Retrofitting Parallelism onto
OCaml

KC Sivaramakrishnan, Stephen Dolan, Leo white,

Sadiq Jaffer, Tom Kelly, Anmol Sahoo, Sudha Parimala, Atul
Dhiman, Anil Madhavapeddy

Industry

/ & ahrefTs \

docker

& Tarides

Bloomberg
_ /

vl

OCaml

Projects

4 pﬁ\

The Astree Static Analyzer

‘l flow
A
o

K COMPCERT J

-~

_

~

/

-~

No multicore support!

_

~

/

Multicore OCaml|

¢ Adds native support for concurrency and shared-memory
parallelism to OCaml

Multicore OCaml|

Adds native support for concurrency and shared-memory
parallelism to OCaml

Focus of this work is parallelism

+ Building a multicore GC for OCaml

Multicore OCaml|

¢ Adds native support for concurrency and shared-memory
parallelism to OCaml

® Focus of this work is parallelism
+ Building a multicore GC for OCaml
o Key parallel GC design principle

+ Backwards compatibility before parallel scalability

Challenges

e Millions of lines of legacy code
+ Weak references, ephemerons, lazy values, finalisers
+ Low-level C API that bakes in GC invariants

+ Cost of refactoring sequential code itself is prohibitive

Challenges

e Millions of lines of legacy code
+ Weak references, ephemerons, lazy values, finalisers
+ Low-level C API that bakes in GC invariants
+ Cost of refactoring sequential code itself is prohibitive
® Type safety
+ Dolan et al,"Bounding Data Races in Space and Time”, PLDI’ |8

+ Strong guarantees (including type safety) under data races

Challenges

e Millions of lines of legacy code
+ Weak references, ephemerons, lazy values, finalisers
+ Low-level C API that bakes in GC invariants
+ Cost of refactoring sequential code itself is prohibitive
® Type safety
+ Dolan et al,"Bounding Data Races in Space and Time”, PLDI’ |8
+ Strong guarantees (including type safety) under data races
® |[ow-latency and predictable performance

+ Thanks to the GC design

Stock OCaml GC

¢ A generational, non-moving, incremental, mark-and-sweep GC

Incremental «— ‘e Small (2 MB default)
iand non-moving ; :® Bump pointer allocation

Minor :® Survivors copied to major heap
Heap 5 :

Stock OCaml GC

¢ A generational, non-moving, incremental, mark-and-sweep GC

Incremental i«— ‘e Small (2 MB default)
iand non-moving ; :® Bump pointer allocation

Minor :® Survivors copied to major heap
Heap 5 :

Idle

Start of major cycle

Stock OCaml GC

¢ A generational, non-moving, incremental, mark-and-sweep GC

Incremental i— ‘e Small (2 MB default)
iand non-moving ; :® Bump pointer allocation

Minor :® Survivors copied to major heap
Heap 5 :

Idle mark roots

Start of major cycle

Stock OCaml GC

¢ A generational, non-moving, incremental, mark-and-sweep GC

Tnerermental ie—— ‘e Small (2 MB default) g
:and non-moving : :® Bump pointer allocation
""""""""""" Minor :® Survivors copied to major heap

Heap 5 :

Idle mark roots mark main

Start of major cycle

Stock OCaml GC

¢ A generational, non-moving, incremental, mark-and-sweep GC

Tnerermental ie—— ‘e Small (2 MB default) g
:and non-moving : :® Bump pointer allocation
""""""""""" Minor :® Survivors copied to major heap

Heap 5 :

|dle mark roots mark main sweep

Start of major cycle

Stock OCaml GC

¢ A generational, non-moving, incremental, mark-and-sweep GC

Tnerermental ie—— ‘e Small (2 MB default) g
:and non-moving : :® Bump pointer allocation
""""""""""" Minor :® Survivors copied to major heap

Heap 5 :

|dle mark roots mark main sweep

Start of major cycle End of major cycle

Stock OCaml GC

¢ A generational, non-moving, incremental, mark-and-sweep GC

Incremental i— ‘e Small (2 MB default)

:and non-moving : :® Bump pointer allocation
""""""""""" Minor :® Survivors copied to major heap
Heap 5 :

|dle mark roots mark main sweep

Start of major cycle End of major cycle

e Fast allocations, no read barriers

Stock OCaml GC

¢ A generational, non-moving, incremental, mark-and-sweep GC

Incremental i— ‘e Small (2 MB default)
iand non-moving ; :® Bump pointer allocation

Minor :® Survivors copied to major heap
Heap 5 :

|dle mark roots mark main sweep

Start of major cycle End of major cycle

e Fast allocations, no read barriers

® Max GC latency < 10 ms, 99th percentile latency < | ms

Requirements

I. Feature backwards compatibility
® Serial programs do not break on parallel runtime

®* No separate serial and parallel modes

Requirements

I. Feature backwards compatibility
® Serial programs do not break on parallel runtime

®* No separate serial and parallel modes

2. Performance backwards compatibility

® Serial programs behave similarly on parallel runtime in terms of
running time, GC pausetime and memory usage.

