
Future of OCaml

“KC” Sivaramakrishnan

Effect Handlers in

OCaml 5.00

“KC” Sivaramakrishnan

industrial-strength, pragmatic, functional programming language

industrial-strength, pragmatic, functional programming language

Industry Projects

industrial-strength, pragmatic, functional programming language

Higher-order functions

Hindley-Milner Type Inference

Powerful module system

Industry Projects

industrial-strength, pragmatic, functional programming language

Higher-order functions

Hindley-Milner Type Inference

Powerful module system

Functional core with imperative and
object-oriented features

Native (x86, Arm, Power, RISC-V),
JavaScript

Industry Projects

industrial-strength, pragmatic, functional programming language

Industry Projects

No multicore support!
Higher-order functions

Hindley-Milner Type Inference

Powerful module system

Functional core with imperative and
object-oriented features

Native (x86, Arm, Power, RISC-V),
JavaScript

• Brings native support for concurrency and parallelism to OCaml

OCaml 5.00

• Brings native support for concurrency and parallelism to OCaml

OCaml 5.00

Overlapped

execution

A

B

A

C

B

Time

• Brings native support for concurrency and parallelism to OCaml

OCaml 5.00

Overlapped

execution

A

B

A

C

B

Time

Simultaneous

execution

A
B

C

Time

• Brings native support for concurrency and parallelism to OCaml

OCaml 5.00

Overlapped

execution

A

B

A

C

B

Time

Simultaneous

execution

A
B

C

Time

Effect Handlers

• Brings native support for concurrency and parallelism to OCaml

OCaml 5.00

Overlapped

execution

A

B

A

C

B

Time

Simultaneous

execution

A
B

C

Time

Effect Handlers Domains

• Adds native support for concurrency and parallelism to OCaml

OCaml 5.00

Overlapped

execution

A

B

A

C

B

Time

Simultaneous

execution

A
B

C

Time

Effect Handlers Domains

Concurrent Programming
• Computations may be suspended and resumed later

Concurrent Programming
• Computations may be suspended and resumed later

• Many languages provide concurrent programming mechanisms
as primitives

✦ async/await — JavaScript, Python, Rust, C# 5.0, F#, Swift, …

✦ generators — Python, Javascript, …

✦ coroutines — C++, Kotlin, Lua, …

✦ futures & promises — JavaScript, Swift, …

Concurrent Programming
• Computations may be suspended and resumed later

• Many languages provide concurrent programming mechanisms
as primitives

✦ async/await — JavaScript, Python, Rust, C# 5.0, F#, Swift, …

✦ generators — Python, Javascript, …

✦ coroutines — C++, Kotlin, Lua, …

✦ futures & promises — JavaScript, Swift, …

• Often include different primitives for concurrent programming

✦ JavaScript has async/await, generators, promises, and callbacks!!

Concurrent Programming in OCaml
• No primitive support for concurrent programming in OCaml

✦ Lwt and Async - concurrent programming libraries

✦ Callback-oriented programming with monadic syntax >>=

Concurrent Programming in OCaml
• No primitive support for concurrent programming in OCaml

✦ Lwt and Async - concurrent programming libraries

✦ Callback-oriented programming with monadic syntax >>=

• Suffers many pitfalls of callback-oriented programming

✦ No backtraces, no exceptions, more closures

Concurrent Programming in OCaml
• Monadic concurrency splits the ecosystem into Asynchronous

and Synchronous in OCaml

✦ Different calling conventions for synchronous and asynchronous code

✦ Any potentially blocking code should be asynchronous

✦ See Bob Nystrom, “What colour is your function?”

Concurrent Programming in OCaml
• Monadic concurrency splits the ecosystem into Asynchronous

and Synchronous in OCaml

✦ Different calling conventions for synchronous and asynchronous code

✦ Any potentially blocking code should be asynchronous

✦ See Bob Nystrom, “What colour is your function?”

• Go (goroutines) and GHC Haskell (threads) have better
abstractions — lightweight threads

✦ Should we add lightweight threads to OCaml?

Solution

• A mechanism for programming with user-defined effects

Effect Handlers

Solution

• A mechanism for programming with user-defined effects

• Modular and composable basis of non-local control-flow
mechanisms

✦ Exceptions, generators, lightweight threads, promises, asynchronous
IO, coroutines as libraries

Effect Handlers

Solution

• A mechanism for programming with user-defined effects

• Modular and composable basis of non-local control-flow
mechanisms

✦ Exceptions, generators, lightweight threads, promises, asynchronous
IO, coroutines as libraries

• Effect handlers ~= first-class, restartable exceptions

✦ Structured programming with delimited continuations

Effect Handlers

Solution

• A mechanism for programming with user-defined effects

• Modular and composable basis of non-local control-flow
mechanisms

✦ Exceptions, generators, lightweight threads, promises, asynchronous
IO, coroutines as libraries

• Effect handlers ~= first-class, restartable exceptions

✦ Structured programming with delimited continuations

Effect Handlers

https://github.com/ocaml-multicore/effects-examples

• Direct-style asynchronous I/O

• Generators

• Resumable parsers

• Probabilistic Programming

• Reactive UIs

• ….

