Reagents:
lock-free programming for the masses

“KC” Sivaramakrishnan

University of OCami
Labs

ol

Multicore OCaml|

Concurrency Parallelism

Libraries

Language + Stdlib

Multicore OCaml|

Concurrency Parallelism

Libraries

Language + Stdlib

Compiler

N Bl I I B I B I I = I BB == == = = =

Multicore OCaml|

Concurrency Parallelism

Libraries

Language + Stdlib

Compiler

N Bl I I B I B I I = I BB == == = = =

Multicore OCaml|

Concurrency Parallelism

Libraries

Language + Stdlib

Compiler

e 12M fibers/s
on 1 core

e 30M fibers/s
on 4 cores

N Bl I I B I B I I = I BB == == = = =

Multicore OCaml|

Concurrency Parallelism

Libraries

Language + Stdlib

Compiler
 12M fibers/s
e 30M fibers/s
on 4 cores

N Bl I I B I B I I = I BB == == = = =

Multicore OCaml|

Concurrency Parallelism

Libraries

Language + Stdlib

Domain API

Compiler

* 12M fibers/s

on 1 core Do
e 30M fibers/s
on 4 cores

N Bl I I B I B I I = I BB == == = = =

Multicore OCaml|

Concurrency Parallelism

Libraries

Cooperative

threading libraries

Language + Stdlib

Domain API

Compiler

e 12M fibers/s

on 1 core ‘ | D
e 30M fibers/s
on 4 cores

N Bl I I B I B I I = I BB == == = = =

Multicore OCaml|

Concurrency Parallelism

Libraries

Cooperative Reagents: lock-

free programming

threading libraries

Language + Stdlib

e 12M fibers/s

on 1 core D
e 30M fibers/s
on 4 cores

N Bl I I B I B I I = I BB == == = = =

Concurrent
Programming in Java"
Second Edition

Design Principles and Patterns

®Sll” ... from the Source Tva

JVM: java.util.concurrent

Microsoft

I\

.Net: System.Concurrent.Collections

Concurrent
Programming in Java"

Second Edition -
Design Principles and Patterns M IC rOSOft

NET

@ Sun

JVM: java.util.concurrent .Net: System.Concurrent.Collections

Synchronization Data structures
Reentrant locks Queues
Semaphores Nonblocking
R/W locks Blocking (array & list)
Reentrant R/WV locks Synchronous
Condition variables Priority, nonblocking
Countdown latches Priority, blocking
Cyclic barriers Deques
Phasers Sets
Exchangers Maps (hash & skiplist)

Doug Lea

Concurrent
Programming in Java"

Second Edition :
Design Principles and Patterns M ICIO SOft

The Java™ Series —
i o
-V D

@Sll}l ... from the Source” ;&2

JAVA

JVM: java.util.concurrent .Net: System.Concurrent.Collections

Synchronization

Reentrant locks
Semaphores

R/W locks
Reentrant R/W locl
Condition ya»

riority, nonblocking
Priority, blocking

Deques

Sets

Maps (hash & skiplist)

How to build composable
lock-free programs?

lock-tree

Una tention, at least 1 threac
IOCk'free nder contention

makes progress

Una tention, at least 1 threac
IOCk'free nder contention

makes progress

obstruction-free Single thread in isolation makes
progress

> Under contention, each thread
wait-free

makes progress

Una tention, at least 1 thread
IOCk'free nder contentio

makes progress

obstruction-free Single thread in isolation makes
progress

Compare and-swap (CAS)

. S1g
cas : 'a ref expect: 'a update: 'a bool
end = struct
(* atomically... *)
cas r
r expect
r:= update; true
false
end

Compare and-swap (CAS)

. S1g
cas : 'a ref expect: 'a update: 'a bool
end = struct
(* atomically... *)
cas r
r expect
r:= update; true
false
end

* Implemented atomically by processors

« x86: CMPXCHG and friends
- arm: LDREX, STREX, etc.