Requirements

I. Feature backwards compatibility
® Serial programs do not break on parallel runtime

®* No separate serial and parallel modes

2. Performance backwards compatibility

® Serial programs behave similarly on parallel runtime in terms of
running time, GC pausetime and memory usage.

3. Parallel responsiveness and scalability
® Parallel programs remain responsive

® Parallel programs scale with additional cores

Multicore OCaml: Major GC

e Multicore-aware allocator

+ Based on Streamflow [Schneider et al. 2006]

+ Thread-local, size-segmented free lists for small objects + malloc for large
allocations

+ Sequential performance on par with OCaml’s allocators

Multicore OCaml: Major GC

e Multicore-aware allocator

+ Based on Streamflow [Schneider et al. 2006]

+ Thread-local, size-segmented free lists for small objects + malloc for large
allocations

+ Sequential performance on par with OCaml’s allocators
¢ A mostly-concurrent, non-moving, mark-and-sweep collector

+ Based on VCGC [Huelsbergen and Winterbottom 1998]

Multicore OCaml: Major GC

® Multicore-aware allocator
+ Based on Streamflow [Schneider et al. 2006]

+ Thread-local, size-segmented free lists for small objects + malloc for large
allocations

+ Sequential performance on par with OCaml’s allocators

¢ A mostly-concurrent, non-moving, mark-and-sweep collector

+ Based on VCGC [Huelsbergen and Winterbottom 1998]

Domain 0

Mark
Roots

Domain |

Start of major cycle End of major cycle

Multicore OCaml: Major GC

® Multicore-aware allocator
+ Based on Streamflow [Schneider et al. 2006]

+ Thread-local, size-segmented free lists for small objects + malloc for large
allocations

+ Sequential performance on par with OCaml’s allocators
¢ A mostly-concurrent, non-moving, mark-and-sweep collector

+ Based on VCGC [Huelsbergen and Winterbottom 1998]

Mark
Domain 0 § -1 Sweep Mark

mark and sweep phases may overlap

Mark

Domain |
Roots

Sweep

Start of major cycle End of major cycle

Multicore OCaml: Major GC

Multicore OCaml: Major GC

e Extend support weak references, ephemerons, (2 different kinds
of) finalizers, fibers, lazy values

Multicore OCaml: Major GC

e Extend support weak references, ephemerons, (2 different kinds
of) finalizers, fibers, lazy values

® Ephemerons are tricky in a concurrent multicore GC
+ A generalisation of weak references
+ Introduce conjunction in the reachability property
+ Requires multiple rounds of ephemeron marking

+ Cycle-delimited handshaking without global barrier

Multicore OCaml: Major GC

e Extend support weak references, ephemerons, (2 different kinds
of) finalizers, fibers, lazy values

® Ephemerons are tricky in a concurrent multicore GC
+ A generalisation of weak references
+ Introduce conjunction in the reachability property
+ Requires multiple rounds of ephemeron marking
+ Cycle-delimited handshaking without global barrier
® A barrier each for the two kinds of finalisers

+ 3 barriers / cycle worst case

Multicore OCaml: Major GC

e Extend support weak references, ephemerons, (2 different kinds
of) finalizers, fibers, lazy values

® Ephemerons are tricky in a concurrent multicore GC
+ A generalisation of weak references
+ Introduce conjunction in the reachability property
+ Requires multiple rounds of ephemeron marking
+ Cycle-delimited handshaking without global barrier
® A barrier each for the two kinds of finalisers

+ 3 barriers / cycle worst case

® Verified in the SPIN model checker

Concurrent Minor GC

e Based on [Doligez and Leroy 1993] but lazier as in [Marlow and
Peyton Jones 201 1] collector for GHC

Minor Minor Minor Minor
Heap Heap Heap Heap

Domain 0 Domain 1 Domain 2 Domain 3

Concurrent Minor GC

e Based on [Doligez and Leroy 1993] but lazier as in [Marlow and
Peyton Jones 201 1] collector for GHC