An example

effect E : string

let comp () =

 print_string "0 ";

 print_string (perform E);

 print_string "3 "

let main () =

 try

 comp ()

 with effect E k ->

 print_string "1 ";

 continue k "2 ";

 print_string “4 "

An example

effect E : string

let comp () =

 print_string "0 ";

 print_string (perform E);

 print_string "3 "

let main () =

 try

 comp ()

 with effect E k ->

 print_string "1 ";

 continue k "2 ";

 print_string “4 "

effect declaration

An example

effect E : string

let comp () =

 print_string "0 ";

 print_string (perform E);

 print_string "3 "

let main () =

 try

 comp ()

 with effect E k ->

 print_string "1 ";

 continue k "2 ";

 print_string “4 "

computation

effect declaration

An example

effect E : string

let comp () =

 print_string "0 ";

 print_string (perform E);

 print_string "3 "

let main () =

 try

 comp ()

 with effect E k ->

 print_string "1 ";

 continue k "2 ";

 print_string “4 "

computation

handler

effect declaration

An example

effect E : string

let comp () =

 print_string "0 ";

 print_string (perform E);

 print_string "3 "

let main () =

 try

 comp ()

 with effect E k ->

 print_string "1 ";

 continue k "2 ";

 print_string “4 "

computation

handler

suspends current

computation

effect declaration

An example

effect E : string

let comp () =

 print_string "0 ";

 print_string (perform E);

 print_string "3 "

let main () =

 try

 comp ()

 with effect E k ->

 print_string "1 ";

 continue k "2 ";

 print_string “4 "

computation

handler

delimited continuation

suspends current

computation

effect declaration

An example

effect E : string

let comp () =

 print_string "0 ";

 print_string (perform E);

 print_string "3 "

let main () =

 try

 comp ()

 with effect E k ->

 print_string "1 ";

 continue k "2 ";

 print_string “4 "

computation

handler

delimited continuation

suspends current

computation

resume suspended

computation

effect declaration

Stepping through the example

effect E : string

let comp () =

 print_string "0 ";

 print_string (perform E);

 print_string "3 "

let main () =

 try

 comp ()

 with effect E k ->

 print_string "1 ";

 continue k "2 ";

 print_string “4 "

pc
main

sp

Stepping through the example

effect E : string

let comp () =

 print_string "0 ";

 print_string (perform E);

 print_string "3 "

let main () =

 try

 comp ()

 with effect E k ->

 print_string "1 ";

 continue k "2 ";

 print_string “4 "

pc

main

sp

comp

Stepping through the example

effect E : string

let comp () =

 print_string "0 ";

 print_string (perform E);

 print_string "3 "

let main () =

 try

 comp ()

 with effect E k ->

 print_string "1 ";

 continue k "2 ";

 print_string “4 "

pc

main
sp

parent

Fiber: A piece of stack
+ effect handler

comp

comp

Stepping through the example

effect E : string

let comp () =

 print_string "0 ";

 print_string (perform E);

 print_string "3 "

let main () =

 try

 comp ()

 with effect E k ->

 print_string "1 ";

 continue k "2 ";

 print_string “4 "

pc

main

sp

parent

0

comp

comp

Stepping through the example

effect E : string

let comp () =

 print_string "0 ";

 print_string (perform E);

 print_string "3 "

let main () =

 try

 comp ()

 with effect E k ->

 print_string "1 ";

 continue k "2 ";

 print_string “4 "

pc

main

sp

k

0

comp

comp

Stepping through the example

effect E : string

let comp () =

 print_string "0 ";

 print_string (perform E);

 print_string "3 "

let main () =

 try

 comp ()

 with effect E k ->

 print_string "1 ";

 continue k "2 ";

 print_string “4 "

pc

main

sp k

0

comp

comp

Stepping through the example

effect E : string

let comp () =

 print_string "0 ";

 print_string (perform E);

 print_string "3 "

let main () =

 try

 comp ()

 with effect E k ->

 print_string "1 ";

 continue k "2 ";

 print_string “4 "

pc

main

sp k

0

comp

comp

Stepping through the example

effect E : string

let comp () =

 print_string "0 ";

 print_string (perform E);

 print_string "3 "

let main () =

 try

 comp ()

 with effect E k ->

 print_string "1 ";

 continue k "2 ";

 print_string “4 "

pc

main

sp k

0 1

comp

comp

Stepping through the example

effect E : string

let comp () =

 print_string "0 ";

