
Relational Reasoning for
Mergeable Replicated Data Types

�1

KC Sivaramakrishnan
joint work with

Gowtham Kaki, Swarn Priya, Suresh Jagannathan

http://ocamllabs.io/

INTERNET	

INTERNET	

INTERNET	

≠

INTERNET	

≠

• Serializability
• Linearizability• Weak Consistency & Isolation

When system-level concerns like replication &
availability affect application-level design decisions,

programming becomes complicated.

!4

!5

module Counter : sig
 type t
 val read : t -> int
 val add : t -> int -> t
 val sub : t -> int -> t
end = struct
 type t = int
 let read x = x
 let add x d = x + d
 let sub x d = x - d
end

Sequential Counter

• Written in idiomatic style

• Composable

!5

module Counter : sig
 type t
 val read : t -> int
 val add : t -> int -> t
 val sub : t -> int -> t
end = struct
 type t = int
 let read x = x
 let add x d = x + d
 let sub x d = x - d
end

type counter_list = Counter.t list

Sequential Counter

INTERNET	

0000

Replicated Counter

INTERNET	

000
0

Replicated Counter

INTERNET	

00

0

0

Replicated Counter

INTERNET	

0
0

0

0

Replicated Counter

INTERNET	

0
0

0

0

Replicated Counter

INTERNET	

0

0

0

Replicated Counter

+2

2

INTERNET	

0

0

0

Replicated Counter

+2

2

INTERNET	

0

0

Replicated Counter

+2

2

+3
3

INTERNET	

Replicated Counter

+2 +3

5

5

5

5

!8

module Counter : sig
 type t
 val read : t -> int
 val add : t -> int -> t
 val sub : t -> int -> t
 val mult : t -> int -> t
end = struct
 type t = int
 let read x = x
 let add x d = x + d
 let sub x d = x - d
 let mult x n = x * n
end

!8

module Counter : sig
 type t
 val read : t -> int
 val add : t -> int -> t
 val sub : t -> int -> t
 val mult : t -> int -> t
end = struct
 type t = int
 let read x = x
 let add x d = x + d
 let sub x d = x - d
 let mult x n = x * n
end

7

!8

module Counter : sig
 type t
 val read : t -> int
 val add : t -> int -> t
 val sub : t -> int -> t
 val mult : t -> int -> t
end = struct
 type t = int
 let read x = x
 let add x d = x + d
 let sub x d = x - d
 let mult x n = x * n
end

7

8

+1

!8

module Counter : sig
 type t
 val read : t -> int
 val add : t -> int -> t
 val sub : t -> int -> t
 val mult : t -> int -> t
end = struct
 type t = int
 let read x = x
 let add x d = x + d
 let sub x d = x - d
 let mult x n = x * n
end

7

8 21

+1 *3

!8

module Counter : sig
 type t
 val read : t -> int
 val add : t -> int -> t
 val sub : t -> int -> t
 val mult : t -> int -> t
end = struct
 type t = int
 let read x = x
 let add x d = x + d
 let sub x d = x - d
 let mult x n = x * n
end

7

8 21

+1 *3

24

*3

!8

module Counter : sig
 type t
 val read : t -> int
 val add : t -> int -> t
 val sub : t -> int -> t
 val mult : t -> int -> t
end = struct
 type t = int
 let read x = x
 let add x d = x + d
 let sub x d = x - d
 let mult x n = x * n
end

7

8 21

+1 *3

24 22

*3 +1

!8

module Counter : sig
 type t
 val read : t -> int
 val add : t -> int -> t
 val sub : t -> int -> t
 val mult : t -> int -> t
end = struct
 type t = int
 let read x = x
 let add x d = x + d
 let sub x d = x - d
 let mult x n = x * n
end

7

8 21

+1 *3

24 22

*3 +1

Diverges

!8

module Counter : sig
 type t
 val read : t -> int
 val add : t -> int -> t
 val sub : t -> int -> t
 val mult : t -> int -> t
end = struct
 type t = int
 let read x = x
 let add x d = x + d
 let sub x d = x - d
 let mult x n = x * n
end