Minor Minor Minor Minor
Heap Heap Heap Heap

Domain 0 Domain 1 Domain 2 Domain 3

® Each domain can independently collect its minor heap

Concurrent Minor GC

e Based on [Doligez and Leroy 1993] but lazier as in [Marlow and
Peyton Jones 201 1] collector for GHC

Minor Minor Minor Minor
Heap Heap Heap Heap

Domain 0 Domain 1 Domain 2 Domain 3

® Each domain can independently collect its minor heap

¢ Major to minor pointers allowed
+ Prevents early promotion & mirrors sequential behaviour

+ Read barrier required for mutable field + promotion

Read Barriers

e Stock OCaml does not have read barriers

+ Read barriers need to be efficient for performance backwards
compatibility

Read Barriers

e Stock OCaml does not have read barriers

+ Read barriers need to be efficient for performance backwards
compatibility

® 3 instructions in x86 -VMM + bit-twiddling tricks

+ Proof of correctness available in the paper

+ Minimal performance impact on sequential code

Read Barriers

e Stock OCaml does not have read barriers

+ Read barriers need to be efficient for performance backwards
compatibility

® 3 instructions in x86 -VMM + bit-twiddling tricks
+ Proof of correctness available in the paper

+ Minimal performance impact on sequential code

e Unfortunately, read barriers break the C APl (feature backwards
compatibility)

Read Barriers

Domain 0 Domain |

Read Barriers

Domain 0 Domain |

Read Barriers

. promote (!x)

~ promote (ly)

Domain 0 Domain |

® Service promotion requests on read faults to avoid deadlock

+ Mutable reads are GC safe points!

Read Barriers

. promote (!x)

~ promote (ly)

Domain 0 Domain |

® Service promotion requests on read faults to avoid deadlock

+ Mutable reads are GC safe points!

e C API written with explicit knowledge of when GC may happen

+ Need to manuadlly refactor tricky code

Parallel Minor GC

® Stop-the-world parallel minor collection

4+ Similar to GHCs minor collection

Parallel Minor GC

e Stop-the-world parallel minor collection

4+ Similar to GHCs minor collection
Dom O ' Mutator

Dom | Mutator

End
major major
ConcMinor

Parallel Minor GC

e Stop-the-world parallel minor collection

4+ Similar to GHCs minor collection

Dom O ' Mutator

Dom | Mutator

End Start Start End End
major major major minor minor major
ConcMinor ParMinor

Dom 0O

Dom |

4+ Similar to GHCs minor collection

Parallel Minor GC

e Stop-the-world parallel minor collection

' Mutator

major

Mutator

ConcMinor

End
major

' Mutator

Start Statt End
major mind '
ParMinor

Slop space filled with
major slices

Parallel Minor GC

e Stop-the-world parallel minor collection

4+ Similar to GHCs minor collection

Dom O ' Mutator

Dom | Mutator

Start End Start Statt End
major major major mind i

ConcMinor ParMinor

Slop space filled with

¢ No need for read barriers! major slices

Parallel Minor GC

e Stop-the-world parallel minor collection

4+ Similar to GHCs minor collection

' Mutator

Dom O ' Mutator

Dom | Mutator

Start End Start Statt End
major major major mind i

ConcMinor ParMinor

Slop space filled with

¢ No need for read barriers! major slices

e Quickly bring all the domains to a barrier

+ Insert poll points in code for timely inter-domain interrupt handling
[Feeley 1993]

Evaluation

® 2 x |4-core Intel(R) Xeon(R) Gold 5120 CPU @ 2.20GHz

+ 24 cores isolated for performance evaluation

Evaluation

® 2 x |4-core Intel(R) Xeon(R) Gold 5120 CPU @ 2.20GHz

+ 24 cores isolated for performance evaluation

e Sequential Throughput — compared to stock OCaml
+ ConcMinor 4.9% slower and ParMinor 3.5% slower

+ ConcMinor 54% lower peak memory and ParMinor 617% lower peak
memory

Evaluation

® 2 x |4-core Intel(R) Xeon(R) Gold 5120 CPU @ 2.20GHz

+ 24 cores isolated for performance evaluation

e Sequential Throughput — compared to stock OCaml
+ ConcMinor 4.9% slower and ParMinor 3.5% slower

+ ConcMinor 54% lower peak memory and ParMinor 617% lower peak
memory

e Sequential GC pause times on par with stock OCaml

Parallel Scalability

LU_decomposition (33) binarytrees5 (70) floyd_warshall (44) game_of_life (51) mandelbrot6 (40)

20 variant /
—e— ParMinor /‘ /
== X = =X

Q % ncMinor

215 ConcMino o 5
O o /
o} . I

[0} = L b EVa

Q.

