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OCaml

e Functional-first but multi-paradigm (imperative, OO)
e Static-type system with Hindley-Milner type inference

t Language e Advanced features — powerful module system, GADTSs,
Polymorphic variants

e Multicore support and effect handlers

e Fast, native code— x86, ARM, RISC-V, etc.

%@ Platform e JavaScript and WebAssembly (using WasmGC)
compilation
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High dynamic range

From scripts to scalable systems, research
prototypes to production infrastructure

60+M lines of
OCaml code!

HARDCAML

In 2022, we, the team who develops Hardcaml (Andy
Ray, Ben Devlin, Fu Yong Quah, and Rahu
Yesantharao) participated in the ZPrize competition.
We competed in the Multi-Scalar Multiplication (MSM)
and Number Theoretic Transform (NTT) tracks,

winning the MSM FPGA track and coming second in
the NTT track.

Read on to find out more about our submissions and
view the code on github.

Finance Hardware design




High dynamic range

From scripts to scalable systems, research
prototypes to production infrastructure
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Docker is a developer tool used by millions of developers to build, share and run software stacks. The D ,, 4 a’"‘-‘D
Desktop clients for Mac and Windows have long used a novel combination of virtualisation and O e E

unikernels to seamlessly run Linux containers on these non-Linux hosts. We reflect on a decade of shij
this functional OCaml code into production across hundreds of millions of developer desktops, and di
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See what people want, fix what holds you back,
ship what wins, and track your growth—that’s
what a marketing platform should do.
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Trusted Computing Base

e Unsurprisingly, the OCaml compiler is written in OCam|

 Butincludes a runtime system written in C

'kc@KCs—MacBook-Pro-2 ocaml % cloc .

6167 text files.
4025 unique files.
4354 files ignored.

github.com/AlDanial/cloc v 2.92 T=2.41 s (1669.2 files/s, 314367.8 lines/s)

Bourne Shell
mé

Assembly
C/C++ Header
WELG
Markdown

D

AsciiDoc

CSv

115033
10315
8900
111
2194
3580
610

34

393861
48137
45563
12448

5869
5600
3633
2828
2168
1682
1512

~400k lines of OCam|
~60k lines of C & Assembly

All of it in the runtime system,
much of it in the GC



OCaml GC

« OCaml is a garbage-collected (GCed) language.
* Low-latency, high-throughput with good space-time tradeoft
 Memory management subsystem = Allocator + GC

 GC in OCaml 5

* ....Is acomplex piece of software
* A generational, concurrent and parallel!

e Support for weak references, finalisers (2 kinds), ephemerons, etc.

» Tons of bugs during development (see Multicore OCaml project)

* (C is excellent for writing unsafe, hard-to-reason-about code! :-(

Can we build a correct-by-construction GC for OCaml?



Verified GC desiderata

 Correct-by-construction

 End-to-end proof that the GC preserves
safety and liveness

 Pluggable
* Should be able to slot in for the existing GC

e Extensible

« Accommodate improvements without | s
rearchitecting from scratch | Why don’t we have betii?

 Efficient Everything?

 Be competitive with existing GC



Our work

Home > Journal of Automated Reasoning > Article

A Mechanically Verified Garbage Collector
GC for OCaml for OCaml

Open access | Published: 14 May 2025

® ertten In F* and I-ts Subset LOW*, proof_ Volume 69, article number 11,(2025) Cite this article

oriented programming languages

* A verified stop-the-world mark-and-sweep

Download PDF 3. @ You have full access to this open access article

e Extracted to memory-safe C and integrated

Sheera Shamsu N1, Dipesh Kafle, Dhruv Maroo, Kartik Nagar, Karthikeyan Bhargavan & KC

Sivaramakrishnan

with OCaml 4.14.1 (non-multicore)

5) 997 Accesses Explore all metrics -

o Competitive performance with vanilla OCaml  abstract

The OCaml programming language finds application across diverse domains, including
systems programming, web development, scientific computing, formal verification, and

symbolic mathematics. OCaml is a memory-safe programming language that uses a

Journal of Automated Reasoning, 2025



GC Correctness

o Correctness properties

« Safety — GC preserves all reachable objects

 Liveness — GC frees all unreachable objects

 How do we approach this?

* Reachabillity is a property of the graph formed by objects in the heap.