 print_string (perform E);

 print_string "3 "

let main () =

 try

 comp ()

 with effect E k ->

 print_string "1 ";

 continue k "2 ";

 print_string “4 "

pc

main

sp k

0 1

comp

comp

Stepping through the example

effect E : string

let comp () =

 print_string "0 ";

 print_string (perform E);

 print_string "3 "

let main () =

 try

 comp ()

 with effect E k ->

 print_string "1 ";

 continue k "2 ";

 print_string “4 "

pc

main

sp

k

parent

0 1

comp

comp

Stepping through the example

effect E : string

let comp () =

 print_string "0 ";

 print_string (perform E);

 print_string "3 "

let main () =

 try

 comp ()

 with effect E k ->

 print_string "1 ";

 continue k "2 ";

 print_string “4 "

pc
main

sp

k

parent

0 1 2

Stepping through the example

effect E : string

let comp () =

 print_string "0 ";

 print_string (perform E);

 print_string "3 "

let main () =

 try

 comp ()

 with effect E k ->

 print_string "1 ";

 continue k "2 ";

 print_string “4 " pc

main

sp k

0 1 2 3

Stepping through the example

effect E : string

let comp () =

 print_string "0 ";

 print_string (perform E);

 print_string "3 "

let main () =

 try

 comp ()

 with effect E k ->

 print_string "1 ";

 continue k "2 ";

 print_string “4 "

pc

main

sp k

0 1 2 3 4

effect A : unit

effect B : unit

let baz () =

 perform A

let bar () =

 try

 baz ()

 with effect B k ->

 continue k ()

let foo () =

 try

 bar ()

 with effect A k ->

 continue k ()

Handlers can be nested

foo bar baz

sp

parent
parent

pc

effect A : unit

effect B : unit

let baz () =

 perform A

let bar () =

 try

 baz ()

 with effect B k ->

 continue k ()

let foo () =

 try

 bar ()

 with effect A k ->

 continue k ()

Handlers can be nested

foo bar baz

sp

parent
parent

pc

• Linear search through handlers

• Handler stacks shallow in practice

effect A : unit

effect B : unit

let baz () =

 perform A

let bar () =

 try

 baz ()

 with effect B k ->

 continue k ()

let foo () =

 try

 bar ()

 with effect A k ->

 continue k ()

Handlers can be nested

foo bar baz

sp

parent
pc

k

• Linear search through handlers

• Handler stacks shallow in practice

effect A : unit

effect B : unit

let baz () =

 perform A

let bar () =

 try

 baz ()

 with effect B k ->

 continue k ()

let foo () =

 try

 bar ()

 with effect A k ->

 continue k ()

Handlers can be nested

foo bar baz

sp

parent

pc k

• Linear search through handlers

• Handler stacks shallow in practice

Lightweight Threading
effect Fork : (unit -> unit) -> unit

effect Yield : unit

Lightweight Threading
effect Fork : (unit -> unit) -> unit

effect Yield : unit

let run main =

 ... (* assume queue of continuations *)

 let run_next () =

 match dequeue () with

 | Some k -> continue k ()

 | None -> ()

 in

 let rec spawn f =

 match f () with

 | () -> run_next () (* value case *)

 | effect Yield k -> enqueue k; run_next ()

 | effect (Fork f) k -> enqueue k; spawn f

 in

 spawn main

Lightweight Threading
effect Fork : (unit -> unit) -> unit

effect Yield : unit

let run main =

 ... (* assume queue of continuations *)

 let run_next () =

 match dequeue () with

 | Some k -> continue k ()

 | None -> ()

 in

 let rec spawn f =

 match f () with

 | () -> run_next () (* value case *)

 | effect Yield k -> enqueue k; run_next ()

 | effect (Fork f) k -> enqueue k; spawn f

 in

 spawn main

let fork f = perform (Fork f)

let yield () = perform Yield

Lightweight threading
let main () =

 fork (fun _ ->

 print_endline "1.a";

 yield ();

 print_endline "1.b");

 fork (fun _ ->

 print_endline "2.a";

 yield ();

 print_endline “2.b")

;;

run main

Lightweight threading
let main () =

 fork (fun _ ->

 print_endline "1.a";

 yield ();

 print_endline "1.b");

 fork (fun _ ->

 print_endline "2.a";

 yield ();

 print_endline “2.b")

;;

run main

1.a

2.a

1.b

2.b

Lightweight threading
let main () =

 fork (fun _ ->

 print_endline "1.a";

 yield ();

 print_endline "1.b");

 fork (fun _ ->

 print_endline "2.a";

 yield ();

 print_endline “2.b")

;;

run main

1.a

2.a

1.b

2.b

• Direct-style (no monads)