7

8 21

+1 *3

24 22

*3 +1

Diverges

Addition and multiplication do not commute

!9

module Counter : sig
 type t
 val read : t -> int
 val add : t -> int -> t
 val sub : t -> int -> t
 val mult : t -> int -> t
end = struct
 type t = int
 let read x = x
 let add x d = x + d
 let sub x d = x - d
 let mult x n = x * n
end

!9

module Counter : sig
 type t
 val read : t -> int
 val add : t -> int -> t
 val sub : t -> int -> t
 val mult : t -> int -> t
end = struct
 type t = int
 let read x = x
 let add x d = x + d
 let sub x d = x - d
 let mult x n = x * n
end

• Capture the effect of multiplication through the commutative
addition operation

!9

module Counter : sig
 type t
 val read : t -> int
 val add : t -> int -> t
 val sub : t -> int -> t
 val mult : t -> int -> t
end = struct
 type t = int
 let read x = x
 let add x d = x + d
 let sub x d = x - d
 let mult x n = x * n
end

7

• Capture the effect of multiplication through the commutative
addition operation

!9

module Counter : sig
 type t
 val read : t -> int
 val add : t -> int -> t
 val sub : t -> int -> t
 val mult : t -> int -> t
end = struct
 type t = int
 let read x = x
 let add x d = x + d
 let sub x d = x - d
 let mult x n = x * n
end

7

8

+1

• Capture the effect of multiplication through the commutative
addition operation

!9

module Counter : sig
 type t
 val read : t -> int
 val add : t -> int -> t
 val sub : t -> int -> t
 val mult : t -> int -> t
end = struct
 type t = int
 let read x = x
 let add x d = x + d
 let sub x d = x - d
 let mult x n = x * n
end

7

8 21

+1 *3

• Capture the effect of multiplication through the commutative
addition operation

!9

module Counter : sig
 type t
 val read : t -> int
 val add : t -> int -> t
 val sub : t -> int -> t
 val mult : t -> int -> t
end = struct
 type t = int
 let read x = x
 let add x d = x + d
 let sub x d = x - d
 let mult x n = x * n
end

7

8 21

+1 *3

22

+14

• Capture the effect of multiplication through the commutative
addition operation

!9

module Counter : sig
 type t
 val read : t -> int
 val add : t -> int -> t
 val sub : t -> int -> t
 val mult : t -> int -> t
end = struct
 type t = int
 let read x = x
 let add x d = x + d
 let sub x d = x - d
 let mult x n = x * n
end

7

8 21

+1 *3

22 22

+14 +1

• Capture the effect of multiplication through the commutative
addition operation

!9

module Counter : sig
 type t
 val read : t -> int
 val add : t -> int -> t
 val sub : t -> int -> t
 val mult : t -> int -> t
end = struct
 type t = int
 let read x = x
 let add x d = x + d
 let sub x d = x - d
 let mult x n = x * n
end

7

8 21

+1 *3

22 22

+14 +1

Converges

• Capture the effect of multiplication through the commutative
addition operation

!9

module Counter : sig
 type t
 val read : t -> int
 val add : t -> int -> t
 val sub : t -> int -> t
 val mult : t -> int -> t
end = struct
 type t = int
 let read x = x
 let add x d = x + d
 let sub x d = x - d
 let mult x n = x * n
end

7

8 21

+1 *3

22 22

+14 +1

Converges

• Capture the effect of multiplication through the commutative
addition operation

• CRDTs

Conflict-free Replicated Data
Types (CRDT)

!10

Conflict-free Replicated Data
Types (CRDT)

• CRDT is guaranteed to ensure strong eventual consistency (SEC)

★ G-counters, PN-counters, OR-Sets, Graphs, Ropes, docs, sheets

★ Simple interface for the clients of CRDTs

!10

Conflict-free Replicated Data
Types (CRDT)

• CRDT is guaranteed to ensure strong eventual consistency (SEC)

★ G-counters, PN-counters, OR-Sets, Graphs, Ropes, docs, sheets

★ Simple interface for the clients of CRDTs

• Need to reengineer every datatype to ensure SEC
(commutativity)

★ Do not mirror sequential counter parts => implementation & proof
burden

★ Do not compose!