* Reason about correctness by connecting reachability to the GC operations



GC verification — Layered approach
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Tricolour Mark-and-sweep GC

White = Unmarked, Grey = Marking, Black = Marked

Whites = {B, C, E, F} Whites = {E, F} Whites = {A, B, C, D}
Blacks = {} Blacks = {A, B, C, D} Blacks = {}
Greys = {A, D} Greys = {} Greys = {}

(a) Start of mark (b) After mark (c) After sweep

free list

E

F




Layer 1 — Graph and reachability

noeq type graph (
vertices

a:eqtype) = {
. V. vertex_set #a;

(* [vertices] are a sequence of type a with mo duplicates %)

edges :

e.

edge_set

a {edge_ends_are_vertices vertices e}

(¥ [edges] are a sequence of type (a,a) with mo duplicates *)

type reach: (g:graph) — (x:vertex) — (y:vertex) — Type =
(* reachability is reflexive *)

(g:graph) — (x:vertex) — (reach g x x)

(* reachability is transitive *)

| ReachRefl

| ReachTrans :

(g:graph) — (x:vertex) — (z:vertex) —

(reach g x z) —

(¥ [edge g z y] ©2s a type refinement which mandates
that [ (z,y)] ts an edge in [g] *)

(y:vertex {edge g z y}) — (reach g x y)



Layer 1 — Functional Depth-first search

(¥ dfs calls dfs_body until stack empty.
Inputs are graph, stack and visited set. *)
let rec dfs (g:graph) (st:seq U64.t) (vl:seq U64.t)
Pure (seq U64.t)
(requires ...)
(ensures (A res — ...)
(decreases (length g.vertices - length vl; length st)) =
1f length st = 0 then vl
else
let sty ,vl; = dfs_body g st vl in
dfs g st; vl

let dfs_body g st vl

. Pure

(requires ...)

(ensures (A res — ...) =
let x = stack_top st in
let xs = stack_rest st in
let s = successors g X 1n

let vly = set_insert x vl in
let st = push_unvisited s xs vll in
(Stl, Vll)



Layer 1 — Reachability = DFS

(¥ r_list 1s the root set, stack is filled with r_list initially *)
val dfs_reachability_lemma (g:graph) (st:seq obj_addr)
(vl:seq obj_addr) (r_list:seq obj_addr)
: Lemma
(requires
(¥ Pre-conditions required to prove forward direction *)
(*F1+*) mutually_exclusive_sets st vl A
(*F2*) (Vy.y € st=— (d x.x € r_list N reach g x y) A
(*F3*) (Vy.yevl — (dx.x € r_list AN reach g x y) A

(¥ Pre-conditions required to show the backward direction x*)
(*B1*) (V x y.x € r_list AN reach gxy =

(dz.z € st Nreach gz y) Vy € vl)
(*B2*) (Vxy.x € vl ANreach g xy —

(dz.z € st Nreach gz y) Vy € vl)

(ensures (V y.y € (dfs g st vl) <= (d x.x € r_list A reach g x y))



Layer 2 — Heap

* A single contiguous buffer packed with objects

* Objects follow OCaml object layout

header | field0 | field 1 field N 00 — White — Unmarked

01 — Gray — Markilng
10 — Blue - Free
11 — Black — Marked

size color tag

22 or 54 bits 2 bits 8 bits

* Uniform value representation — Tagged ints

 Makes it easy for GC to scan the object



Layer 2 — Heap
o Special Objects

« NO SCAN objects — Strings, Float Arrays, Abstract, etc; contain no pointers.

* Closure Objects

code {arity = 2; code
header pointer 1 | start-env = 3} |pointer 2 free var 1 | free var 2
S Closure _tag (247)
size color tag

* Mutually-recursive closure objects

code tarity = 2: code code farity = 1: free | free
header | pointer ., | pointer | header | pointer Y="1 | var| var
startenv = 6} startenv = 2}
1 2 3 1 2
Closure_tag Infix_tag
8 4
(247) (249)

size color tag size color tag



Layer 2 — Well-formed heap w(/)

A well-formed heap satisfies a few properties.
* (Objects are non-overlapping
* (Objects are within the heap
* QObjects fill the heap
* Pointers in the objects point to other allocated objects (non-blue)

* QObjects satisfy their layout requirements (think Closure and Infix objects).



Layer 2 — We’re still functional!

//Machine integers

module U64 = FStar.UInt64

module U3 = FStar.UIntd

let mword = 3UL

val heap_size : n:int{n "mod™ U64.v mword == 0 A n >=16 A

n < 1099511627776}

(* heap s a sequence of 8 bit unsigned machine integers *)

type heap = h:seq U8.t{length h == heap_size}

(¥ A valid heap address *)

type hp_addr = addr:U64.t {U64.v addr < heap_size A
is_multiple_of_mword addr}



Layer 2 — DFS and Mark

(* dfs calls dfs_body until stack empty. (* mark calls mark body until stack empty.
Inputs are graph, stack and vistted set. *) Inputs are heap and stack *)
let rec dfs (g:graph) (st:seq U64.t) (vl:seq U64.t) let rec mark (h:heap) (st:seq obj_addr)
: Pure (seq U64.t) : Pure (heap)
(requires ...) (requires ...)
(ensures (A res — ...) (ensures (A res — ...)
(decreases (length g.vertices - length vl; length st)) = (decreases (length allocs h - length blacks h;
if length st = 0 then vl length st)) =
else 1f length st = 0 then h
let st; ,vl; = dfs_body g st vl in else
dfs g st; vl let sty, h; = mark_body h st in

mark h; st;
let dfs_body g st vl

. Pure ... let mark_body (h:heap) (st:seq obj_addr)
(requires ...) . Pure
(ensures (A res — ...) = (requires ...)