• User-code need not be

aware of effects

• No Async vs Sync distinction

Generators

Generators
• Generators — non-continuous traversal of data structure by

yielding values

✦ Primitives in JavaScript and Python

Generators
• Generators — non-continuous traversal of data structure by

yielding values

✦ Primitives in JavaScript and Python

function* generator(i) {

 yield i;

 yield i + 10;

}

const gen = generator(10);

console.log(gen.next().value);

// expected output: 10

console.log(gen.next().value);

// expected output: 20

Generators
• Generators — non-continuous traversal of data structure by

yielding values

✦ Primitives in JavaScript and Python

• Can be derived automatically from any iterator using effect
handlers

function* generator(i) {

 yield i;

 yield i + 10;

}

const gen = generator(10);

console.log(gen.next().value);

// expected output: 10

console.log(gen.next().value);

// expected output: 20

Generators: effect handlers
module MkGen (S :sig

 type 'a t

 val iter : ('a -> unit) -> 'a t -> unit

end) : sig

 val gen : 'a S.t -> (unit -> 'a option)

end = struct

Generators: effect handlers
module MkGen (S :sig

 type 'a t

 val iter : ('a -> unit) -> 'a t -> unit

end) : sig

 val gen : 'a S.t -> (unit -> 'a option)

end = struct

 let gen : type a. a S.t -> (unit -> a option) = fun l ->

 let module M = struct effect Yield : a -> unit end in

 let open M in

 let rec step = ref (fun () ->

 match S.iter (fun v -> perform (Yield v)) l with

 | () -> None

 | effect (Yield v) k ->

 step := (fun () -> continue k ());

 Some v)

 in

 fun () -> !step ()

end

Generators: List

module L = MkGen (struct

 type 'a t = 'a list

 let iter = List.iter

end)

Generators: List

module L = MkGen (struct

 type 'a t = 'a list

 let iter = List.iter

end)

let next = L.gen [1;2;3]

next() (* Some 1 *)

next() (* Some 2 *)

next() (* Some 3 *)

next() (* None *)

Generators: Tree
type 'a tree =

| Leaf

| Node of 'a tree * 'a * 'a tree

let rec iter f = function

 | Leaf -> ()

 | Node (l, x, r) ->

 iter f l; f x; iter f r

module T = MkGen(struct

 type 'a t = 'a tree

 let iter = iter

end)

Generators: Tree
type 'a tree =

| Leaf

| Node of 'a tree * 'a * 'a tree

let rec iter f = function

 | Leaf -> ()

 | Node (l, x, r) ->

 iter f l; f x; iter f r

module T = MkGen(struct

 type 'a t = 'a tree

 let iter = iter

end)

(* Make a complete binary tree of

 depth [n] using [O(n)] space *)

let rec make = function

 | 0 -> Leaf

 | n -> let t = make (n-1)

 in Node (t,n,t)

Generators: Tree
type 'a tree =

| Leaf

| Node of 'a tree * 'a * 'a tree

let rec iter f = function

 | Leaf -> ()

 | Node (l, x, r) ->

 iter f l; f x; iter f r

module T = MkGen(struct

 type 'a t = 'a tree

 let iter = iter

end)

let t = make 2

2

1 1

(* Make a complete binary tree of

 depth [n] using [O(n)] space *)

let rec make = function

 | 0 -> Leaf

 | n -> let t = make (n-1)

 in Node (t,n,t)

Generators: Tree
type 'a tree =

| Leaf

| Node of 'a tree * 'a * 'a tree

let rec iter f = function

 | Leaf -> ()

 | Node (l, x, r) ->

 iter f l; f x; iter f r

module T = MkGen(struct

 type 'a t = 'a tree

 let iter = iter

end)

let t = make 2

2

1 1

(* Make a complete binary tree of

 depth [n] using [O(n)] space *)

let rec make = function

 | 0 -> Leaf

 | n -> let t = make (n-1)

 in Node (t,n,t)

let next = T.gen t

next() (* Some 1 *)

next() (* Some 2 *)

next() (* Some 1 *)

next() (* None *)

Performance: Generators
• Traverse a complete binary-tree of depth 25

✦ 226 stack switches

Performance: Generators
• Traverse a complete binary-tree of depth 25

✦ 226 stack switches

• Iterator — idiomatic recursive traversal

Performance: Generators
• Traverse a complete binary-tree of depth 25

✦ 226 stack switches

• Iterator — idiomatic recursive traversal

• Generator

✦ Hand-written generator (hw-generator)

✤ Specialised for in-order traversal of binary trees

✤ CPS translation + defunctionalization to remove intermediate closure
allocation

✦ Generator using effect handlers (eh-generator)

Performance: Generators

Variant Time (milliseconds)

Iterator (baseline) 202

hw-generator 837 (3.76x)

eh-generator 1879 (9.30x)

