
Retrofitting Parallelism
onto

OCaml

“KC” Sivaramakrishnan

The Astrée Static Analyzer

Industry Projects

The Astrée Static Analyzer

Industry Projects

No multicore support!

• Adds native support for concurrency and parallelism to OCaml

Multicore OCaml

• Adds native support for concurrency and parallelism to OCaml

Multicore OCaml

Overlapped
execution

A

B

A

C

B

Time

• Adds native support for concurrency and parallelism to OCaml

Multicore OCaml

Overlapped
execution

A

B

A

C

B

Time

Simultaneous
execution

A
B

C

Time

• Adds native support for concurrency and parallelism to OCaml

Multicore OCaml

Overlapped
execution

A

B

A

C

B

Time

Simultaneous
execution

A
B

C

Time

Effect Handlers

• Adds native support for concurrency and parallelism to OCaml

Multicore OCaml

Overlapped
execution

A

B

A

C

B

Time

Simultaneous
execution

A
B

C

Time

Effect Handlers Domains

OCaml 5.0
• Domains and the runtime system support for effect handlers will

land in OCaml 5.0

✦ Expected to be released alongside 4.14 (Q2 2022)

✦ OCaml 4.xx version will have long-term support

OCaml 5.0
• Domains and the runtime system support for effect handlers will

land in OCaml 5.0

✦ Expected to be released alongside 4.14 (Q2 2022)

✦ OCaml 4.xx version will have long-term support

opam install 4.12.0+domains+effects

Outline of the talk
1. Challenges of adding parallelism to OCaml

2. Deep dive into the new parallel GC for OCaml

3. High-level parallel programming with Domainslib

Challenges
• Millions of lines of legacy code

✦ Written without concurrency and parallelism in mind

✦ Cost of refactoring sequential code itself is prohibitive

Challenges
• Millions of lines of legacy code

✦ Written without concurrency and parallelism in mind

✦ Cost of refactoring sequential code itself is prohibitive

• Low-latency and predictable performance

✦ Great for applications that tolerate ~10ms latency

Challenges
• Millions of lines of legacy code

✦ Written without concurrency and parallelism in mind

✦ Cost of refactoring sequential code itself is prohibitive

• Low-latency and predictable performance

✦ Great for applications that tolerate ~10ms latency

• Excellent compatibility with debugging and profiling tools

✦ gdb, lldb, perf, libunwind, etc.

Challenges
• Millions of lines of legacy code

✦ Written without concurrency and parallelism in mind

✦ Cost of refactoring sequential code itself is prohibitive

• Low-latency and predictable performance

✦ Great for applications that tolerate ~10ms latency

• Excellent compatibility with debugging and profiling tools

✦ gdb, lldb, perf, libunwind, etc.