let x = stack_top st in (ensures (A res — ...) =

let xs = stack_rest st in let x = stack_top st in

let s = successors g X in let xs = stack_rest st in

let vl; = set_insert x vl in let h; = colorHeader h x black in

let sty = push_unvisited s xs vll in let stl = darken hy xs x 1UL in

(Stl, Vll) (Stl: hl)



Layer 2 — Mark specification

val mark (h:heap) (st:seq obj_addr)
. Pure (heap)
(requires (* Only core conditions shown *)
(*1%*) well_formed_heap (h) A
(*2*) (V¥ x.x € st <= hd_address x € greys(h)))
(ensures (* Only core conditions shown %)
(¥*1%*) (A hy — well_formed_heap (h;) A
(¥*2%) (V x i. (hd_address x) € h_objs(h) =
field x h i = field x hy i) A
(*3%) (V x.x € h_objs(h;) =— (color (hd_address x h); # grey)))



Relating Layer 2 and Layer 1 — Graph(Heap)

Object graph, G(h) = (V, E)

VV = Set of allocated object addresses in /1 L = Set of pairs of the form (x, y), where

x,yeV
and y is a pointer field of x

22



Layer 2 — DFS = Mark

val dfs_mark_equivalence_lemma (h:heap) (st:seq obj_addr)
(vl:seq obj_addr) (h_list:seq obj_addr)
: Lemma

(¥ Only important properties shown *)

(requires (*1 %) mutually_exclusive_sets st vl A
(¥2+) well_formed_heap(h) A
(¥ stack tnvariant *)
(¥*3%) (V¥ x.x € st <= (hd_address x) € greys(h))
(¥ vistted-list invariant *)
(¥4 *) (V x.x € vl <= (hd_address x) € blacks(h))

(ensures (V x. x € (dfs (graph_from_heap h) st vl) <
(hd_address x) € blacks(mark h st)))

* Proof strategy
* At every recursive call to dfs and mark, the stack st remains the same

* Both terminate when the stack st is empty



Layer 2 — Reachability = Mark

val mark_reachability_lemma (h:heap) (st:seq obj_addr)

(r_list:seq obj_addr)
. Lemma

(requires
(¥1%*) well_formed_heap (h)

(¥2+*) (V x. x € st <= hd_address x € greys(h)) A
(¥ 3*) well_formed_heap (mark h st))

(ensures

(¥1 %) (graph_from_heap (mark h st) = graph_from_heap h) A
(¥2%) (VW x y.y € r_list A

reach (graph_from_heap h) y x <= x € blacks(mark h st)))

* Already proved Reachability = DFS and DFS = Mark

 Hence, Reachability = Mark



Layer 2 — Sweep specification

val sweep_subgraph_lemma (h:heap) (r_list:seq obj_addr)
(curr_ptr:obj_addr) (fp:obj_addr)
. Lemma
(requires
(¥1*) well_formed_heap (h) A
(¥2*) (V x.x € h_objs(h) = (color (hd_address x h) # grey)) A
(¥*3*) well_formed_heap (sweep h curr_ptr fp))

(ensures

(¥*1%) (V x. x € graph_from_heap (sweep h curr_ptr fp).vertices <=
x € graph_from_heap (h).vertices A
(d y. y € r_1list A reach (graph_from_heap h) y x)) A

(x2%*) (V x y.
(x,y) € graph_from_heap (sweep h curr_ptr fp).edges <=
x € graph_from_heap (sweep h curr_ptr fp).vertices A
y € graph_from_heap (sweep h curr_ptr fp).vertices A
(x,y) € graph_from_heap (h).edges))



Relating Layer 2 and Layer 1 — Graph(Heap)

Object graph, G(h) = (V, E)
VV = Set of allocated object addresses in /1 L = Set of pairs of the form (x, y), where

x,yeV
and y is a pointer field of x

Root set, r

Reachable Subgraph, RG(h, r), is the subgraph of (G(/2) reachable from r

26



GC Correctness

A well-formed (a) (h,) h G(hy) = £G5h1;’”s);
heap a)(hl) where r is the roo

Initial heap, hl ———— 5 Final heap, h2

Vx.x € Gth,) = data(x, h,) = data(x, h,)
where data denotes the non-pointer fields