OCaml 5.00

Performance: Generators

Variant Time (milliseconds)

Iterator (baseline) 202

hw-generator 837 (3.76x)

eh-generator 1879 (9.30x)

OCaml 5.00

Variant Time (milliseconds)

Iterator (baseline) 492

generator 43842 (89.1x)

nodejs 14.07

Performance: WebServer
• eio: effects-based direct-style I/O

✦ Multiple backends — Linux io_uring, epoll, MacOS GCD, Windows IOCP,
FreeBSD kqueue

https://github.com/ocaml-multicore/eio

https://github.com/ocaml-multicore/eio

Performance: WebServer
• eio: effects-based direct-style I/O

✦ Multiple backends — Linux io_uring, epoll, MacOS GCD, Windows IOCP,
FreeBSD kqueue

100 open connections, 60 seconds w/ io_uring

OCaml eio

Rust Hyper

OCaml (Http/af + Lwt)

Go NetHttp
OCaml (cohttp + Lwt)

https://github.com/ocaml-multicore/eio

https://github.com/ocaml-multicore/eio

Retrofitting Challenges

Retrofitting Challenges
• Millions of lines of legacy code

✦ Written without non-local control-flow in mind

✦ Cost of refactoring sequential code itself is prohibitive

Retrofitting Challenges
• Millions of lines of legacy code

✦ Written without non-local control-flow in mind

✦ Cost of refactoring sequential code itself is prohibitive

• OCaml uses the same system stack for both OCaml and C

✦ Fast exceptions and FFI between C and OCaml

✦ No stack overflow checks needed

✦ Excellent compatibility with debugging (gdb) and profiling (perf) tools

Retrofitting Challenges
• Millions of lines of legacy code

✦ Written without non-local control-flow in mind

✦ Cost of refactoring sequential code itself is prohibitive

• OCaml uses the same system stack for both OCaml and C

✦ Fast exceptions and FFI between C and OCaml

✦ No stack overflow checks needed

✦ Excellent compatibility with debugging (gdb) and profiling (perf) tools

Must preserve

feature, tooling, performance

compatibility

Representing Stacks & Continuations

Representing Stacks & Continuations

• A stack of runtime-managed, dynamically growing stack segments

✦ No pointers into OCaml stack

✦ Need stack overflow checks for OCaml code

Representing Stacks & Continuations

• A stack of runtime-managed, dynamically growing stack segments

✦ No pointers into OCaml stack

✦ Need stack overflow checks for OCaml code

• Switch to system stack for C calls

Representing Stacks & Continuations

• A stack of runtime-managed, dynamically growing stack segments

✦ No pointers into OCaml stack

✦ Need stack overflow checks for OCaml code

• Switch to system stack for C calls

C

frames

OCaml

Frames

C

frames

OCaml

Frames

OCaml 4.xx

Stack

grows

down

Main

entry

External

call

Callback

Representing Stacks & Continuations

• A stack of runtime-managed, dynamically growing stack segments

✦ No pointers into OCaml stack

✦ Need stack overflow checks for OCaml code

• Switch to system stack for C calls

C

frames

C

frames

Fiber 1

(Many
OCaml

Frames)

Fiber 2

C

frames Fiber 3

Main

entry

Effect

handler

External Call

Callback

System

Stack

OCaml 5.00

C

frames

OCaml

Frames

C

frames

OCaml

Frames

OCaml 4.xx

Stack

grows

down

Main

entry

External

call

Callback

Representing Stacks & Continuations

• A stack of runtime-managed, dynamically growing stack segments

✦ No pointers into OCaml stack

✦ Need stack overflow checks for OCaml code

• Switch to system stack for C calls

C

frames

C

frames

Fiber 1

(Many
OCaml

Frames)

Fiber 2

C

frames Fiber 3

Main

entry

Effect

handler

External Call

Callback

System

Stack

OCaml 5.00

Formal
Semantics in

PLDI’21 paper

C

frames

OCaml

Frames

C

frames

OCaml

Frames

OCaml 4.xx

Stack

grows

down

Main

entry

External

call

Callback

Switching stacks fast
• One-shot — capture and resumption does not involve copying

frames

Switching stacks fast
• One-shot — capture and resumption does not involve copying

frames

• No callee-saved registers in OCaml

✦ Switching between stacks need not save & restore register state

Backwards Compatibility
• OCaml is a systems programming language

✦ Manipulates resources such as files, sockets, buffers, etc.

Backwards Compatibility
• OCaml is a systems programming language

✦ Manipulates resources such as files, sockets, buffers, etc.

• OCaml code is written in defensive style to guard against
exceptional behaviour and clear up resources

Backwards Compatibility
• OCaml is a systems programming language

✦ Manipulates resources such as files, sockets, buffers, etc.

