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How to build composable
lock-free programs?
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cas : 'a ref expect: 'a update: 'a bool
end = struct
(* atomically... *)
cas r
r expect
r:= update; true
false
end



Compare and-swap (CAS)

. S1g
cas : 'a ref expect: 'a update: 'a bool
end = struct
(* atomically... *)
cas r
r expect
r:= update; true
false
end

* Implemented atomically by processors

« x86: CMPXCHG and friends
- arm: LDREX, STREX, etc.

* ppc: Iwarx, stwcx, etc.
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module type TREIBER_STACK = sig
type 'a t
val push : 'a t >

a -> unit
end

module Treiber_stack : TREIBER_STACK =
struct
type 'a t = "a list ref

let rec push s t =
let cur = !'s 1n
1t CAS.cas s cur (t::cur) then O

else (backoff (); push s t)
end



module type TREIBER_STACK = sig

type 'a t

val push . 'at > "a -> unit

val try_pop : 'a t -> "'a option
end

module Treiber_stack : TREIBER_STACK =
struct
type 'a t = "a list ref

let rec push s t = ...

let rec try_pop s =
match !s with
| [] -> None
| (X::XS) as cur ->
1 CAS.cas s cur xs then Some x
else (backoff (); try_pop s)
end



let v = Treilber_stack.pop sl 1n
Treiber_stack.push sZ2 v

IS Not atomic



The Problem:

Concurrency libraries are
, but hard to
build and extenda

v = Trelber_stack.pop sl
Treiber_stack.push sZ2 v

IS Not atomic



Reagents

Scalable concurrent algorithms
can be built and extended using
and

Treiber_stack.pop sl >>> Treiber_stack.push sZ2

IS atomic
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Abstract

Efficient communication and synchronization is crucial for fine-
grained parallelism. Libraries providing such features, while indis-
pensable, are difficult to write, and often cannot be tailored or com-
posed to meet the needs of specific users. We introduce reagents,
a set of combinators for concisely expressing concurrency algo-
rithms. Reagents scale as well as their hand-coded counterparts,
while providing the composability existing libraries lack.

Categories and Subject Descriptors D.1.3 [Programming tech-
niques]: Concurrent programming; D.3.3 [Language constructs
and features]: Concurrent programming structures

13

Such libraries are an enormous undertaking—and one that must
be repeated for new platforms. They tend to be conservative, im-
plementing only those data structures and primitives likely to fulfill
common needs, and it is generally not possible to safely combine
the facilities of the library. For example, JUC provides queues, sets
and maps, but not stacks or bags. Its queues come in both blocking
and nonblocking forms, while its sets and maps are nonblocking
only. Although the queues provide atomic (thread-safe) dequeuing
and sets provide atomic insertion, it is not possible to combine these
into a single atomic operation that moves an element from a queue
into a set.
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Lambda: the ultimate abstraction

(compose g f): 'a 'C
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Lambda abstraction: —E‘—®L>

Reagent abstraction: 2 L

'a,'b) Reagent.t



Lambda abstraction:

Reagent abstraction:

'a,'b) Reagent.t

run : ('a,'b) Reagent.t

d



Thread Interaction

Reagents = sig
'a,'b) t

(x shared memory )

Ref : Ref.S 'a,'b) reagent 'a,'b) t
(x communication channels )
Channel : Channel.S 'a,'b) reagent 'a,'b) t

end

18



Channel = s1ig
'a,'b) endpoint
'a,'b) reagent

mk_chan : unit 'a,'b) endpoint 'b,"'a) endpoint
swap : ('a,'b) endpoint 'a,'b) reagent
end
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Channel = s1ig
'a,'b) endpoint
'a,'b) reagent

mk_chan : unit 'a,'b) endpoint 'b,"'a) endpoint

swap : ('a,'b) endpoint 'a,'b) reagent
end

+ ('a,'b) endpoint







'a ref

. upd : 'a ref
Message passing g b g e

'b, 'c) Reagent.t
!!!IIHIEIII!!!
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Message passing Shared state
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Message passing Shared state
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module type TREIBER_STACK = sig

type "a t

val create : unit -> 'a t

val push :'at -> ('a, unit) Reagent.t

val pop : 'at -> (unit, 'a) Reagent.t
end

module Treiber_stack : TREIBER_STACK = struct
type "a t = 'a list Ref.ref

let create () = Ref.ref []
Llet push r x = Ref.upd r (fun xs x -> Some (x::xs,()))
let pop r = Ref.upd r (fun 1 () ->

match 1 with

| [] -> None (* block *)
| X::XS -> Some (xs,x))

end

25



Composability

Transfer elements atomically

Treiber_stack.pop sl >>> Treiber_stack.push s2
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Composability

Transfer elements atomically

Treiber_stack.pop sl >>> Treiber_stack.push s2

Consume elements atomically

Treiber_stack.pop sl <*> Treiber_stack.pop s2

Consume elements from either

Treiber_stack.pop sl <+> Treiber_stack.pop s2

20



Composability

Transtorm arbitrary blocking reagent to a non-blocking reagent
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Composability

Transtorm arbitrary blocking reagent to a non-blocking reagent

Lift » ('a 'b option ‘a, 'b) t

constant : 'a 'b,'a) t

attempt (r : ('a,'b) t) ¢+ ('a,'b option) t
r Lift X Some (Some X

<+> (constant None

try_pop stack = attempt (pop stack

27



*  Philosopher’s alternate between thinking and
eating

*  Philosopher can only eat after obtaining both
forks

*  No philosopher starves




*  Philosopher’s alternate between thinking and
eating

*  Philosopher can only eat after obtaining both
forks

*  No philosopher starves

type fork =
idrop : (unit,unit) endpoint;
take : (unit,unit) endpoint;’

let mk_fork () =
let drop, take = mk_chan () in
{drop; take}

let drop f
let take f

swap f.drop
swap f.take



eating

forks

{drop

type fork
take :

(unit,unit) endpoint;
(unit,unit) endpoint;

let mk_fork () =
let drop, take = mk_chan () in
{drop; take}

let drop f
let take f

swap f.drop
swap f.take

*  Philosopher’s alternate between thinking and

*  Philosopher can only eat after obtaining both

*  No philosopher starves

let eat L _fork r_fork =
run (take 1 _fork <=
take r_fork) ();
(k vu.
* eat
X wuw X)
spawn @@ run (drop 1 _fork);
spawn @@ run (drop r_fork)
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Accumulate CASes
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Permanent failure

ILI-—-I

Accumulate CASes
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Permanent failure

Transient failure
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Permanent failure

Transient failure

Accumulate CASes
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Status

Synchronization Data structures
Locks Queues
Reentrant locks Nonblocking
Blocking (array & list)
Synchronous

Condition variables

Countdown latches Stacks

Treiber

Elimination backoff
Exchangers Counters

Deques


https://github.com/ocamllabs/reagents

STM vs Reagents

+ STM is more ambitious — atomic { ... }. Reagents are
conservative.,

- Reagents don'’t allow multiple writes to the same
memory location.

- Reagents are lock-free. STMs are typically obstruction-
free.
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