GC Correctness

val end_to_end_correctenss_theorem
(¥ Initial heap *)
(h_init:heap{well_formed_heap h_init})
(* mark stack - contains grey objects *)
(st: seq Usize.t {pre_conditions_on_stack h_init st })
(¥ root set *)
(roots : seq Usize.t{pre_conditions_on_root_set h_init roots})
(* free list pointer *)
(fp:hp_addr{pre_conditions_on_free_list h_init fp})

Lemma
( requires

(¥ Pre-conditions elided for brevity. Important ones are:
+ The mark stack [st] contains all the [roots].
+ All the grey objects in the heap are im the mark stack [st].

*) )

( ensures

(* heap after mark *)

let h_mark = mark h_init st in

(* heap after sweep *)

let h_sweep = fst (sweep h_mark mword fp) in

(* graph at intt *)

let g_init = graph_from_heap h_init in

(* graph after sweep *)

let g_sweep = graph_from_heap h_sweep in

(*

GC preserves well-formedness of the heap *)
1 *) well_formed_heap h_sweep A

GC preserves reachable object set *)
2 *) ((V x. x € g_sweep.vertices <=
(3 o. mem o roots A reach g_init o x))) A

GC preserves pointers between objects *)
3 *) ((V x. mem x (g_sweep.vertices) —
(successors g_init x) ==

(successors g_sweep x))) A

The resultant heap objects are eitther white or blue only *)
4 *) (V x. mem x (h_objs h_sweep) —

color x h_sweep == white V

color x h_sweep == blue) A

No object field (etther pointer or immediate) <s modified *)
5 ) field_reads_equal h_init h_sweep )



Layer 3 — Imperative GC

» Layer 3 is in Low”, a low-level explicit memory subset of F*

* Explicitly reason about lifetime and aliasing

 Tedious (Low™* does not use separation logic) but mechanical
 Low™® programs are memory-safe by construction

 (Can be extracted to C using KaRaMel

 Qur ldea is to have 1:1 correspondence between the functions in layer 2
* Tail-recursive functions — loops
* |nvariants on tail-recursive functions — loop invariants

e Mark Stack is a list — Mark stack is a fixed-sized buffer

 Assumed to be the size of the heap (limitation)



Layer 3 — Extracted Sweep

void sweep (uint8_t *g, uint64_t *sw, uint64_t *fp,
uint64_t limit, uint64_t mword) {
while (*sw < limit) {

uint64_t curr_obj_ptr = *sw;
uint64_t curr_header = hd_address(curr_obj_ptr);
uint64_t wz = wosize_of_block(curr_header, g);
uint64_t next_header = curr_header + (wz + 1ULL) * mword;
uint64_t next_obj_ptr = next_header + mword,
sweep_body (g, sw, fp);
sw[OU] = next_obj_ptr;

void sweep_body (uint8_t *g, uint64_t *sw, uint64_t *xfp) {
uint64_t curr_obj_ptr = *sw,;
uint64_t curr_header = hd_address(curr_obj_ptr);
uint64_t ¢ = color_of_block(curr_header, g);
uint64_t wz = wosize_of_block(curr_header, g);

if (¢ == white || ¢ == blue) {
colorHeader (g, curr_header, blue);
uint64_t fp_val = *fp;
uint32_t x1 = fp_val;
store64_le(g + x1, curr_obj_ptr);
fp[OU] = curr_obj_ptr;

} else {
colorHeader (g, curr_header, white);



Verification effort

Modules #Lines #Defns #Lemmas Time
Graph 4653 72 81 2ma3s
DFS 657 1 9 2mos
Functional GC 18401 65 218 120m

Imperative GC 2734 19 19 27m43s



Performance

B Baseline (OCaml 4.14.1) B Verified GC

Normalised time
OO =~ N W H O O
o
h

BDW GC




Extensions

 Extended to support coalescing during sweep
 No two adjacent free/blue objects after sweep
* Removes fragmentation
e |In the paper,
* Specification sketches for incremental and copying collectors

* Not implemented fully



Limitations and Future Work

 Mark stack is assumed to be the size of the heap
 Mark stack overflow handling is tricky!
» Allocator is still unverified
 No support for weak references, ephemerons, finalisers
* Even specifying their correctness is challenging
« OCaml 5 is multicore but the verified GC is sequential only
 Need a framework with concurrent separation logic (?)
e Although specifications are extensible, proof burden still very large

* Transplant ideas to reusable GC framework such as MMTk (?)
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