• OCaml code is written in defensive style to guard against
exceptional behaviour and clear up resources

let copy ic oc =

 let rec loop () =

 let l = input_line ic in

 output_string oc (l ^ "\n");

 loop ()

 in

 try loop () with

 | End_of_file -> close_in ic; close_out oc

 | e -> close_in ic; close_out oc; raise e

Backwards Compatibility
• OCaml is a systems programming language

✦ Manipulates resources such as files, sockets, buffers, etc.

• OCaml code is written in defensive style to guard against
exceptional behaviour and clear up resources

let copy ic oc =

 let rec loop () =

 let l = input_line ic in

 output_string oc (l ^ "\n");

 loop ()

 in

 try loop () with

 | End_of_file -> close_in ic; close_out oc

 | e -> close_in ic; close_out oc; raise e

raises
End_of_file at

the end

Backwards Compatibility
• OCaml is a systems programming language

✦ Manipulates resources such as files, sockets, buffers, etc.

• OCaml code is written in defensive style to guard against
exceptional behaviour and clear up resources

let copy ic oc =

 let rec loop () =

 let l = input_line ic in

 output_string oc (l ^ "\n");

 loop ()

 in

 try loop () with

 | End_of_file -> close_in ic; close_out oc

 | e -> close_in ic; close_out oc; raise e

raise Sys_error
when channel is

closed
raises

End_of_file at
the end

Backwards Compatibility
• OCaml is a systems programming language

✦ Manipulates resources such as files, sockets, buffers, etc.

• OCaml code is written in defensive style to guard against
exceptional behaviour and clear up resources

let copy ic oc =

 let rec loop () =

 let l = input_line ic in

 output_string oc (l ^ "\n");

 loop ()

 in

 try loop () with

 | End_of_file -> close_in ic; close_out oc

 | e -> close_in ic; close_out oc; raise e

We would like to make this code transparently asynchronous

raise Sys_error
when channel is

closed
raises

End_of_file at
the end

Asynchronous IO
effect In_line : in_channel -> string

effect Out_str : out_channel * string -> unit

Asynchronous IO
effect In_line : in_channel -> string

effect Out_str : out_channel * string -> unit

let input_line ic = perform (In_line ic)

let output_string oc s = perform (Out_str (oc,s))

Asynchronous IO

let run_aio f = match f () with

| v -> v

| effect (In_line chan) k ->

 register_async_input_line chan k;

 run_next ()

| effect (Out_str (chan, s)) k ->

 register_async_output_string chan s k;

 run_next ()

effect In_line : in_channel -> string

effect Out_str : out_channel * string -> unit

let input_line ic = perform (In_line ic)

let output_string oc s = perform (Out_str (oc,s))

Asynchronous IO

let run_aio f = match f () with

| v -> v

| effect (In_line chan) k ->

 register_async_input_line chan k;

 run_next ()

| effect (Out_str (chan, s)) k ->

 register_async_output_string chan s k;

 run_next ()

• Continue with appropriate value when the asynchronous IO call returns

effect In_line : in_channel -> string

effect Out_str : out_channel * string -> unit

let input_line ic = perform (In_line ic)

let output_string oc s = perform (Out_str (oc,s))

Asynchronous IO

let run_aio f = match f () with

| v -> v

| effect (In_line chan) k ->

 register_async_input_line chan k;

 run_next ()

| effect (Out_str (chan, s)) k ->

 register_async_output_string chan s k;

 run_next ()

• Continue with appropriate value when the asynchronous IO call returns

• But what about termination? — End_of_file and Sys_error
exceptional cases.

effect In_line : in_channel -> string

effect Out_str : out_channel * string -> unit

let input_line ic = perform (In_line ic)

let output_string oc s = perform (Out_str (oc,s))

Discontinue

• We add a discontinue primitive to resume a continuation by
raising an exception

• On End_of_file and Sys_error, the asynchronous IO scheduler
uses discontinue to raise the appropriate exception

discontinue k End_of_file

Linearity
• Resources such as sockets, file descriptors, channels and buffers

are linear resources

✦ Created and destroyed exactly once

Linearity
• Resources such as sockets, file descriptors, channels and buffers

are linear resources

✦ Created and destroyed exactly once

• OCaml functions return exactly once with value or exception

✦ Defensive programming already guards against exceptional return
cases

Linearity
• Resources such as sockets, file descriptors, channels and buffers

are linear resources

✦ Created and destroyed exactly once

• OCaml functions return exactly once with value or exception

✦ Defensive programming already guards against exceptional return
cases

• With effect handlers, functions may return at-most once if
continuation not resumed