✦ counter set is not a composition of counter and set CRDTs

!10

Can we program & reason about replicated data types
as an extension of their sequential counterparts?

!12

module Counter : sig
 type t
 val read : t -> int
 val add : t -> int -> t
 val sub : t -> int -> t
 val mult : t -> int -> t
 val merge : lca:t -> v1:t -> v2:t -> t
end = struct
 type t = int
 let read x = x
 let add x d = x + d
 let sub x d = x - d
 let mult x n = x * n
 let merge ~lca ~v1 ~v2 =
 lca + (v1 - lca) + (v2 - lca)
end

!12

module Counter : sig
 type t
 val read : t -> int
 val add : t -> int -> t
 val sub : t -> int -> t
 val mult : t -> int -> t
 val merge : lca:t -> v1:t -> v2:t -> t
end = struct
 type t = int
 let read x = x
 let add x d = x + d
 let sub x d = x - d
 let mult x n = x * n
 let merge ~lca ~v1 ~v2 =
 lca + (v1 - lca) + (v2 - lca)
end

7

!12

module Counter : sig
 type t
 val read : t -> int
 val add : t -> int -> t
 val sub : t -> int -> t
 val mult : t -> int -> t
 val merge : lca:t -> v1:t -> v2:t -> t
end = struct
 type t = int
 let read x = x
 let add x d = x + d
 let sub x d = x - d
 let mult x n = x * n
 let merge ~lca ~v1 ~v2 =
 lca + (v1 - lca) + (v2 - lca)
end

7

8

+1

!12

module Counter : sig
 type t
 val read : t -> int
 val add : t -> int -> t
 val sub : t -> int -> t
 val mult : t -> int -> t
 val merge : lca:t -> v1:t -> v2:t -> t
end = struct
 type t = int
 let read x = x
 let add x d = x + d
 let sub x d = x - d
 let mult x n = x * n
 let merge ~lca ~v1 ~v2 =
 lca + (v1 - lca) + (v2 - lca)
end

7

8 21

+1 *3

!12

module Counter : sig
 type t
 val read : t -> int
 val add : t -> int -> t
 val sub : t -> int -> t
 val mult : t -> int -> t
 val merge : lca:t -> v1:t -> v2:t -> t
end = struct
 type t = int
 let read x = x
 let add x d = x + d
 let sub x d = x - d
 let mult x n = x * n
 let merge ~lca ~v1 ~v2 =
 lca + (v1 - lca) + (v2 - lca)
end

7

8 21

+1 *3

22

!12

module Counter : sig
 type t
 val read : t -> int
 val add : t -> int -> t
 val sub : t -> int -> t
 val mult : t -> int -> t
 val merge : lca:t -> v1:t -> v2:t -> t
end = struct
 type t = int
 let read x = x
 let add x d = x + d
 let sub x d = x - d
 let mult x n = x * n
 let merge ~lca ~v1 ~v2 =
 lca + (v1 - lca) + (v2 - lca)
end

7

8 21

+1 *3

22 22

!12

module Counter : sig
 type t
 val read : t -> int
 val add : t -> int -> t
 val sub : t -> int -> t
 val mult : t -> int -> t
 val merge : lca:t -> v1:t -> v2:t -> t
end = struct
 type t = int
 let read x = x
 let add x d = x + d
 let sub x d = x - d
 let mult x n = x * n
 let merge ~lca ~v1 ~v2 =
 lca + (v1 - lca) + (v2 - lca)
end

7

8 21

+1 *3

22 22

22 = 7 + (8-1) + (21 -7)

