
Retrofitting Parallelism onto 
OCaml

KC Sivaramakrishnan, Stephen Dolan, Leo white, 
Sadiq Jaffer, Tom Kelly, Anmol Sahoo, Sudha Parimala, Atul 

Dhiman, Anil Madhavapeddy

OCaml Labs



The Astrée Static Analyzer

Industry Projects



The Astrée Static Analyzer

Industry Projects

No multicore support!



Multicore OCaml
• Adds native support for concurrency and shared-memory 

parallelism to OCaml



Multicore OCaml
• Adds native support for concurrency and shared-memory 

parallelism to OCaml

• Focus of this work is parallelism

✦ Building a multicore GC for OCaml



Multicore OCaml
• Adds native support for concurrency and shared-memory 

parallelism to OCaml

• Focus of this work is parallelism

✦ Building a multicore GC for OCaml

• Key parallel GC design principle

✦ Backwards compatibility before parallel scalability



Challenges
• Millions of lines of legacy code

✦ Weak references, ephemerons, lazy values, finalisers

✦ Low-level C API that bakes in GC invariants

✦ Cost of refactoring sequential code itself is prohibitive



Challenges
• Millions of lines of legacy code

✦ Weak references, ephemerons, lazy values, finalisers

✦ Low-level C API that bakes in GC invariants

✦ Cost of refactoring sequential code itself is prohibitive

• Type safety

✦ Dolan et al, “Bounding Data Races in Space and Time”, PLDI’18

✦ Strong guarantees (including type safety) under data races



Challenges
• Millions of lines of legacy code

✦ Weak references, ephemerons, lazy values, finalisers

✦ Low-level C API that bakes in GC invariants

✦ Cost of refactoring sequential code itself is prohibitive

• Type safety

✦ Dolan et al, “Bounding Data Races in Space and Time”, PLDI’18

✦ Strong guarantees (including type safety) under data races

• Low-latency and predictable performance

✦ Thanks to the GC design



Incremental 
and non-moving

Stock OCaml GC
• A generational, non-moving, incremental, mark-and-sweep GC

Minor 
Heap

Major Heap
• Small (2 MB default)

• Bump pointer allocation

• Survivors copied to major heap



Incremental 
and non-moving

Stock OCaml GC
• A generational, non-moving, incremental, mark-and-sweep GC

Minor 
Heap

Major Heap
• Small (2 MB default)

• Bump pointer allocation

• Survivors copied to major heap

Mutator

Start of major cycle

Idle



Incremental 
and non-moving

Stock OCaml GC
• A generational, non-moving, incremental, mark-and-sweep GC

Minor 
Heap

Major Heap
• Small (2 MB default)

• Bump pointer allocation

• Survivors copied to major heap

Mutator

Start of major cycle

Idle

Mark 
Roots

mark roots



Mark

mark main

Incremental 
and non-moving

Stock OCaml GC
• A generational, non-moving, incremental, mark-and-sweep GC

Minor 
Heap

Major Heap
• Small (2 MB default)

• Bump pointer allocation

• Survivors copied to major heap

Mutator

Start of major cycle

Idle

Mark 
Roots

mark roots



Mark

mark main

Sweep

sweep

Incremental 
and non-moving

Stock OCaml GC
• A generational, non-moving, incremental, mark-and-sweep GC

Minor 
Heap

Major Heap
• Small (2 MB default)

• Bump pointer allocation

• Survivors copied to major heap

Mutator

Start of major cycle

Idle

Mark 
Roots

mark roots



Mark

mark main

Sweep

sweep

Incremental 
and non-moving

Stock OCaml GC
• A generational, non-moving, incremental, mark-and-sweep GC

Minor 
Heap

Major Heap
• Small (2 MB default)

• Bump pointer allocation

• Survivors copied to major heap

End of major cycle

Mutator

Start of major cycle

Idle

Mark 
Roots

mark roots



Mark

mark main

Sweep

sweep

Incremental 
and non-moving

Stock OCaml GC
• A generational, non-moving, incremental, mark-and-sweep GC

Minor 
Heap

Major Heap
• Small (2 MB default)