✦ This breaks resource-safe legacy code

Linearity
effect E : unit

let foo () = perform E

Linearity
effect E : unit

let foo () = perform E

let bar () =

 let ic = open_in "input.txt" in

 match foo () with

 | v -> close_in ic

 | exception e -> close_in ic; raise e

Linearity
effect E : unit

let foo () = perform E

let bar () =

 let ic = open_in "input.txt" in

 match foo () with

 | v -> close_in ic

 | exception e -> close_in ic; raise e

let baz () =

 try bar () with

 | effect E _ -> () (* leaks ic *)

Linearity
effect E : unit

let foo () = perform E

We assume that captured continuations are resumed exactly once
either using continue or discontinue

let bar () =

 let ic = open_in "input.txt" in

 match foo () with

 | v -> close_in ic

 | exception e -> close_in ic; raise e

let baz () =

 try bar () with

 | effect E _ -> () (* leaks ic *)

Summary
• OCaml 5.00 brings effect handlers for writing high-performance

concurrent programs

✦ Removes the dichotomy between synchronous and asynchronous code

✦ Better than baking in lightweight threads in the language

https://github.com/ocaml-multicore/effects-examples
https://arxiv.org/abs/2104.00250

Summary
• OCaml 5.00 brings effect handlers for writing high-performance

concurrent programs

✦ Removes the dichotomy between synchronous and asynchronous code

✦ Better than baking in lightweight threads in the language

• Effects Examples

✦ https://github.com/ocaml-multicore/effects-examples

https://github.com/ocaml-multicore/effects-examples
https://arxiv.org/abs/2104.00250

Summary
• OCaml 5.00 brings effect handlers for writing high-performance

concurrent programs

✦ Removes the dichotomy between synchronous and asynchronous code

✦ Better than baking in lightweight threads in the language

• Effects Examples

✦ https://github.com/ocaml-multicore/effects-examples

• Sivaramakrishnan et al, “Retrofitting Effect Handlers onto OCaml”,
PLDI 2021

✦ Static semantics and compilation scheme

✦ DWARF Backtrace support (gdb, lldb, perf)

✦ Lot of benchmarks!

https://github.com/ocaml-multicore/effects-examples
https://arxiv.org/abs/2104.00250

Nothing to see here…

Backtraces
• OCaml has excellent compatibility with debugging and profiling

tools — gdb, lldb, perf, libunwind, etc.

✦ DWARF stack unwinding support

Backtraces
• OCaml has excellent compatibility with debugging and profiling

tools — gdb, lldb, perf, libunwind, etc.

✦ DWARF stack unwinding support

• OCaml 5.00 supports DWARF stack unwinding across fibers

Backtraces

effect E : unit

let foo () = perform E

let bar () =

 let ic = open_in "input.txt" in

 match foo () with

 | v -> close_in ic

 | exception e ->

 close_in ic; raise e

let baz () =

 try bar () with

 | effect E _ -> () (* leak *)

• OCaml has excellent compatibility with debugging and profiling
tools — gdb, lldb, perf, libunwind, etc.

✦ DWARF stack unwinding support

• OCaml 5.00 supports DWARF stack unwinding across fibers

Backtraces

effect E : unit

let foo () = perform E

let bar () =

 let ic = open_in "input.txt" in

 match foo () with

 | v -> close_in ic

 | exception e ->

 close_in ic; raise e

let baz () =

 try bar () with

 | effect E _ -> () (* leak *)

• OCaml has excellent compatibility with debugging and profiling
tools — gdb, lldb, perf, libunwind, etc.

✦ DWARF stack unwinding support

• OCaml 5.00 supports DWARF stack unwinding across fibers

foo

baz bar
Stack

grows

down

Fiber 1 Fiber 2

Backtraces

effect E : unit

let foo () = perform E

let bar () =

 let ic = open_in "input.txt" in

 match foo () with

 | v -> close_in ic

 | exception e ->

 close_in ic; raise e

let baz () =

 try bar () with

 | effect E _ -> () (* leak *)

• OCaml has excellent compatibility with debugging and profiling
tools — gdb, lldb, perf, libunwind, etc.

✦ DWARF stack unwinding support

• OCaml 5.00 supports DWARF stack unwinding across fibers

foo

baz bar
Stack

grows

down

Fiber 1 Fiber 2

Bespoke DWARF bytecode for
unwinding across fibers

Backtraces
effect E : unit

let foo () = perform E

let bar () =

 let ic = open_in "input.txt" in

 match foo () with

 | v -> close_in ic

 | exception e ->

 close_in ic; raise e

let baz () =

 try bar () with

 | effect E _ -> () (* leak *)