!12

module Counter : sig
 type t
 val read : t -> int
 val add : t -> int -> t
 val sub : t -> int -> t
 val mult : t -> int -> t
 val merge : lca:t -> v1:t -> v2:t -> t
end = struct
 type t = int
 let read x = x
 let add x d = x + d
 let sub x d = x - d
 let mult x n = x * n
 let merge ~lca ~v1 ~v2 =
 lca + (v1 - lca) + (v2 - lca)
end

7

8 21

+1 *3

22 22

22 = 7 + (8-1) + (21 -7)

• 3-way merge function makes the counter suitable for distribution

!12

module Counter : sig
 type t
 val read : t -> int
 val add : t -> int -> t
 val sub : t -> int -> t
 val mult : t -> int -> t
 val merge : lca:t -> v1:t -> v2:t -> t
end = struct
 type t = int
 let read x = x
 let add x d = x + d
 let sub x d = x - d
 let mult x n = x * n
 let merge ~lca ~v1 ~v2 =
 lca + (v1 - lca) + (v2 - lca)
end

7

8 21

+1 *3

22 22

22 = 7 + (8-1) + (21 -7)

• 3-way merge function makes the counter suitable for distribution

• Does not appeal to individual operations => independently
extend data-type

!13

Systems ➞ PL

!13

Systems ➞ PL

• CRDTs need to take care of
systems level concerns such as
exactly once delivery

!13

Systems ➞ PL

• CRDTs need to take care of
systems level concerns such as
exactly once delivery

• 3-way merge handles it
automatically

!13

7

8 21

+1 *3

22 22

Systems ➞ PL

• CRDTs need to take care of
systems level concerns such as
exactly once delivery

• 3-way merge handles it
automatically

??

!13

7

8 21

+1 *3

22 22

Systems ➞ PL

• CRDTs need to take care of
systems level concerns such as
exactly once delivery

• 3-way merge handles it
automatically

??

!13

7

8 21

+1 *3

22 22

22

22 = 21 + (21-21) + (22 -21)

Systems ➞ PL

• CRDTs need to take care of
systems level concerns such as
exactly once delivery

• 3-way merge handles it
automatically

Does the 3-way merge idea generalise?

!15

module type Queue = sig
 type 'a t
 val push : 'a t -> 'a -> 'a t
 val pop : 'a t -> ('a * 'a t) option
 (* at-least once semantics *)
end

!15

module type Queue = sig
 type 'a t
 val push : 'a t -> 'a -> 'a t
 val pop : 'a t -> ('a * 'a t) option
 (* at-least once semantics *)
end

• Try replicating queues by asynchronously transmitting operations

!15

module type Queue = sig
 type 'a t
 val push : 'a t -> 'a -> 'a t
 val pop : 'a t -> ('a * 'a t) option
 (* at-least once semantics *)
end

[1,2]

• Try replicating queues by asynchronously transmitting operations

!15

module type Queue = sig
 type 'a t
 val push : 'a t -> 'a -> 'a t
 val pop : 'a t -> ('a * 'a t) option
 (* at-least once semantics *)
end

[1,2]

[2]

pop() ! 1

• Try replicating queues by asynchronously transmitting operations

!15

module type Queue = sig
 type 'a t
 val push : 'a t -> 'a -> 'a t
 val pop : 'a t -> ('a * 'a t) option
 (* at-least once semantics *)
end

[1,2]

[2] [2]

pop() ! 1 pop() ! 1

• Try replicating queues by asynchronously transmitting operations

!15

module type Queue = sig
 type 'a t
 val push : 'a t -> 'a -> 'a t
 val pop : 'a t -> ('a * 'a t) option
 (* at-least once semantics *)
end

[1,2]

[2] [2]

[]

pop() ! 1 pop() ! 1

pop()

• Try replicating queues by asynchronously transmitting operations

!15

module type Queue = sig
 type 'a t
 val push : 'a t -> 'a -> 'a t
 val pop : 'a t -> ('a * 'a t) option
 (* at-least once semantics *)
end

