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¢ Adds native support for concurrency and shared-memory
parallelism to OCaml

® Focus of this work is parallelism
+ Building a multicore GC for OCaml
o Key parallel GC design principle

+ Backwards compatibility before parallel scalability
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Challenges

e Millions of lines of legacy code
+ Weak references, ephemerons, lazy values, finalisers
+ Low-level C API that bakes in GC invariants
+ Cost of refactoring sequential code itself is prohibitive
® Type safety
+ Dolan et al,"Bounding Data Races in Space and Time”, PLDI’ |8
+ Strong guarantees (including type safety) under data races
® |[ow-latency and predictable performance

+ Thanks to the GC design
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Stock OCaml GC

¢ A generational, non-moving, incremental, mark-and-sweep GC

-----------------------------------------

---------------------

Incremental  i— ‘e Small (2 MB default)
iand non-moving ; :® Bump pointer allocation

Minor :® Survivors copied to major heap
Heap 5 :

-----------------------------------------

---------------------

|dle mark roots mark main sweep

Start of major cycle End of major cycle

e Fast allocations, no read barriers

® Max GC latency < 10 ms, 99th percentile latency < | ms
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Requirements

I. Feature backwards compatibility
® Serial programs do not break on parallel runtime

®* No separate serial and parallel modes

2. Performance backwards compatibility

® Serial programs behave similarly on parallel runtime in terms of
running time, GC pausetime and memory usage.

3. Parallel responsiveness and scalability
® Parallel programs remain responsive

® Parallel programs scale with additional cores
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Multicore OCaml: Major GC

® Multicore-aware allocator
+ Based on Streamflow [Schneider et al. 2006]

+ Thread-local, size-segmented free lists for small objects + malloc for large
allocations

+ Sequential performance on par with OCaml’s allocators
¢ A mostly-concurrent, non-moving, mark-and-sweep collector

+ Based on VCGC [Huelsbergen and Winterbottom 1998]

Mark
Domain 0 § -1 Sweep Mark

mark and sweep phases may overlap

Mark
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Multicore OCaml: Major GC

e Extend support weak references, ephemerons, (2 different kinds
of) finalizers, fibers, lazy values

® Ephemerons are tricky in a concurrent multicore GC
+ A generalisation of weak references
+ Introduce conjunction in the reachability property
+ Requires multiple rounds of ephemeron marking
+ Cycle-delimited handshaking without global barrier
® A barrier each for the two kinds of finalisers

+ 3 barriers / cycle worst case

® Verified in the SPIN model checker
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Concurrent Minor GC

e Based on [Doligez and Leroy 1993] but lazier as in [Marlow and
Peyton Jones 201 1] collector for GHC

Minor Minor Minor Minor
Heap Heap Heap Heap

Domain 0 Domain 1 Domain 2 Domain 3

® Each domain can independently collect its minor heap

¢ Major to minor pointers allowed
+ Prevents early promotion & mirrors sequential behaviour

+ Read barrier required for mutable field + promotion
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Read Barriers

e Stock OCaml does not have read barriers

+ Read barriers need to be efficient for performance backwards
compatibility

® 3 instructions in x86 -VMM + bit-twiddling tricks
+ Proof of correctness available in the paper

+ Minimal performance impact on sequential code

e Unfortunately, read barriers break the C APl (feature backwards
compatibility)
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Read Barriers

. promote (!x)

~ promote (ly)

Domain 0 Domain |

® Service promotion requests on read faults to avoid deadlock

+ Mutable reads are GC safe points!

e C API written with explicit knowledge of when GC may happen

+ Need to manuadlly refactor tricky code



Parallel Minor GC

® Stop-the-world parallel minor collection

4+ Similar to GHCs minor collection



Parallel Minor GC

e Stop-the-world parallel minor collection

4+ Similar to GHCs minor collection
Dom O ' Mutator

Dom | Mutator

End
major major
ConcMinor



Parallel Minor GC

e Stop-the-world parallel minor collection

4+ Similar to GHCs minor collection

Dom O ' Mutator

Dom | Mutator

End Start Start End End
major major major minor minor major
ConcMinor ParMinor



Dom 0O

Dom |

4+ Similar to GHCs minor collection

Parallel Minor GC

e Stop-the-world parallel minor collection

' Mutator

major

Mutator

ConcMinor

End
major

' Mutator

Start Statt End
major mind '
ParMinor

Slop space filled with
major slices



Parallel Minor GC

e Stop-the-world parallel minor collection

4+ Similar to GHCs minor collection

Dom O ' Mutator

Dom | Mutator

Start End Start Statt End
major major major mind i

ConcMinor ParMinor

Slop space filled with

¢ No need for read barriers! major slices



Parallel Minor GC

e Stop-the-world parallel minor collection

4+ Similar to GHCs minor collection

' Mutator

Dom O ' Mutator

Dom | Mutator

Start End Start Statt End
major major major mind i

ConcMinor ParMinor

Slop space filled with

¢ No need for read barriers! major slices

e Quickly bring all the domains to a barrier

+ Insert poll points in code for timely inter-domain interrupt handling
[Feeley 1993]
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Evaluation

® 2 x |4-core Intel(R) Xeon(R) Gold 5120 CPU @ 2.20GHz

+ 24 cores isolated for performance evaluation

e Sequential Throughput — compared to stock OCaml
+ ConcMinor 4.9% slower and ParMinor 3.5% slower

+ ConcMinor 54% lower peak memory and ParMinor 617% lower peak
memory

e Sequential GC pause times on par with stock OCaml
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ParMinor vs ConcMinor

¢ Parallel GC latency roughly similar between ParMinor and
ConcMinor

e ParMinor wins over ConcMinor

4+ Does not break the C API

+ Performs similarly to the ConcMinor on 24 cores

¢ OCaml 5.00 will have multicore support and use ParMinor

+ May revisit ConcMinor later for manycore future



Thanks!

Multicore OCaml

+ https://github.com/ocaml-multicore/ocaml-multicore

Sandmark — benchmark suite for (Multicore) OCam|

+ https://github.com/ocaml-bench/sandmark/

SPIN models

+ https://github.com/ocaml-multicore/multicore-ocaml-verify

Parallel Programming with Multicore OCaml

+ https://github.com/ocaml|-multicore/parallel-programming-in-
multicore-ocaml
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