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• Focus of this work is parallelism

✦ Building a multicore GC for OCaml

• Key parallel GC design principle

✦ Backwards compatibility before parallel scalability
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Challenges
• Millions of lines of legacy code

✦ Weak references, ephemerons, lazy values, finalisers

✦ Low-level C API that bakes in GC invariants

✦ Cost of refactoring sequential code itself is prohibitive

• Type safety

✦ Dolan et al, “Bounding Data Races in Space and Time”, PLDI’18

✦ Strong guarantees (including type safety) under data races

• Low-latency and predictable performance

✦ Thanks to the GC design
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Incremental 
and non-moving

Stock OCaml GC
• A generational, non-moving, incremental, mark-and-sweep GC

Minor 
Heap

Major Heap
• Small (2 MB default)

• Bump pointer allocation

• Survivors copied to major heap

End of major cycle

Mutator

Start of major cycle

Idle

Mark 
Roots

mark roots

• Fast allocations, no read barriers

• Max GC latency < 10 ms, 99th percentile latency < 1 ms
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Requirements
1. Feature backwards compatibility

• Serial programs do not break on parallel runtime

• No separate serial and parallel modes

2. Performance backwards compatibility

• Serial programs behave similarly on parallel runtime in terms of 
running time, GC pausetime and memory usage. 

3. Parallel responsiveness and scalability

• Parallel programs remain responsive

• Parallel programs scale with additional cores
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• Multicore-aware allocator

✦ Based on Streamflow [Schneider et al. 2006]

✦ Thread-local, size-segmented free lists for small objects + malloc for large 
allocations

✦ Sequential performance on par with OCaml’s allocators

• A mostly-concurrent, non-moving, mark-and-sweep collector

✦ Based on VCGC [Huelsbergen and Winterbottom 1998]
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Multicore OCaml: Major GC
• Extend support weak references, ephemerons, (2 different kinds 

of) finalizers, fibers, lazy values

• Ephemerons are tricky in a concurrent multicore GC

✦ A generalisation of weak references

✦ Introduce conjunction in the reachability property

✦ Requires multiple rounds of ephemeron marking

✦ Cycle-delimited handshaking without global barrier

• A barrier each for the two kinds of finalisers

✦ 3 barriers / cycle worst case

• Verified in the SPIN model checker
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• Based on [Doligez and Leroy 1993] but lazier as in [Marlow and 

Peyton Jones 2011] collector for GHC
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Minor 
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Minor 
Heap

Major Heap

Domain 0 Domain 1 Domain 2 Domain 3

• Each domain can independently collect its minor heap

• Major to minor pointers allowed

✦ Prevents early promotion & mirrors sequential behaviour

✦ Read barrier required for mutable field + promotion
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Read Barriers
• Stock OCaml does not have read barriers

✦ Read barriers need to be efficient for performance backwards 
compatibility

• 3 instructions in x86 - VMM + bit-twiddling tricks

✦ Proof of correctness available in the paper

✦ Minimal performance impact on sequential code

• Unfortunately, read barriers break the C API (feature backwards 
compatibility)
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Read Barriers

• Service promotion requests on read faults to avoid deadlock

✦ Mutable reads are GC safe points!

• C API written with explicit knowledge of when GC may happen

✦ Need to manually refactor tricky code
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heap
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a

minor

b

Domain 0 Domain 1

!y !x

promote (!y) 

promote (!x) 
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Parallel Minor GC
• Stop-the-world parallel minor collection

✦ Similar to GHCs minor collection

• No need for read barriers!

• Quickly bring all the domains to a barrier

✦ Insert poll points in code for timely inter-domain interrupt handling 
[Feeley 1993]
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Evaluation
• 2 x 14-core Intel(R) Xeon(R) Gold 5120 CPU @ 2.20GHz

✦ 24 cores isolated for performance evaluation

• Sequential Throughput — compared to stock OCaml
✦ ConcMinor 4.9% slower and ParMinor 3.5% slower

✦ ConcMinor 54% lower peak memory and ParMinor 61% lower peak 
memory

• Sequential GC pause times on par with stock OCaml



Parallel Scalability



Parallel Scalability
ConcMinor suffers due 

to read faults



Parallel Scalability
ConcMinor suffers due 

to read faults

Unbalanced allocation leads to 
inopportune minor GCs in ParMinor
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ParMinor vs ConcMinor
• Parallel GC latency roughly similar between ParMinor and 

ConcMinor

• ParMinor wins over ConcMinor

✦ Does not break the C API

✦ Performs similarly to the ConcMinor on 24 cores

• OCaml 5.00 will have multicore support and use ParMinor

✦ May revisit ConcMinor later for manycore future



Thanks!
• Multicore OCaml

✦ https://github.com/ocaml-multicore/ocaml-multicore

• Sandmark — benchmark suite for (Multicore) OCaml

✦ https://github.com/ocaml-bench/sandmark/

• SPIN models

✦ https://github.com/ocaml-multicore/multicore-ocaml-verify

• Parallel Programming with Multicore OCaml

✦ https://github.com/ocaml-multicore/parallel-programming-in-
multicore-ocaml

https://github.com/ocaml-multicore/ocaml-multicore
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https://github.com/ocaml-multicore/multicore-ocaml-verify
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