[1,2]

[2] [2]

[] []

pop() ! 1 pop() ! 1

pop()

pop()

• Try replicating queues by asynchronously transmitting operations

!15

module type Queue = sig
 type 'a t
 val push : 'a t -> 'a -> 'a t
 val pop : 'a t -> ('a * 'a t) option
 (* at-least once semantics *)
end

[1,2]

[2] [2]

[] []

pop() ! 1 pop() ! 1

pop()

pop()

• Convergence is not sufficient; Intent is not preserved

• Try replicating queues by asynchronously transmitting operations

!15

module type Queue = sig
 type 'a t
 val push : 'a t -> 'a -> 'a t
 val pop : 'a t -> ('a * 'a t) option
 (* at-least once semantics *)
end

[1,2]

[2] [2]

[] []

pop() ! 1 pop() ! 1

pop()

pop()

• Convergence is not sufficient; Intent is not preserved

[1]

• Try replicating queues by asynchronously transmitting operations

!15

module type Queue = sig
 type 'a t
 val push : 'a t -> 'a -> 'a t
 val pop : 'a t -> ('a * 'a t) option
 (* at-least once semantics *)
end

[1,2]

[2] [2]

[] []

pop() ! 1 pop() ! 1

pop()

pop()

• Convergence is not sufficient; Intent is not preserved

[1]

[1,2]

push(2)

• Try replicating queues by asynchronously transmitting operations

!15

module type Queue = sig
 type 'a t
 val push : 'a t -> 'a -> 'a t
 val pop : 'a t -> ('a * 'a t) option
 (* at-least once semantics *)
end

[1,2]

[2] [2]

[] []

pop() ! 1 pop() ! 1

pop()

pop()

• Convergence is not sufficient; Intent is not preserved

[1]

[1,2] [1,3]

push(2) push(3)

• Try replicating queues by asynchronously transmitting operations

!15

module type Queue = sig
 type 'a t
 val push : 'a t -> 'a -> 'a t
 val pop : 'a t -> ('a * 'a t) option
 (* at-least once semantics *)
end

[1,2]

[2] [2]

[] []

pop() ! 1 pop() ! 1

pop()

pop()

• Convergence is not sufficient; Intent is not preserved

[1]

[1,2] [1,3]

[1,2,3]

push(2) push(3)

push(3)

• Try replicating queues by asynchronously transmitting operations

!15

module type Queue = sig
 type 'a t
 val push : 'a t -> 'a -> 'a t
 val pop : 'a t -> ('a * 'a t) option
 (* at-least once semantics *)
end

[1,2]

[2] [2]

[] []

pop() ! 1 pop() ! 1

pop()

pop()

• Convergence is not sufficient; Intent is not preserved

[1]

[1,2] [1,3]

[1,2,3] [1,3,2]

push(2) push(3)

push(3)

push(2)

• Try replicating queues by asynchronously transmitting operations

Concretising Intent

!16

Concretising Intent
• Intent is a woolly term

★ How can we formalise the intent of operations on a data
structure?

!16

Concretising Intent
• Intent is a woolly term

★ How can we formalise the intent of operations on a data
structure?

!16

l

v1 v2

v

Concretising Intent
• Intent is a woolly term

★ How can we formalise the intent of operations on a data
structure?

• For a replicated queue,

!16

l

v1 v2

v

Concretising Intent
• Intent is a woolly term

★ How can we formalise the intent of operations on a data
structure?

• For a replicated queue,

1. Any element popped in either v1 or v2 does not remain in v

!16

l

v1 v2

v

Concretising Intent
• Intent is a woolly term

★ How can we formalise the intent of operations on a data
structure?

• For a replicated queue,

1. Any element popped in either v1 or v2 does not remain in v

2. Any element pushed into either v1 or v2 appears in v

!16

l

v1 v2

v

Concretising Intent
• Intent is a woolly term

★ How can we formalise the intent of operations on a data
structure?

