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• Serializability
• Linearizability• Weak Consistency & Isolation



When system-level concerns like replication & 
availability affect application-level design decisions, 

programming becomes complicated.
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module Counter : sig  
  type t 
  val read : t -> int 
  val add  : t -> int -> t 
  val sub  : t -> int -> t 
end = struct 
  type t = int  
  let read x = x 
  let add x d = x + d 
  let sub x d = x - d 
end

Sequential Counter



• Written in idiomatic style

• Composable
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  type t 
  val read : t -> int 
  val add  : t -> int -> t 
  val sub  : t -> int -> t 
end = struct 
  type t = int  
  let read x = x 
  let add x d = x + d 
  let sub x d = x - d 
end

type counter_list = Counter.t list

Sequential Counter
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  val mult : t -> int -> t 
end = struct 
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Diverges

Addition and multiplication do not commute
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module Counter : sig  
  type t 
  val read : t -> int 
  val add  : t -> int -> t 
  val sub  : t -> int -> t 
  val mult : t -> int -> t 
end = struct 
  type t = int  
  let read x = x 
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Converges

• Capture the effect of multiplication through the commutative 
addition operation

• CRDTs



Conflict-free Replicated Data 
Types (CRDT)
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Conflict-free Replicated Data 
Types (CRDT)

• CRDT is guaranteed to ensure strong eventual consistency (SEC)

★ G-counters, PN-counters, OR-Sets, Graphs, Ropes, docs, sheets

★ Simple interface for the clients of CRDTs
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Conflict-free Replicated Data 
Types (CRDT)

• CRDT is guaranteed to ensure strong eventual consistency (SEC)

★ G-counters, PN-counters, OR-Sets, Graphs, Ropes, docs, sheets

★ Simple interface for the clients of CRDTs

• Need to reengineer every datatype to ensure SEC 
(commutativity)

★ Do not mirror sequential counter parts => implementation & proof 
burden

★ Do not compose! 

✦ counter set is not a composition of counter and set CRDTs

!10



Can we program & reason about replicated data types 
as an extension of their sequential counterparts?
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module Counter : sig  
  type t 
  val read : t -> int  
  val add  : t -> int -> t 
  val sub  : t -> int -> t 
  val mult : t -> int -> t 
  val merge : lca:t -> v1:t -> v2:t -> t 
end = struct 
  type t = int  
  let read x = x  
  let add x d = x + d  
  let sub x d = x - d  
  let mult x n = x * n  
  let merge ~lca ~v1 ~v2 =  
    lca + (v1 - lca) + (v2 - lca) 
end
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  val sub  : t -> int -> t 
  val mult : t -> int -> t 
  val merge : lca:t -> v1:t -> v2:t -> t 
end = struct 
  type t = int  
  let read x = x  
  let add x d = x + d  
  let sub x d = x - d  
  let mult x n = x * n  
  let merge ~lca ~v1 ~v2 =  
    lca + (v1 - lca) + (v2 - lca) 
end

7

8 21

+1 *3

22 22

22 = 7 + (8-1) + (21 -7)

• 3-way merge function makes the counter suitable for distribution

• Does not appeal to individual operations => independently 
extend data-type 
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7
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22 22

22

22 = 21 + (21-21) + (22 -21)

Systems ➞ PL

• CRDTs need to take care of 
systems level concerns such as 
exactly once delivery

• 3-way merge handles it 
automatically



Does the 3-way merge idea generalise?
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module type Queue = sig 
  type 'a t 
  val push : 'a t -> 'a -> 'a t 
  val pop  : 'a t -> ('a * 'a t) option 
  (* at-least once semantics *) 
end

[1,2]

[2] [2]

[  ] [  ]

pop() ! 1 pop() ! 1

pop()

pop()

• Convergence is not sufficient; Intent is not preserved

[1]

[1,2] [1,3]

[1,2,3] [1,3,2]

push(2) push(3)

push(3)

push(2)

• Try replicating queues by asynchronously transmitting operations
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Concretising Intent
• Intent is a woolly term

★ How can we formalise the intent of operations on a data 
structure?

• For a replicated queue,

1. Any element popped in either v1 or v2 does not remain in v

2. Any element pushed into either v1 or v2 appears in v

3. An element that remains untouched in l, v1, v2 remains in v

4. Order of pairs of elements in l, v1, v2 must be preserved in 
m, if those elements are present in v.
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l

v1 v2

v

• RHS has to be confined to Rmem(v) x Rmem(v) since certain 
orders might be missing

★ Consider l = [0], v1= [0,1], v2 = [ ], v = [1]

• RHS is an underspecification since orders between concurrent 
insertions will only be present in Rob(v)

★ Consider l = [ ], v1= [0], v2 = [1], v = [0,1]
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[1,2]

Rmem = {1,2}

Rob = { (1,2) }
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[1,2]