Backwards compatibility before scalability

Desiderata
• Feature backwards compatibility

✦ Do not break existing code

Desiderata
• Feature backwards compatibility

✦ Do not break existing code

• Performance backwards compatibility

✦ Existing programs run just as fast using
just the same memory

Desiderata
• Feature backwards compatibility

✦ Do not break existing code

• Performance backwards compatibility

✦ Existing programs run just as fast using
just the same memory

• GC Latency before multicore
scalability

Desiderata
• Feature backwards compatibility

✦ Do not break existing code

• Performance backwards compatibility

✦ Existing programs run just as fast using
just the same memory

• GC Latency before multicore
scalability

• Compatibility with program inspection
tools

Desiderata
• Feature backwards compatibility

✦ Do not break existing code

• Performance backwards compatibility

✦ Existing programs run just as fast using
just the same memory

• GC Latency before multicore
scalability

• Compatibility with program inspection
tools

• Performant concurrent and parallel
programming abstractions

Domains for Parallelism

Domains for Parallelism
• A unit of parallelism

Domains for Parallelism
• A unit of parallelism

• Heavyweight — maps onto a OS thread

✦ Recommended to have 1 domain per core

Domains for Parallelism
• A unit of parallelism

• Heavyweight — maps onto a OS thread

✦ Recommended to have 1 domain per core

• Low-level domain API

✦ Spawn & join, wait & notify

Domain.spawn : (unit -> ‘a) -> ‘a Domain.t

Domains for Parallelism
• A unit of parallelism

• Heavyweight — maps onto a OS thread

✦ Recommended to have 1 domain per core

• Low-level domain API

✦ Spawn & join, wait & notify

Domain.spawn : (unit -> ‘a) -> ‘a Domain.t

✦ Domain-local storage

✦ Atomic memory operations

✤ Dolan et al, “Bounding Data Races in Space and Time”, PLDI’18

Domains for Parallelism
• A unit of parallelism

• Heavyweight — maps onto a OS thread

✦ Recommended to have 1 domain per core

• Low-level domain API

✦ Spawn & join, wait & notify

Domain.spawn : (unit -> ‘a) -> ‘a Domain.t

✦ Domain-local storage

✦ Atomic memory operations

✤ Dolan et al, “Bounding Data Races in Space and Time”, PLDI’18

• No restrictions on sharing objects between domains

✦ But how does it work?

Incremental
and non-moving

Stock OCaml GC
• A generational, non-moving, incremental, mark-and-sweep GC

Minor
Heap

Major Heap
• Small (2 MB default)

• Bump pointer allocation

• Survivors copied to major heap

Incremental
and non-moving

Stock OCaml GC
• A generational, non-moving, incremental, mark-and-sweep GC

Minor
Heap

Major Heap
• Small (2 MB default)

• Bump pointer allocation

• Survivors copied to major heap

Mutator

Start of major cycle

Idle

Time

Incremental
and non-moving

Stock OCaml GC
• A generational, non-moving, incremental, mark-and-sweep GC

Minor
Heap

Major Heap
• Small (2 MB default)

• Bump pointer allocation

• Survivors copied to major heap

Mutator

Start of major cycle

Idle

Mark
Roots

mark roots

Time

Mark

mark main

Incremental
and non-moving

Stock OCaml GC
• A generational, non-moving, incremental, mark-and-sweep GC

Minor
Heap

Major Heap
• Small (2 MB default)

• Bump pointer allocation

• Survivors copied to major heap

Mutator

Start of major cycle

Idle

Mark
Roots

mark roots

Time

Mark

mark main

Sweep

sweep

Incremental
and non-moving

Stock OCaml GC
• A generational, non-moving, incremental, mark-and-sweep GC

Minor
Heap

Major Heap
• Small (2 MB default)

• Bump pointer allocation

• Survivors copied to major heap

Mutator

Start of major cycle

Idle

Mark
Roots

mark roots

Time

Mark

mark main

Sweep

sweep

Incremental
and non-moving

Stock OCaml GC
• A generational, non-moving, incremental, mark-and-sweep GC

Minor
Heap

Major Heap
• Small (2 MB default)

• Bump pointer allocation

• Survivors copied to major heap

End of major cycle

Mutator

Start of major cycle

Idle

Mark
Roots

mark roots

Time

Mark

mark main

Sweep

sweep

Incremental
and non-moving

Stock OCaml GC
• A generational, non-moving, incremental, mark-and-sweep GC

Minor
Heap

Major Heap
• Small (2 MB default)

• Bump pointer allocation

• Survivors copied to major heap

End of major cycle

Mutator

Start of major cycle

Idle

Mark
Roots

mark roots

• Fast allocations

Time

Mark

mark main

Sweep

sweep

Incremental
and non-moving

Stock OCaml GC
• A generational, non-moving, incremental, mark-and-sweep GC

Minor
Heap

Major Heap
• Small (2 MB default)

• Bump pointer allocation

• Survivors copied to major heap

End of major cycle

Mutator

Start of major cycle

Idle

Mark
Roots

mark roots

• Fast allocations

• Max GC latency < 10 ms, 99th percentile latency < 1 ms

Time

Multicore OCaml: Minor GC

• Private minor heap arenas per domain

✦ Fast allocations without synchronisation

Major Heap

Dom 0

Dom 1

Minor Heap (2 mb)