• For a replicated queue,

1. Any element popped in either v1 or v2 does not remain in v

2. Any element pushed into either v1 or v2 appears in v

3. An element that remains untouched in l, v1, v2 remains in v

!16

l

v1 v2

v

Concretising Intent
• Intent is a woolly term

★ How can we formalise the intent of operations on a data
structure?

• For a replicated queue,

1. Any element popped in either v1 or v2 does not remain in v

2. Any element pushed into either v1 or v2 appears in v

3. An element that remains untouched in l, v1, v2 remains in v

4. Order of pairs of elements in l, v1, v2 must be preserved in
m, if those elements are present in v.

!16

l

v1 v2

v

Relational Specification

!17

Relational Specification
• Let’s define relations Rmem and Rob to capture membership and

ordering

★ Rmem [1,2,3] = {1,2,3}

★ Rob [1,2,3] = { (1,2), (1,3), (2,3) }

!17

Relational Specification
• Let’s define relations Rmem and Rob to capture membership and

ordering

★ Rmem [1,2,3] = {1,2,3}

★ Rob [1,2,3] = { (1,2), (1,3), (2,3) }

!17

l

v1 v2

v

Relational Specification
• Let’s define relations Rmem and Rob to capture membership and

ordering

★ Rmem [1,2,3] = {1,2,3}

★ Rob [1,2,3] = { (1,2), (1,3), (2,3) }

!17

l

v1 v2

v

Relational Specification
• Let’s define relations Rmem and Rob to capture membership and

ordering

★ Rmem [1,2,3] = {1,2,3}

★ Rob [1,2,3] = { (1,2), (1,3), (2,3) }

1.Any element popped in either v1 or v2 does not remain in v

!17

l

v1 v2

v

Relational Specification
• Let’s define relations Rmem and Rob to capture membership and

ordering

★ Rmem [1,2,3] = {1,2,3}

★ Rob [1,2,3] = { (1,2), (1,3), (2,3) }

1.Any element popped in either v1 or v2 does not remain in v

2. Any element pushed into either v1 or v2 appears in v

!17

l

v1 v2

v

Relational Specification
• Let’s define relations Rmem and Rob to capture membership and

ordering

★ Rmem [1,2,3] = {1,2,3}

★ Rob [1,2,3] = { (1,2), (1,3), (2,3) }

1.Any element popped in either v1 or v2 does not remain in v

2. Any element pushed into either v1 or v2 appears in v

3. An element that remains untouched in l, v1, v2 remains in v

!17

l

v1 v2

v

Relational Specification

!18

l

v1 v2

v

Relational Specification

!18

l

v1 v2

v

• RHS has to be confined to Rmem(v) x Rmem(v) since certain
orders might be missing

★ Consider l = [0], v1= [0,1], v2 = [], v = [1]

Relational Specification

!18

l

v1 v2

v

• RHS has to be confined to Rmem(v) x Rmem(v) since certain
orders might be missing

★ Consider l = [0], v1= [0,1], v2 = [], v = [1]

• RHS is an underspecification since orders between concurrent
insertions will only be present in Rob(v)

★ Consider l = [], v1= [0], v2 = [1], v = [0,1]

!19

!19

[1,2]

Rmem = {1,2}

Rob = { (1,2) }

!19

[1,2]

[2]

pop() ! 1

Rmem = {1,2}

Rob = { (1,2) }

Rmem = {2}

Rob = { }

!19

[1,2]

[2] [2]

pop() ! 1 pop() ! 1

Rmem = {1,2}

Rob = { (1,2) }

Rmem = {2}

Rob = { }

Rmem = {2}

Rob = { }

!19

[1,2]

[2] [2]

[2] [2]

pop() ! 1 pop() ! 1

Rmem = {1,2}

Rob = { (1,2) }

Rmem = {2}

Rob = { }

Rmem = {2}

Rob = { }

Rmem = {2}

Rob = { }

Rmem = {2}

Rob = { }

!20

!20

[1]