* ppc: Iwarx, stwcx, etc.

Head

l

ElESd €1 D

Head

l

ElESd €1 D

(7|f)

Head

l

ElESd €1 D

(7] f] CAS attempt

Head

/

Blo— Cl9— 0])

(7] f] CAS attempt

Head

/

Blo— Cl9— 0])

(7|Z) CAS fail

Head

Blo— Cl9— 0])

Head

/

RS ol GRS CH S o d €1 D

module type TREIBER_STACK = sig
type 'a t
val push : 'a t >

a -> unit
end

module Treiber_stack : TREIBER_STACK =
struct
type 'a t = "a list ref

let rec push s t =
let cur = !'s 1n
1t CAS.cas s cur (t::cur) then O

else (backoff (); push s t)
end

module type TREIBER_STACK = sig

type 'a t

val push . 'at > "a -> unit

val try_pop : 'a t -> "'a option
end

module Treiber_stack : TREIBER_STACK =
struct
type 'a t = "a list ref

let rec push s t = ...

let rec try_pop s =
match !s with
| [] -> None
| (X::XS) as cur ->
1 CAS.cas s cur xs then Some x
else (backoff (); try_pop s)
end

let v = Treilber_stack.pop sl 1n
Treiber_stack.push sZ2 v

IS Not atomic

The Problem:

Concurrency libraries are
, but hard to
build and extenda

v = Trelber_stack.pop sl
Treiber_stack.push sZ2 v

IS Not atomic

Reagents

Scalable concurrent algorithms
can be built and extended using
and

Treiber_stack.pop sl >>> Treiber_stack.push sZ2

IS atomic

PLDI 2012

Reagents: Expressing and Composing
Fine-grained Concurrency

Aaron Turon

Northeastern University
turon@ccs.neu.edu

Abstract

Efficient communication and synchronization is crucial for fine-
grained parallelism. Libraries providing such features, while indis-
pensable, are difficult to write, and often cannot be tailored or com-
posed to meet the needs of specific users. We introduce reagents,
a set of combinators for concisely expressing concurrency algo-
rithms. Reagents scale as well as their hand-coded counterparts,
while providing the composability existing libraries lack.

Categories and Subject Descriptors D.1.3 [Programming tech-
niques]: Concurrent programming; D.3.3 [Language constructs
and features]: Concurrent programming structures

13

Such libraries are an enormous undertaking—and one that must
be repeated for new platforms. They tend to be conservative, im-
plementing only those data structures and primitives likely to fulfill
common needs, and it is generally not possible to safely combine
the facilities of the library. For example, JUC provides queues, sets
and maps, but not stacks or bags. Its queues come in both blocking
and nonblocking forms, while its sets and maps are nonblocking
only. Although the queues provide atomic (thread-safe) dequeuing
and sets provide atomic insertion, it is not possible to combine these
into a single atomic operation that moves an element from a queue
into a set.

PLDI 2012

Reagents: Expressing and Composing
Fine-grained Concurrency

Aaron Turon

Northeastern University
turon@ccs.neu.edu

Abstract

Efficient communication and synchronization is crucial for fine-
grained parallelism. Libraries providing such features, while indis-
pensable, are difficult to write, and often cannot be tailored or com-
posed to meet the needs of specific users. We introduce reagents,
a set of combinators for concisely expressing concurrency algo-
rithms. Reagents scale as well as their hand-coded counterparts,
while providing the composability existing libraries lack.

Categories and Subject Descriptors D.1.3 [Programming tech-
niques]: Concurrent programming; D.3.3 [Language constructs
and features]: Concurrent programming structures

Such libraries are an enormous undertaking—and one that must
be repeated for new platforms. They tend to be conservative, im-
plementing only those data structures and primitives likely to fulfill
common needs, and it is generally not possible to safely combine
the facilities of the library. For example, JUC provides queues, sets
and maps, but not stacks or bags. Its queues come in both blocking
and nonblocking forms, while its sets and maps are nonblocking
only. Although the queues provide atomic (thread-safe) dequeuing
and sets provide atomic insertion, it is not possible to combine these
into a single atomic operation that moves an element from a queue
into a set.