[2]

pop() ! 1

Rmem = {1,2}

Rob = { (1,2) }

Rmem = {2}

Rob = { }
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[1,2]

[2] [2]

pop() ! 1 pop() ! 1

Rmem = {1,2}

Rob = { (1,2) }

Rmem = {2}

Rob = { }

Rmem = {2}

Rob = { }
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[1,2]

[2] [2]

[2] [2]

pop() ! 1 pop() ! 1

Rmem = {1,2}

Rob = { (1,2) }

Rmem = {2}

Rob = { }

Rmem = {2}

Rob = { }

Rmem = {2}

Rob = { }

Rmem = {2}

Rob = { }
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[1]

Rmem = {1}

Rob = { }



!20

[1]

[1,2]

push(2)

Rmem = {1}

Rob = { }

Rmem = {1,2}

Rob = { (1,2) }
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[1]

[1,2] [1,3]

push(2) push(3)

Rmem = {1}

Rob = { }

Rmem = {1,2}

Rob = { (1,2) }

Rmem = {1,3}

Rob = { (1,3) }
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[1]

[1,2] [1,3]

push(2) push(3)

Rmem = {1}

Rob = { }

Rmem = {1,2}

Rob = { (1,2) }

Rmem = {1,3}

Rob = { (1,3) }

Use < as an arbitration function between concurrent insertions
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[1]

[1,2] [1,3]

[1,2,3] [1,3,2]

push(2) push(3)

Rmem = {1}

Rob = { }

Rmem = {1,2}

Rob = { (1,2) }

Rmem = {1,3}

Rob = { (1,3) }

Rmem = {1,2,3}

Rob = { (1,2), (1,3), (2,3) }

Rmem = {1,2,3}

Rob = { (1,2), (1,3). (2,3) }

Use < as an arbitration function between concurrent insertions
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x and y are extensionally equal as interpreted under T .



• Rmem and Rob are the characteristic relations of queue

Characteristic Relations

!21

A sequence of relations RT is called a characteristic relation
of a data type T, if for every x : T and y : T , RT (x) = RT (y) i↵
x and y are extensionally equal as interpreted under T .



• Rmem and Rob are the characteristic relations of queue

• Appeals only to the sequential properties of the data type

★ Ignore distribution when defining characteristic relations.

Characteristic Relations

!21

A sequence of relations RT is called a characteristic relation
of a data type T, if for every x : T and y : T , RT (x) = RT (y) i↵
x and y are extensionally equal as interpreted under T .
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Synthesizing Merge
• Semantics of merge in relational domain is quite standard 

across data types

★ Can we synthesise merge functions for arbitrary data type?

!22

Abstraction function

Concretisation function

Directed synthesis using the 
type of the characteristic 

relations

Synthesize (goal)
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Abstraction Function: Binary Heap
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Compositionality: Pair
• The merge of a pair is the merge of the corresponding 

constituents

• A pair data type is defined by the relations:

• Assume that the pair is composed of 2 counters. The counter 
merge spec is:

• Then, pair merge spec is:

!27
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Generalising Pairs to Ordinates

• An alternative characteristic relation for a pair is:

• Corresponding merge specification is:

• Given appropriate characteristic relation for a n-tuple (Rn-tuple), 
the same merge specification can be used. 
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Generalising Pairs to Ordinates

• Similar encoding can be given to maps with non-mergeable 
types as keys and mergeable types as values

!29
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Types of Characteristic Relations

• Practical characteristic relations fall into 3 types:

★ Membership (Rmem)

★ Ordering (Rob, Rans, Rto)

✦ where 𝜌 is a sequence of non-mergeable types and other relations, which 
flattens to a sequence of non-mergeable types

★ Ordinates (Rpair, Rkv)

!30

R : {v : T} ! P
�
T
�
, where T is a non-mergeable type

R : {v : T} ! P (⇢)

R : {v : T} ! P
�
T ⇥ ⌧

�
, where ⌧ is a mergeable type
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Deriving merge spec

• Not complete, but practical

• Can derive merge spec for 

★ Data structures: Set, Heap, Graph, Queue, TreeDoc

★ Larger apps: TPC-C, TPC-E, Twissandra, Rubis
!31
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Distributed Implementation
• For making this programming model practical, we need to:

★ Quickly compute LCA

★ Optimise storage through sharing

★ Optimise network transmissions (state based merge)

• Irmin

★ A reimplementation of Git in pure OCaml

★ Arbitrary OCaml objects, not just files + User-defined 3-way merges

★ Only transmit diffs over the network

★ Multiple storage backends including in-memory, filesystems, log-structured-
merge database, distributed databases

!32
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★ Synchronise after each round
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Performance
• What is the size of diff compared to the size of data structure?

• Setup

★ 2 Replicas, fixed number of rounds, each round has N operations

★ 75% inserts, 25% deletions

★ Synchronise after each round

!33

Binary Heap Growable Array



Thanks for listening!
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