Rmem = {1}

Rob = { }

!20

[1]

[1,2]

push(2)

Rmem = {1}

Rob = { }

Rmem = {1,2}

Rob = { (1,2) }

!20

[1]

[1,2] [1,3]

push(2) push(3)

Rmem = {1}

Rob = { }

Rmem = {1,2}

Rob = { (1,2) }

Rmem = {1,3}

Rob = { (1,3) }

!20

[1]

[1,2] [1,3]

push(2) push(3)

Rmem = {1}

Rob = { }

Rmem = {1,2}

Rob = { (1,2) }

Rmem = {1,3}

Rob = { (1,3) }

Use < as an arbitration function between concurrent insertions

!20

[1]

[1,2] [1,3]

[1,2,3] [1,3,2]

push(2) push(3)

Rmem = {1}

Rob = { }

Rmem = {1,2}

Rob = { (1,2) }

Rmem = {1,3}

Rob = { (1,3) }

Rmem = {1,2,3}

Rob = { (1,2), (1,3), (2,3) }

Rmem = {1,2,3}

Rob = { (1,2), (1,3). (2,3) }

Use < as an arbitration function between concurrent insertions

Characteristic Relations

!21

A sequence of relations RT is called a characteristic relation
of a data type T, if for every x : T and y : T , RT (x) = RT (y) i↵
x and y are extensionally equal as interpreted under T .

• Rmem and Rob are the characteristic relations of queue

Characteristic Relations

!21

A sequence of relations RT is called a characteristic relation
of a data type T, if for every x : T and y : T , RT (x) = RT (y) i↵
x and y are extensionally equal as interpreted under T .

• Rmem and Rob are the characteristic relations of queue

• Appeals only to the sequential properties of the data type

★ Ignore distribution when defining characteristic relations.

Characteristic Relations

!21

A sequence of relations RT is called a characteristic relation
of a data type T, if for every x : T and y : T , RT (x) = RT (y) i↵
x and y are extensionally equal as interpreted under T .

Synthesizing Merge

!22

Synthesizing Merge
• Semantics of merge in relational domain is quite standard

across data types

!22

Synthesizing Merge
• Semantics of merge in relational domain is quite standard

across data types

★ Can we synthesise merge functions for arbitrary data type?

!22

Synthesizing Merge
• Semantics of merge in relational domain is quite standard

across data types

★ Can we synthesise merge functions for arbitrary data type?

!22

Synthesizing Merge
• Semantics of merge in relational domain is quite standard

across data types

★ Can we synthesise merge functions for arbitrary data type?

!22

Abstraction function

Synthesizing Merge
• Semantics of merge in relational domain is quite standard

across data types

★ Can we synthesise merge functions for arbitrary data type?

!22

Abstraction function

Concretisation function

Synthesizing Merge
• Semantics of merge in relational domain is quite standard

across data types

★ Can we synthesise merge functions for arbitrary data type?

!22

Abstraction function

Concretisation function

Synthesize (goal)

Synthesizing Merge
• Semantics of merge in relational domain is quite standard

across data types

★ Can we synthesise merge functions for arbitrary data type?

!22

Abstraction function

Concretisation function

Directed synthesis using the
type of the characteristic

relations

Synthesize (goal)

Abstraction Function: Queue

!23

Abstraction Function: Queue

!23

Abstraction Function: Queue

!23

Abstraction Function: Queue

!23

Abstraction Function: Queue

!23

Abstraction Function: Binary Tree

!24

Abstraction Function: Binary Tree

!24

Abstraction Function: Binary Tree

!24

Abstraction Function: Binary Heap

!25

Abstraction Function: Binary Heap

!25

!26

Compositionality: Pair

!27

Compositionality: Pair
• The merge of a pair is the merge of the corresponding

constituents

!27

Compositionality: Pair
• The merge of a pair is the merge of the corresponding

constituents

• A pair data type is defined by the relations:

!27

Compositionality: Pair
• The merge of a pair is the merge of the corresponding

constituents

• A pair data type is defined by the relations:

• Assume that the pair is composed of 2 counters. The counter
merge spec is:

!27

Compositionality: Pair
• The merge of a pair is the merge of the corresponding

constituents

• A pair data type is defined by the relations:

• Assume that the pair is composed of 2 counters. The counter
merge spec is:

• Then, pair merge spec is:

!27

Generalising Pairs to Ordinates

!28

Generalising Pairs to Ordinates

• An alternative characteristic relation for a pair is:

!28

Generalising Pairs to Ordinates

• An alternative characteristic relation for a pair is:

!28

Generalising Pairs to Ordinates

• An alternative characteristic relation for a pair is:

• Corresponding merge specification is:

!28

Generalising Pairs to Ordinates

• An alternative characteristic relation for a pair is:

• Corresponding merge specification is:

!28

Generalising Pairs to Ordinates

• An alternative characteristic relation for a pair is:

• Corresponding merge specification is:

• Given appropriate characteristic relation for a n-tuple (Rn-tuple),
the same merge specification can be used.

!28

Generalising Pairs to Ordinates

• Similar encoding can be given to maps with non-mergeable
types as keys and mergeable types as values

!29

Types of Characteristic Relations

!30

Types of Characteristic Relations

• Practical characteristic relations fall into 3 types:

!30

Types of Characteristic Relations

• Practical characteristic relations fall into 3 types:

★ Membership (Rmem)

!30

R : {v : T} ! P
�
T
�
, where T is a non-mergeable type

Types of Characteristic Relations

• Practical characteristic relations fall into 3 types:

★ Membership (Rmem)

★ Ordering (Rob, Rans, Rto)

✦ where 𝜌 is a sequence of non-mergeable types and other relations, which
flattens to a sequence of non-mergeable types

!30

R : {v : T} ! P
�
T
�
, where T is a non-mergeable type

R : {v : T} ! P (⇢)

Types of Characteristic Relations

• Practical characteristic relations fall into 3 types:

★ Membership (Rmem)

★ Ordering (Rob, Rans, Rto)

✦ where 𝜌 is a sequence of non-mergeable types and other relations, which
flattens to a sequence of non-mergeable types

★ Ordinates (Rpair, Rkv)

!30

R : {v : T} ! P
�
T
�
, where T is a non-mergeable type

R : {v : T} ! P (⇢)

R : {v : T} ! P
�
T ⇥ ⌧

�
, where ⌧ is a mergeable type

Deriving merge spec

!31

Deriving merge spec

• Not complete, but practical

• Can derive merge spec for

★ Data structures: Set, Heap, Graph, Queue, TreeDoc

★ Larger apps: TPC-C, TPC-E, Twissandra, Rubis
!31

Distributed Implementation

!32

Distributed Implementation
• For making this programming model practical, we need to:

★ Quickly compute LCA

★ Optimise storage through sharing

★ Optimise network transmissions (state based merge)

!32

Distributed Implementation
• For making this programming model practical, we need to:

★ Quickly compute LCA

★ Optimise storage through sharing

★ Optimise network transmissions (state based merge)

• Irmin

★ A reimplementation of Git in pure OCaml

★ Arbitrary OCaml objects, not just files + User-defined 3-way merges

★ Only transmit diffs over the network

★ Multiple storage backends including in-memory, filesystems, log-structured-
merge database, distributed databases

!32

Performance

!33

Performance
• What is the size of diff compared to the size of data structure?

!33

Performance
• What is the size of diff compared to the size of data structure?

• Setup

★ 2 Replicas, fixed number of rounds, each round has N operations

★ 75% inserts, 25% deletions

★ Synchronise after each round

!33

Performance
• What is the size of diff compared to the size of data structure?

• Setup

★ 2 Replicas, fixed number of rounds, each round has N operations

★ 75% inserts, 25% deletions

★ Synchronise after each round

!33

Binary Heap Growable Array

Thanks for listening!

!34