Sequential >>> — Software transactional memory

Parallel

<*> — Join Calculus

Selective <+> — Concurrent ML

13

PLDI 2012

Reagents: Expressing and Composing
Fine-grained Concurrency

Aaron Turon

Northeastern University
turon@ccs.neu.edu

Abstract

Efficient communication and synchronization is crucial for fine-
grained parallelism. Libraries providing such features, while indis-
pensable, are difficult to write, and often cannot be tailored or com-
posed to meet the needs of specific users. We introduce reagents,
a set of combinators for concisely expressing concurrency algo-
rithms. Reagents scale as well as their hand-coded counterparts,
while providing the composability existing libraries lack.

Categories and Subject Descriptors D.1.3 [Programming tech-
niques]: Concurrent programming; D.3.3 [Language constructs
and features]: Concurrent programming structures

Such libraries are an enormous undertaking—and one that must
be repeated for new platforms. They tend to be conservative, im-
plementing only those data structures and primitives likely to fulfill
common needs, and it is generally not possible to safely combine
the facilities of the library. For example, JUC provides queues, sets
and maps, but not stacks or bags. Its queues come in both blocking
and nonblocking forms, while its sets and maps are nonblocking
only. Although the queues provide atomic (thread-safe) dequeuing
and sets provide atomic insertion, it is not possible to combine these
into a single atomic operation that moves an element from a queue
into a set.

Sequential >>> — Software transactional memory

Parallel

<*> — Join Calculus

Selective <+> — Concurrent ML

still lock-free!

13

Design

Lambda: the ultimate abstraction

Lambda: the ultimate abstraction

(compose g f): 'a 'C

Lambda abstraction: —E‘—®L>

Lambda abstraction: —E‘—®L>

Reagent abstraction: 2 L

'a,'b) Reagent.t

Lambda abstraction:

Reagent abstraction:

'a,'b) Reagent.t

run : ('a,'b) Reagent.t

d

Thread Interaction

Reagents = sig
'a,'b) t

(x shared memory)

Ref : Ref.S 'a,'b) reagent 'a,'b) t
(x communication channels)
Channel : Channel.S 'a,'b) reagent 'a,'b) t

end

18

Channel = s1ig
'a,'b) endpoint
'a,'b) reagent

mk_chan : unit 'a,'b) endpoint 'b,"'a) endpoint
swap : ('a,'b) endpoint 'a,'b) reagent
end

Channel = s1ig
'a,'b) endpoint
'a,'b) reagent

mk_chan : unit 'a,'b) endpoint 'b,"'a) endpoint

swap : ('a,'b) endpoint 'a,'b) reagent
end

+ ('a,'b) endpoint

Channel = s1ig
'a,'b) endpoint
'a,'b) reagent

mk_chan : unit 'a,'b) endpoint 'b,"'a) endpoint

swap : ('a,'b) endpoint 'a,'b) reagent
end

+ ('a,'b) endpoint

'a ref

. upd : 'a ref
Message passing g b g e

'b, 'c) Reagent.t
!!!IIHIEIII!!!

21l

'a ref

. upd : 'a ref
Message passing i p L (g e

'b, 'c) Reagent.t
!!!IIHIEIII!!!