(lldb) bt

* thread #1, name = 'a.out', stop reason = …

 * #0: 0x58b208 caml_perform

 #1: 0x56aa5d camlTest__foo_83 at test.ml:4

 #2: 0x56aae2 camlTest__bar_85 at test.ml:9

 #3: 0x56a9fc camlTest__fun_199 at test.ml:14

 #4: 0x58b322 caml_runstack + 70

 #5: 0x56ab99 camlTest__baz_91 at test.ml:14

 #6: 0x56ace6 camlTest__entry at test.ml:21

 #7: 0x56a41c caml_program + 60

 #8: 0x58b0b7 caml_start_program + 135

 #9: …

Static Semantics

Static Semantics
• No effect safety

✦ No static guarantee that all the effects performed are handled (c.f.
exceptions)

✦ perform E at the top-level raises Unhandled exception

Static Semantics
• No effect safety

✦ No static guarantee that all the effects performed are handled (c.f.
exceptions)

✦ perform E at the top-level raises Unhandled exception

• Effect system in the works

✦ See also Eff, Koka, Links, Helium

✦ Track both user-defined and built-in (ref, io, exceptions) effects

✦ OCaml becomes a pure language (in the Haskell sense — divergence)

Static Semantics
• No effect safety

✦ No static guarantee that all the effects performed are handled (c.f.
exceptions)

✦ perform E at the top-level raises Unhandled exception

• Effect system in the works

✦ See also Eff, Koka, Links, Helium

✦ Track both user-defined and built-in (ref, io, exceptions) effects

✦ OCaml becomes a pure language (in the Haskell sense — divergence)

let foo () = print_string "hello, world"

val foo : unit -[io]-> unit Syntax &
Semantics in the

works

Effects without Syntax
• OCaml 5.0 will not feature the syntax presented so far

✦ Do not want a effect handler implementation without effect safety

Effects without Syntax
• OCaml 5.0 will not feature the syntax presented so far

✦ Do not want a effect handler implementation without effect safety

• Expose functions to program with effects

✦ Same guarantees as the syntaxful version

Effects without Syntax

effect E : string

let comp () =

 print_string "0 ";

 print_string (perform E);

 print_string "3 "

let main () =

 try

 comp ()

 with effect E k ->

 print_string "1 ";

 continue k "2 ";

 print_string “4 "

effect E : string

let comp () =

 print_string "0 ";

 print_string (perform E);

 print_string "3 "

let main () =

 try_with comp ()

 { effc = fun e ->

 match e with

 | E -> Some (fun k ->

 print_string "1 ";

 continue k "2 ";

 print_string “4 “)

 | e -> None }

• OCaml 5.0 will not feature the syntax presented so far

✦ Do not want a effect handler implementation without effect safety

• Expose functions to program with effects

✦ Same guarantees as the syntaxful version

Performance
let foo () =

 (* a *)

 try

 (* b *)

 perform E

 (* d *)

 with effect E k ->

 (* c *)

 continue k ()

 (* e *)

Performance
let foo () =

 (* a *)

 try

 (* b *)

 perform E

 (* d *)

 with effect E k ->

 (* c *)

 continue k ()

 (* e *)

Instruction
Sequence

a to b

b to c

c to d

d to e

Significance

Create a new stack &

run the computation

Performing & handling an effect

Resuming a continuation

Returning from a computation &
free the stack

• Each of the instruction sequences involves a stack switch

Performance
let foo () =

 (* a *)

 try

 (* b *)

 perform E

 (* d *)

 with effect E k ->

 (* c *)

 continue k ()

 (* e *)

Instruction
Sequence

a to b

b to c

c to d

d to e

Significance

Create a new stack &

run the computation

Performing & handling an effect

Resuming a continuation

Returning from a computation &
free the stack

• Each of the instruction sequences involves a stack switch

• Intel(R) Xeon(R) Gold 5120 CPU @ 2.20GHz

✦ Cost measured using Intel PT’s cycle accurate tracing

✦ For calibration, memory read latency is 90 ns (local NUMA node) and
145 ns (remote NUMA node)

Performance
let foo () =

 (* a *)

 try

 (* b *)

 perform E

 (* d *)

 with effect E k ->

 (* c *)

 continue k ()

 (* e *)

Instruction
Sequence

a to b

b to c

c to d

d to e

Significance

Create a new stack &

run the computation

Performing & handling an effect

Resuming a continuation

Returning from a computation &
free the stack

Time (ns)

23

5

11

7

• Each of the instruction sequences involves a stack switch

• Intel(R) Xeon(R) Gold 5120 CPU @ 2.20GHz

✦ Cost measured using Intel PT’s cycle accurate tracing

✦ For calibration, memory read latency is 90 ns (local NUMA node) and
145 ns (remote NUMA node)

Fiber Layout

Free space

OCaml Frames

Context block

parent_fiber

clos_heffect

clos_hexn

clos_hval

pc(ExnHandle)

NULL

pc(RetVal)

Red Zone

saved_exn_ptr

saved_sp

HEADER WORD
fiber

calls

calls

handler_info

Top-level
exn handler

Variable size

2 words

16 words

fiber_info

stack
threshold