• Bump pointer allocation

• Survivors copied to major heap

End of major cycle

Mutator

Start of major cycle

Idle

Mark 
Roots

mark roots

• Fast allocations, no read barriers



Mark

mark main

Sweep

sweep

Incremental 
and non-moving

Stock OCaml GC
• A generational, non-moving, incremental, mark-and-sweep GC

Minor 
Heap

Major Heap
• Small (2 MB default)

• Bump pointer allocation

• Survivors copied to major heap

End of major cycle

Mutator

Start of major cycle

Idle

Mark 
Roots

mark roots

• Fast allocations, no read barriers

• Max GC latency < 10 ms, 99th percentile latency < 1 ms



Requirements
1. Feature backwards compatibility

• Serial programs do not break on parallel runtime

• No separate serial and parallel modes



Requirements
1. Feature backwards compatibility

• Serial programs do not break on parallel runtime

• No separate serial and parallel modes

2. Performance backwards compatibility

• Serial programs behave similarly on parallel runtime in terms of 
running time, GC pausetime and memory usage. 



Requirements
1. Feature backwards compatibility

• Serial programs do not break on parallel runtime

• No separate serial and parallel modes

2. Performance backwards compatibility

• Serial programs behave similarly on parallel runtime in terms of 
running time, GC pausetime and memory usage. 

3. Parallel responsiveness and scalability

• Parallel programs remain responsive

• Parallel programs scale with additional cores



Multicore OCaml: Major GC
• Multicore-aware allocator

✦ Based on Streamflow [Schneider et al. 2006]

✦ Thread-local, size-segmented free lists for small objects + malloc for large 
allocations

✦ Sequential performance on par with OCaml’s allocators



Multicore OCaml: Major GC
• Multicore-aware allocator

✦ Based on Streamflow [Schneider et al. 2006]

✦ Thread-local, size-segmented free lists for small objects + malloc for large 
allocations

✦ Sequential performance on par with OCaml’s allocators

• A mostly-concurrent, non-moving, mark-and-sweep collector

✦ Based on VCGC [Huelsbergen and Winterbottom 1998]



Multicore OCaml: Major GC
• Multicore-aware allocator

✦ Based on Streamflow [Schneider et al. 2006]

✦ Thread-local, size-segmented free lists for small objects + malloc for large 
allocations

✦ Sequential performance on par with OCaml’s allocators

• A mostly-concurrent, non-moving, mark-and-sweep collector

✦ Based on VCGC [Huelsbergen and Winterbottom 1998]

Sweep MarkMark 
Roots

Sweep MarkMark 
Roots

Start of major cycle End of major cycle

Domain 0

Domain 1



Multicore OCaml: Major GC
• Multicore-aware allocator

✦ Based on Streamflow [Schneider et al. 2006]

✦ Thread-local, size-segmented free lists for small objects + malloc for large 
allocations

✦ Sequential performance on par with OCaml’s allocators

• A mostly-concurrent, non-moving, mark-and-sweep collector

✦ Based on VCGC [Huelsbergen and Winterbottom 1998]

Sweep MarkMark 
Roots

Sweep MarkMark 
Roots

Start of major cycle End of major cycle

mark and sweep phases may overlap

Domain 0

Domain 1



Multicore OCaml: Major GC



Multicore OCaml: Major GC
• Extend support weak references, ephemerons, (2 different kinds 

of) finalizers, fibers, lazy values



Multicore OCaml: Major GC
• Extend support weak references, ephemerons, (2 different kinds 

of) finalizers, fibers, lazy values

• Ephemerons are tricky in a concurrent multicore GC

✦ A generalisation of weak references

✦ Introduce conjunction in the reachability property

✦ Requires multiple rounds of ephemeron marking

✦ Cycle-delimited handshaking without global barrier



Multicore OCaml: Major GC
• Extend support weak references, ephemerons, (2 different kinds 

of) finalizers, fibers, lazy values

• Ephemerons are tricky in a concurrent multicore GC

✦ A generalisation of weak references

✦ Introduce conjunction in the reachability property

✦ Requires multiple rounds of ephemeron marking

✦ Cycle-delimited handshaking without global barrier

• A barrier each for the two kinds of finalisers

✦ 3 barriers / cycle worst case



Multicore OCaml: Major GC
• Extend support weak references, ephemerons, (2 different kinds 