7]

L N =
10 o0 - =y / - / X
~ i — X
" /X/ L . ¢ 0 — X ® ® ° ., P 4 ° -)'(/
5 / % -~ /._-—-—./ /’(* X/
_*j’s _*C‘ ot s _*.x
0 - o R B o
matrix_multiplication (10) minilight (117) nbody (28) spectralnorm2 (7) test_decompress (38)

§15 "
8 ./: / %
-4 - X e - -
n 10 *~ . X » -
//xf 7
/;‘ - i - {x/.—._—.
gl /X\ - 2.3 / /:/.
S L " RmrmR=— Y i O T % =
?‘ o i xfg’/ x/ x-,x
— — —sig — =
00 5 10 15 20 0 5 10 15 20 0 5 10 15 20 0 5 10 15 20 0 5 10 15 20
Domains # Domains # Domains # Domains # Domains

25

20

Speedup

($)}

25

20

Speedup

Parallel Scalability

LU_decomposition (33)

ConcMinor suffers due
to read faults

floyd_warshall (44) game_of_life 1)
o
7 ’
o/ o
el -~
e

binarytrees5 (70)

mandelbrot6 (40)

variant
—@— ParMinor
ConcMinor
| T 5
.././ L] ./ x /
g O=—0——=0 P
/ ‘/ /.,_—-—./ / / > 0 .‘/’
7 °* L5 v T
matrix_multiplication (10) minilight (117) nbody (28) spectralnorm2 (7) test_decompress (38)
./. .-/
o S
_~)
/. ’-f'{ O——o——0
/ . G SR p— ’ = o/°/
P % - % < % <
- ® // ./ * ¢ T v 7
4 B X . w
5 10 15 20 5 10 15 20 0 5 10 15 20 0 5 10 15 20 5 10 15 20
Domains # Domains # Domains # Domains # Domains

25

20

Speedup

LU_decomposition (33)

Parallel Scalability

ConcMinor suffers due
to read faults

binarytrees5 (70) floyd_warshall (44) game_of life 1)

mandelbrot6 (40)

o
o
variant
| ./
—&— ParMinor /
ConcMinor o '
/.\ =
- = ° o/ w/ /
>~ e / 7~
/ ¢ ./ A {,4"
Y ol - A v 4
A & ot o
[4
matrix_multiplication (10) minilight (117) nbody (28) spectralnorm2 (7) test_decompress (38)
/. V/
/./ %’ 1 0—o——0
r 2 /
/. > = N ¥ —" /‘-\ : p / '/.
AN L — g S—N 5
£ v ./ b #
o, X .
0 5 10 15 20 0 5 10 15 0 5 10 15 20 0 5 10 15 20 20
Domains # Domains # Domains # Domains # Domains

Unbalanced allocation leads to
inopportune minor GCs in ParMinor

ParMinor vs ConcMinor

¢ Parallel GC latency roughly similar between ParMinor and
ConcMinor

ParMinor vs ConcMinor

¢ Parallel GC latency roughly similar between ParMinor and
ConcMinor

e ParMinor wins over ConcMinor
+ Does not break the C API

+ Performs similarly to the ConcMinor on 24 cores

ParMinor vs ConcMinor

¢ Parallel GC latency roughly similar between ParMinor and
ConcMinor

e ParMinor wins over ConcMinor

4+ Does not break the C API

+ Performs similarly to the ConcMinor on 24 cores

¢ OCaml 5.00 will have multicore support and use ParMinor

+ May revisit ConcMinor later for manycore future

Thanks!

Multicore OCaml

+ https://github.com/ocaml-multicore/ocaml-multicore

Sandmark — benchmark suite for (Multicore) OCam|

+ https://github.com/ocaml-bench/sandmark/

SPIN models

+ https://github.com/ocaml-multicore/multicore-ocaml-verify

Parallel Programming with Multicore OCaml

+ https://github.com/ocaml|-multicore/parallel-programming-in-
multicore-ocaml

https://github.com/ocaml-multicore/ocaml-multicore
https://github.com/ocaml-bench/sandmark/
https://github.com/ocaml-multicore/multicore-ocaml-verify
https://github.com/ocaml-multicore/parallel-programming-in-multicore-ocaml
https://github.com/ocaml-multicore/parallel-programming-in-multicore-ocaml

