited time budget

✦ Often works on a model of the program and not directly on the 
source code

• Formal verification
✦ Requires expert knowledge and lots of time and effort



Our Approach
• Ignore concurrency for the moment, and let’s focus on input non-

determinism



Our Approach
• Ignore concurrency for the moment, and let’s focus on input non-

determinism

• Property-based testing

✦ Use a generator to generate random inputs to test a function

✦ Quick-check



Our Approach
• Ignore concurrency for the moment, and let’s focus on input non-

determinism

• Property-based testing

✦ Use a generator to generate random inputs to test a function

✦ Quick-check

• Fuzzing

✦ Generate random inputs to crash a program

✦ AFL — Extremely effective grey-box (coverage-guided) fuzzer 



Our Approach
• Ignore concurrency for the moment, and let’s focus on input non-

determinism

• Property-based testing

✦ Use a generator to generate random inputs to test a function

✦ Quick-check

• Fuzzing

✦ Generate random inputs to crash a program

✦ AFL — Extremely effective grey-box (coverage-guided) fuzzer 

• Crowbar = Fuzzing + QuickCheck

✦ Coverage-guided property-fuzzing

✦ https://github.com/stedolan/crowbar



ParaFuzz



ParaFuzz
• ParaFuzz = Crowbar (Grey-box Fuzzing + Property-based testing) + 

Parallelism



ParaFuzz
• ParaFuzz = Crowbar (Grey-box Fuzzing + Property-based testing) + 

Parallelism

• How to control parallel thread scheduling?



ParaFuzz
• ParaFuzz = Crowbar (Grey-box Fuzzing + Property-based testing) + 

Parallelism

• How to control parallel thread scheduling?

• Idea

✦ Mock parallelism API using an effect handler based scheduler

✦ Yield at every synchronisation point

✤ Use AFL to pick next thread to run from the queue of ready threads



ParaFuzz
• ParaFuzz = Crowbar (Grey-box Fuzzing + Property-based testing) + 

Parallelism

• How to control parallel thread scheduling?

• Idea

✦ Mock parallelism API using an effect handler based scheduler

✦ Yield at every synchronisation point

✤ Use AFL to pick next thread to run from the queue of ready threads

• Synchronisation points

✦ Domain (spawn, join)

✦ Atomic (get, put, compare_and_swap)

✦ Mutex (lock, unlock)

✦ Condition variable (wait, notify, broadcast) — also fuzz wake up order



ParaFuzz
• Idea

✦ Mock parallelism API using an effect handler based scheduler

✦ Use AFL to pick the thread scheduling order at synchronisation points

• Advantages

✦ No false positives

✦ Record and replay

✦ Drop-in replacement for parallel Multicore OCaml programs



Evaluation



Evaluation

Effectiveness
fraction of runs that found the bug

Efficiency
Mean-time to failure



Data races



Data races
• ParaFuzz currently assumes that the programs are data-race-

free (DRF)

✦ DRF programs in OCaml have SC semantics



Data races
• ParaFuzz currently assumes that the programs are data-race-

free (DRF)

✦ DRF programs in OCaml have SC semantics

• OCaml memory model (PLDI’18) also has a simple operational 
model for racy programs

✦ Racy reads may return one of a subset of writes performed to a non-
atomic location



Data races
• ParaFuzz currently assumes that the programs are data-race-

free (DRF)

✦ DRF programs in OCaml have SC semantics

• OCaml memory model (PLDI’18) also has a simple operational 
model for racy programs

✦ Racy reads may return one of a subset of writes performed to a non-
atomic location

• Extend ParaFuzz to racy programs

✦ Use AFL to pick the value that a read should return

✦ Force a yield at non-atomic reads and writes



Data races
• ParaFuzz currently assumes that the programs are data-race-

free (DRF)

✦ DRF programs in OCaml have SC semantics

• OCaml memory model (PLDI’18) also has a simple operational 
model for racy programs

✦ Racy reads may return one of a subset of writes performed to a non-
atomic location

• Extend ParaFuzz to racy programs

✦ Use AFL to pick the value that a read should return

✦ Force a yield at non-atomic reads and writes

• Can we make it fast?