Minor Heap (2 mb)

Allocation
Pointer

Multicore OCaml: Minor GC

• Private minor heap arenas per domain

✦ Fast allocations without synchronisation

• Pointers permitted between minor arenas and major heap

Major Heap

Dom 0

Dom 1

Minor Heap (2 mb)

Minor Heap (2 mb)

Allocation
Pointer

Multicore OCaml: Minor GC
Major Heap

Dom 0

Dom 1

Minor Heap (2 mb)

Minor Heap (2 mb)

Allocation
Pointer

• Stop-the-world parallel minor collection when a domain runs out of minor heap

✦ 2 global barriers / minor gc

Multicore OCaml: Minor GC
Major Heap

Dom 0

Dom 1

Minor Heap (2 mb)

Minor Heap (2 mb)

Allocation
Pointer

• Stop-the-world parallel minor collection when a domain runs out of minor heap

✦ 2 global barriers / minor gc

• Bringing domains to a stop surprisingly fast

✦ Poll points inserted into non-allocating loops

Multicore OCaml: Minor GC
Major Heap

Dom 0

Dom 1

Minor Heap (2 mb)

Minor Heap (2 mb)

Allocation
Pointer

• Stop-the-world parallel minor collection when a domain runs out of minor heap

✦ 2 global barriers / minor gc

• Bringing domains to a stop surprisingly fast

✦ Poll points inserted into non-allocating loops

• On 24 cores, ~10 ms pauses for completing stop-the-world minor GC

Multicore OCaml: Allocator
• Multicore-aware allocator for major heap

✦ Based on Streamflow [Schneider et al. 2006]

Multicore OCaml: Allocator
• Multicore-aware allocator for major heap

✦ Based on Streamflow [Schneider et al. 2006]

• Thread-local, size-segmented free lists for small objects

✦ Most allocations in OCaml are small (99% of objects < 5 words in
size)

✦ Malloc for large allocations

Multicore OCaml: Allocator
• Multicore-aware allocator for major heap

✦ Based on Streamflow [Schneider et al. 2006]

• Thread-local, size-segmented free lists for small objects

✦ Most allocations in OCaml are small (99% of objects < 5 words in
size)

✦ Malloc for large allocations

• Most allocations do not need synchronisation

Multicore OCaml: Allocator
• Multicore-aware allocator for major heap

✦ Based on Streamflow [Schneider et al. 2006]

• Thread-local, size-segmented free lists for small objects

✦ Most allocations in OCaml are small (99% of objects < 5 words in
size)

✦ Malloc for large allocations

• Most allocations do not need synchronisation

• Sequential performance on par with OCaml’s recent best-fit
allocator

Multicore OCaml: Major GC
• Mostly-concurrent mark-and-sweep for major collection

✦ Based on VCGC [Huelsbergen and Winterbottom 1998]

Multicore OCaml: Major GC
• Mostly-concurrent mark-and-sweep for major collection

✦ Based on VCGC [Huelsbergen and Winterbottom 1998]

• GC colours Garbage FreeUnmarked Marked

Multicore OCaml: Major GC
• Mostly-concurrent mark-and-sweep for major collection

✦ Based on VCGC [Huelsbergen and Winterbottom 1998]

• GC colours

• Domains alternate between running the mutator and the GC

Garbage FreeUnmarked Marked

Multicore OCaml: Major GC

Sweep MarkMark
Roots Mutator

Sweep MarkMark
Roots

Start of major cycle End of major cycle

mark and sweep phases may overlap

Domain 0

Domain 1

• Mostly-concurrent mark-and-sweep for major collection

✦ Based on VCGC [Huelsbergen and Winterbottom 1998]

• GC colours

• Domains alternate between running the mutator and the GC

Garbage FreeUnmarked Marked

Multicore OCaml: Major GC

Sweep MarkMark
Roots Mutator

Sweep MarkMark
Roots

Start of major cycle End of major cycle

mark and sweep phases may overlap

Domain 0

Domain 1

• Mostly-concurrent mark-and-sweep for major collection

✦ Based on VCGC [Huelsbergen and Winterbottom 1998]