21l

Message passing Shared state

i

202

Message passing Shared state

202

Message passing Shared state

:

\/

202

Message passing Shared state

O

v
Disjunction

23

Message passing Shared state

Disjunction

AN —{r}-

Message passing Shared state

Disjunction

1%

23

Message passing Shared state

Disjunction Conjunction

module type TREIBER_STACK = sig

type "a t

val create : unit -> 'a t

val push :'at -> ('a, unit) Reagent.t

val pop : 'at -> (unit, 'a) Reagent.t
end

module Treiber_stack : TREIBER_STACK = struct
type "a t = 'a list Ref.ref

let create () = Ref.ref []
Llet push r x = Ref.upd r (fun xs x -> Some (x::xs,()))
let pop r = Ref.upd r (fun 1 () ->

match 1 with

| [] -> None (* block *)
| X::XS -> Some (xs,x))

end

25

Composability

Transfer elements atomically

Treiber_stack.pop sl >>> Treiber_stack.push s2

20

Composability

Transfer elements atomically

Treiber_stack.pop sl >>> Treiber_stack.push s2

Consume elements atomically

Treiber_stack.pop sl <*> Treiber_stack.pop s2

20

Composability

Transfer elements atomically

Treiber_stack.pop sl >>> Treiber_stack.push s2

Consume elements atomically

Treiber_stack.pop sl <*> Treiber_stack.pop s2

Consume elements from either

Treiber_stack.pop sl <+> Treiber_stack.pop s2

20

Composability

Transtorm arbitrary blocking reagent to a non-blocking reagent

27

Composability

Transtorm arbitrary blocking reagent to a non-blocking reagent

Lift » ('a 'b option ‘a, 'b) t
constant : 'a 'b,'a) t

27

Composability

Transtorm arbitrary blocking reagent to a non-blocking reagent

Lift » ('a 'b option ‘a, 'b) t

constant : 'a 'b,'a) t

attempt (r : ('a,'b) t) ¢+ ('a,'b option) t
r Lift X Some (Some X

<+> (constant None

27

Composability

Transtorm arbitrary blocking reagent to a non-blocking reagent

Lift » ('a 'b option ‘a, 'b) t

constant : 'a 'b,'a) t

attempt (r : ('a,'b) t) ¢+ ('a,'b option) t
r Lift X Some (Some X

<+> (constant None

try_pop stack = attempt (pop stack

27

* Philosopher’s alternate between thinking and
eating

* Philosopher can only eat after obtaining both
forks

* No philosopher starves

* Philosopher’s alternate between thinking and
eating

* Philosopher can only eat after obtaining both
forks

* No philosopher starves

type fork =
idrop : (unit,unit) endpoint;
take : (unit,unit) endpoint;’

let mk_fork () =
let drop, take = mk_chan () in
{drop; take}

let drop f
let take f

swap f.drop
swap f.take

eating

forks

{drop

type fork
take :

(unit,unit) endpoint;
(unit,unit) endpoint;

let mk_fork () =
let drop, take = mk_chan () in
{drop; take}

let drop f
let take f

swap f.drop
swap f.take

* Philosopher’s alternate between thinking and

* Philosopher can only eat after obtaining both

* No philosopher starves

let eat L _fork r_fork =
run (take 1 _fork <=
take r_fork) ();
(k vu.
* eat
X wuw X)
spawn @@ run (drop 1 _fork);
spawn @@ run (drop r_fork)

Implementation

Phase | Phase 2
*

30

Phase | Phase 2
*

Accumulate CASes

30

Phase | Phase 2
*

Accumulate CASes

30

_t

Accumulate CASes

31

Permanent failure

ILI-—-I

Accumulate CASes

31

Permanent failure

Transient failure

Accumulate CASes

31

Permanent failure

Transient failure

Accumulate CASes

31

Status

Synchronization Data structures
Locks Queues
Reentrant locks Nonblocking
Blocking (array & list)
Synchronous

Condition variables

Countdown latches Stacks

Treiber

Elimination backoff
Exchangers Counters

Deques

https://github.com/ocamllabs/reagents

STM vs Reagents

+ STM is more ambitious — atomic { ... }. Reagents are
conservative.,

- Reagents don'’t allow multiple writes to the same
memory location.

- Reagents are lock-free. STMs are typically obstruction-
free.

33