of) finalizers, fibers, lazy values

• Ephemerons are tricky in a concurrent multicore GC

✦ A generalisation of weak references

✦ Introduce conjunction in the reachability property

✦ Requires multiple rounds of ephemeron marking

✦ Cycle-delimited handshaking without global barrier

• A barrier each for the two kinds of finalisers

✦ 3 barriers / cycle worst case

• Verified in the SPIN model checker



Concurrent Minor GC
• Based on [Doligez and Leroy 1993] but lazier as in [Marlow and 

Peyton Jones 2011] collector for GHC

Minor 
Heap

Minor 
Heap

Minor 
Heap

Minor 
Heap

Major Heap

Domain 0 Domain 1 Domain 2 Domain 3



Concurrent Minor GC
• Based on [Doligez and Leroy 1993] but lazier as in [Marlow and 

Peyton Jones 2011] collector for GHC

Minor 
Heap

Minor 
Heap

Minor 
Heap

Minor 
Heap

Major Heap

Domain 0 Domain 1 Domain 2 Domain 3

• Each domain can independently collect its minor heap



Concurrent Minor GC
• Based on [Doligez and Leroy 1993] but lazier as in [Marlow and 

Peyton Jones 2011] collector for GHC

Minor 
Heap

Minor 
Heap

Minor 
Heap

Minor 
Heap

Major Heap

Domain 0 Domain 1 Domain 2 Domain 3

• Each domain can independently collect its minor heap

• Major to minor pointers allowed

✦ Prevents early promotion & mirrors sequential behaviour

✦ Read barrier required for mutable field + promotion



Read Barriers
• Stock OCaml does not have read barriers

✦ Read barriers need to be efficient for performance backwards 
compatibility



Read Barriers
• Stock OCaml does not have read barriers

✦ Read barriers need to be efficient for performance backwards 
compatibility

• 3 instructions in x86 - VMM + bit-twiddling tricks

✦ Proof of correctness available in the paper

✦ Minimal performance impact on sequential code



Read Barriers
• Stock OCaml does not have read barriers

✦ Read barriers need to be efficient for performance backwards 
compatibility

• 3 instructions in x86 - VMM + bit-twiddling tricks

✦ Proof of correctness available in the paper

✦ Minimal performance impact on sequential code

• Unfortunately, read barriers break the C API (feature backwards 
compatibility)



Read Barriers

minor

major 
heap

x y

a

minor

b

Domain 0 Domain 1

!y !x



Read Barriers

minor

major 
heap

x y

a

minor

b

Domain 0 Domain 1

!y !x

promote (!y) 

promote (!x) 



Read Barriers

• Service promotion requests on read faults to avoid deadlock

✦ Mutable reads are GC safe points!

minor

major 
heap

x y

a

minor

b

Domain 0 Domain 1

!y !x

promote (!y) 

promote (!x) 



Read Barriers

• Service promotion requests on read faults to avoid deadlock

✦ Mutable reads are GC safe points!

• C API written with explicit knowledge of when GC may happen

✦ Need to manually refactor tricky code

minor

major 
heap

x y

a

minor

b

Domain 0 Domain 1

!y !x

promote (!y) 

promote (!x) 



Parallel Minor GC
• Stop-the-world parallel minor collection

✦ Similar to GHCs minor collection



Parallel Minor GC
• Stop-the-world parallel minor collection

✦ Similar to GHCs minor collection

Dom 0

Dom 1

Mutator Minor 
GC

Major 
slice

Mutator Minor 
GC

Start 
major

End 
major

ConcMinor



Parallel Minor GC
• Stop-the-world parallel minor collection

✦ Similar to GHCs minor collection

Dom 0

Dom 1

Mutator Minor 
GC

Major 
slice

Mutator Minor 
GC

Start 
major

End 
major

ConcMinor

Mutator Major 
slice

Mutator

Start 
major

End 
major

Start 
minor

End 
minor
ParMinor



Parallel Minor GC
• Stop-the-world parallel minor collection

✦ Similar to GHCs minor collection

Dom 0

Dom 1

Mutator Minor 
GC

Major 
slice

Mutator Minor 
GC

Start 
major

End 
major

ConcMinor

Mutator Major 
slice

Mutator

Start 
major

End 
major

Start 
minor

End 
minor
ParMinor

Slop space filled with
major slices



Parallel Minor GC
• Stop-the-world parallel minor collection

✦ Similar to GHCs minor collection

• No need for read barriers!