• GC colours

• Domains alternate between running the mutator and the GC

Garbage FreeUnmarked Marked

• Marking: Sweeping:

✦ Marking is racy but uses plain non-atomic stores and idempotent

Garbage FreeUnmarked Marked

Multicore OCaml: Major GC

• Marking & sweeping done ⇒ stop-the-world

Sweep MarkMark
Roots Mutator

Sweep MarkMark
Roots

Start of major cycle End of major cycle

mark and sweep phases may overlap

Domain 0

Domain 1

Multicore OCaml: Major GC

• Marking & sweeping done ⇒ stop-the-world

Sweep MarkMark
Roots Mutator

Sweep MarkMark
Roots

Start of major cycle End of major cycle

mark and sweep phases may overlap

Domain 0

Domain 1

Garbage FreeUnmarked Marked

Garbage FreeUnmarked Marked

Multicore OCaml: Major GC

• Marking & sweeping done ⇒ stop-the-world

• Stop-the-world pauses are ~5 ms on 24 cores

Sweep MarkMark
Roots Mutator

Sweep MarkMark
Roots

Start of major cycle End of major cycle

mark and sweep phases may overlap

Domain 0

Domain 1

Garbage FreeUnmarked Marked

Garbage FreeUnmarked Marked

Sequential Performance:
Normalised time

Sequential Performance:
Normalised time

coq

irmin

menhir

alt-ergo

Sequential Performance:
Normalised time

coq

irmin

menhir

alt-ergo

• ~1% faster than stock (geomean of normalised running times)

✦ Difference under measurement noise mostly

✦ Outliers due to difference in allocators

Sequential Performance:
Max pause time

Sequential Performance:
Max pause time

• Pausetimes are lower under Multicore OCaml than stock OCaml

Domainslib for parallel programming
• Domain API exposed by the compiler is too low-level

✦ Mutex, condition variables, …

Domainslib for parallel programming
• Domain API exposed by the compiler is too low-level

✦ Mutex, condition variables, …

• Domainslib - https://github.com/ocaml-multicore/domainslib

Domain 0 Domain N…

Task Pool

Async/Await Parallel for

Domainslib

Domainslib for parallel programming
• Domain API exposed by the compiler is too low-level

✦ Mutex, condition variables, …

• Domainslib - https://github.com/ocaml-multicore/domainslib

Domain 0 Domain N…

Task Pool

Async/Await Parallel for

Domainslib

Let’s look at examples!

Recursive Fibonacci - Sequential

let rec fib n =
 if n < 2 then 1
 else fib (n-1) + fib (n-2)

Recursive Fibonacci - Parallel

let fib n =
 let pool = T.setup_pool
 ~num_additional_domains:(num_domains - 1) in
 let res = fib_par pool n in
 T.teardown_pool pool;
 res

module T = Domainslib.Task

Recursive Fibonacci - Parallel

let fib n =
 let pool = T.setup_pool
 ~num_additional_domains:(num_domains - 1) in
 let res = fib_par pool n in
 T.teardown_pool pool;
 res

let rec fib_par pool n =
 if n <= 40 then fib_seq n
 else
 let a = T.async pool (fun _ -> fib_par pool (n-1)) in
 let b = T.async pool (fun _ -> fib_par pool (n-2)) in
 T.await pool a + T.await pool b

module T = Domainslib.Task

Recursive Fibonacci - Parallel

let rec fib_seq n =
 if n < 2 then 1
 else fib_seq (n-1) + fib_seq (n-2)

let fib n =
 let pool = T.setup_pool
 ~num_additional_domains:(num_domains - 1) in
 let res = fib_par pool n in
 T.teardown_pool pool;
 res

let rec fib_par pool n =
 if n <= 40 then fib_seq n
 else
 let a = T.async pool (fun _ -> fib_par pool (n-1)) in
 let b = T.async pool (fun _ -> fib_par pool (n-2)) in
 T.await pool a + T.await pool b

module T = Domainslib.Task

Performance: fib(48)

Cores Time (Seconds) Vs Serial Vs Self

1 37.787 0.98 1

2 19.034 1.94 1.99

4 9.723 3.8 3.89

8 5.023 7.36 7.52

16 2.914 12.68 12.97

24 2.201 16.79 17.17

Conway’s Game of Life

Conway’s Game of Life

Conway’s Game of Life
let next () =
 ...
 for x = 0 to board_size - 1 do
 for y = 0 to board_size - 1 do
 next_board.(x).(y) <- next_cell cur_board x y
 done
 done;
 ...

Conway’s Game of Life
let next () =
 ...
 for x = 0 to board_size - 1 do
 for y = 0 to board_size - 1 do
 next_board.(x).(y) <- next_cell cur_board x y
 done
 done;
 ...

let next () =
 ...
 T.parallel_for pool ~start:0 ~finish:(board_size - 1)
 ~body:(fun x ->
 for y = 0 to board_size - 1 do
 next_board.(x).(y) <- next_cell cur_board x y
 done);
 ...

Performance: Game of Life

Cores Time (Seconds) Vs Serial Vs Self

1 24.326 1 1

2 12.290 1.980 1.98

4 6.260 3.890 3.89

8 3.238 7.51 7.51

16 1.726 14.09 14.09

24 1.212 20.07 20.07

Board size = 1024, Iterations = 512

Performance Hacking: N-body
• Simulates the orbits of large number of astronomical objects

• Taken from computer language benchmarks game

Performance Hacking: N-body
• Simulates the orbits of large number of astronomical objects

• Taken from computer language benchmarks game

Sequential N-body

Sequential N-body

$ perf record ./nbody.exe
$ perf report

Sequential N-body

$ perf record ./nbody.exe
$ perf report

Parallel N-Body

Parallel N-Body

• ~5X speedup on 8 cores compared to sequential version.

Parallel N-Body

• ~5X speedup on 8 cores compared to sequential version.

• Can we do better?

Parallel N-Body

• ~5X speedup on 8 cores compared to sequential version.

• Can we do better?

• All the domains writing to the same shared array bodies in the inner loop

✦ Leads to poor cache behaviour

Parallel N-Body (cache friendly)

Parallel N-Body (cache friendly)

• 22% faster than the unoptimised version

Parallel N-Body (cache friendly)

https://www.brendangregg.com/linuxperf.html

Parallel Scalability

On 4 x 32-core AMD EPYC 7551

Parallel Latency

Summary
• Multicore OCaml brings shared-memory parallelism to OCaml

✦ A new concurrent GC that optimises for latency and retains
throughput

https://arxiv.org/abs/2004.11663

Summary
• Multicore OCaml brings shared-memory parallelism to OCaml

✦ A new concurrent GC that optimises for latency and retains
throughput

• Domainslib for high-level parallel programming

✦ Async/await & parallel for loops

✦ Scales well to large number (128) of cores

https://arxiv.org/abs/2004.11663

Summary
• Multicore OCaml brings shared-memory parallelism to OCaml

✦ A new concurrent GC that optimises for latency and retains
throughput

• Domainslib for high-level parallel programming

✦ Async/await & parallel for loops

✦ Scales well to large number (128) of cores

• OCaml 5.0 will be x86-64 only

✦ Arm64 and Power after the 5.0 release

✦ Linux, MacOS and Windows (mingw-w64 only)

https://arxiv.org/abs/2004.11663

Summary
• Multicore OCaml brings shared-memory parallelism to OCaml

✦ A new concurrent GC that optimises for latency and retains
throughput

• Domainslib for high-level parallel programming

✦ Async/await & parallel for loops

✦ Scales well to large number (128) of cores

• OCaml 5.0 will be x86-64 only

✦ Arm64 and Power after the 5.0 release

✦ Linux, MacOS and Windows (mingw-w64 only)

• Sivaramakrishnan et al, “Retrofitting Parallelism onto OCaml”, ICFP
2020

https://arxiv.org/abs/2004.11663