Dom 0

Dom 1

Mutator Minor 
GC

Major 
slice

Mutator Minor 
GC

Start 
major

End 
major

ConcMinor

Mutator Major 
slice

Mutator

Start 
major

End 
major

Start 
minor

End 
minor
ParMinor

Slop space filled with
major slices



Parallel Minor GC
• Stop-the-world parallel minor collection

✦ Similar to GHCs minor collection

• No need for read barriers!

• Quickly bring all the domains to a barrier

✦ Insert poll points in code for timely inter-domain interrupt handling 
[Feeley 1993]

Dom 0

Dom 1

Mutator Minor 
GC

Major 
slice

Mutator Minor 
GC

Start 
major

End 
major

ConcMinor

Mutator Major 
slice

Mutator

Start 
major

End 
major

Start 
minor

End 
minor
ParMinor

Slop space filled with
major slices



Evaluation
• 2 x 14-core Intel(R) Xeon(R) Gold 5120 CPU @ 2.20GHz

✦ 24 cores isolated for performance evaluation



Evaluation
• 2 x 14-core Intel(R) Xeon(R) Gold 5120 CPU @ 2.20GHz

✦ 24 cores isolated for performance evaluation

• Sequential Throughput — compared to stock OCaml
✦ ConcMinor 4.9% slower and ParMinor 3.5% slower

✦ ConcMinor 54% lower peak memory and ParMinor 61% lower peak 
memory



Evaluation
• 2 x 14-core Intel(R) Xeon(R) Gold 5120 CPU @ 2.20GHz

✦ 24 cores isolated for performance evaluation

• Sequential Throughput — compared to stock OCaml
✦ ConcMinor 4.9% slower and ParMinor 3.5% slower

✦ ConcMinor 54% lower peak memory and ParMinor 61% lower peak 
memory

• Sequential GC pause times on par with stock OCaml



Parallel Scalability



Parallel Scalability
ConcMinor suffers due 

to read faults



Parallel Scalability
ConcMinor suffers due 

to read faults

Unbalanced allocation leads to 
inopportune minor GCs in ParMinor



ParMinor vs ConcMinor
• Parallel GC latency roughly similar between ParMinor and 

ConcMinor



ParMinor vs ConcMinor
• Parallel GC latency roughly similar between ParMinor and 

ConcMinor

• ParMinor wins over ConcMinor

✦ Does not break the C API

✦ Performs similarly to the ConcMinor on 24 cores



ParMinor vs ConcMinor
• Parallel GC latency roughly similar between ParMinor and 

ConcMinor

• ParMinor wins over ConcMinor

✦ Does not break the C API

✦ Performs similarly to the ConcMinor on 24 cores

• OCaml 5.00 will have multicore support and use ParMinor

✦ May revisit ConcMinor later for manycore future



Thanks!
• Multicore OCaml

✦ https://github.com/ocaml-multicore/ocaml-multicore

• Sandmark — benchmark suite for (Multicore) OCaml

✦ https://github.com/ocaml-bench/sandmark/

• SPIN models

✦ https://github.com/ocaml-multicore/multicore-ocaml-verify

• Parallel Programming with Multicore OCaml

✦ https://github.com/ocaml-multicore/parallel-programming-in-
multicore-ocaml

https://github.com/ocaml-multicore/ocaml-multicore
https://github.com/ocaml-bench/sandmark/
https://github.com/ocaml-multicore/multicore-ocaml-verify
https://github.com/ocaml-multicore/parallel-programming-in-multicore-ocaml
https://github.com/ocaml-multicore/parallel-programming-in-multicore-ocaml

