
IARCS Verification Seminar Series
18th November 2025

A Mechanically Verified
Garbage Collector for OCaml
KC Sivaramakrishnan
kcsrk.info

http://kcsrk.info

• Functional-first but multi-paradigm (imperative, OO)

• Static-type system with Hindley-Milner type inference

• Advanced features — powerful module system, GADTs,
Polymorphic variants

• Multicore support and effect handlers

• Fast, native code— x86, ARM, RISC-V, etc.

• JavaScript and WebAssembly (using WasmGC)
compilation

📜 Language

⚙ Platform

High dynamic range

Compilers

From scripts to scalable systems, research
prototypes to production infrastructure

Verification & Static Analysis

High dynamic range

Finance

60+M lines of
OCaml code!

From scripts to scalable systems, research
prototypes to production infrastructure

Hardware design

High dynamic range

Web Frontend

From scripts to scalable systems, research
prototypes to production infrastructure

Networking

OCaml in Space 🚀 🛰

Virtualisation

• Unsurprisingly, the OCaml compiler is written in OCaml

• But includes a runtime system written in C

Trusted Computing Base

~400k lines of OCaml

~60k lines of C & Assembly

All of it in the runtime system,
much of it in the GC

• OCaml is a garbage-collected (GCed) language.

• Low-latency, high-throughput with good space-time tradeoff

• Memory management subsystem = Allocator + GC

• GC in OCaml 5

• …. is a complex piece of software

• A generational, concurrent and parallel!

• Support for weak references, finalisers (2 kinds), ephemerons, etc.

• Tons of bugs during development (see Multicore OCaml project)

• C is excellent for writing unsafe, hard-to-reason-about code! :-(

OCaml GC

Can we build a correct-by-construction GC for OCaml?

• Correct-by-construction

• End-to-end proof that the GC preserves
safety and liveness

• Pluggable

• Should be able to slot in for the existing GC

• Extensible

• Accommodate improvements without
rearchitecting from scratch

• Efficient

• Be competitive with existing GC

Verified GC desiderata

Everything?

• A verified stop-the-world mark-and-sweep
GC for OCaml

• Written in F* and its subset Low*, proof-
oriented programming languages

• Extracted to memory-safe C and integrated
with OCaml 4.14.1 (non-multicore)

• Competitive performance with vanilla OCaml

Our work

Journal of Automated Reasoning, 2025

• Correctness properties

• Safety — GC preserves all reachable objects

• Liveness — GC frees all unreachable objects

• How do we approach this?

• Reachability is a property of the graph formed by objects in the heap.

• Reason about correctness by connecting reachability to the GC operations

GC Correctness

Textbook
graph

algorithms

Purely functional GC
implementation that bridges

abstract and concrete worlds

GC
implementation
with concrete

memory

GC verification — Layered approach

Tricolour Mark-and-sweep GC
White = Unmarked, Grey = Marking, Black = Marked

Layer 1 — Graph and reachability

Layer 1 — Functional Depth-first search

Layer 1 — Reachability DFS≡

• A single contiguous buffer packed with objects

• Objects follow OCaml object layout

• Uniform value representation — Tagged ints

• Makes it easy for GC to scan the object

Layer 2 — Heap

00 — White — Unmarked
01 — Gray — Marking
10 — Blue — Free
11 — Black — Marked

• Special Objects

• NO SCAN objects — Strings, Float Arrays, Abstract, etc; contain no pointers.

• Closure Objects

• Mutually-recursive closure objects

Layer 2 — Heap

• A well-formed heap satisfies a few properties.

• Objects are non-overlapping

• Objects are within the heap

• Objects fill the heap

• Pointers in the objects point to other allocated objects (non-blue)

• Objects satisfy their layout requirements (think Closure and Infix objects).

Layer 2 — Well-formed heap ω(h)

Layer 2 — We’re still functional!

Layer 2 — DFS and Mark

Layer 2 — Mark specification

22

Heap h

Object graph, G(h) = (V, E)

Set of allocated object addresses in V = h Set of pairs of the form , where

and is a pointer field of

E = (x, y)
x, y ∈ V

y x

Relating Layer 2 and Layer 1 — Graph(Heap)

Layer 2 — DFS Mark≡

• Proof strategy

• At every recursive call to dfs and mark, the stack st remains the same

• Both terminate when the stack st is empty

Layer 2 — Reachability Mark≡

• Already proved Reachability DFS and DFS Mark

• Hence, Reachability Mark

≡ ≡
≡

Layer 2 — Sweep specification

26

Heap h

Object graph, G(h) = (V, E)

Set of allocated object addresses in V = h Set of pairs of the form , where

and is a pointer field of

E = (x, y)
x, y ∈ V

y x

Relating Layer 2 and Layer 1 — Graph(Heap)

Root set, r

Reachable Subgraph, , is the subgraph of reachable from RG(h, r) G(h) r

 Initial heap, h1 Final heap, h2
GC

ω(h2)A well-formed
heap ω(h1)

where is the root-set
G(h2) = RG(h1, r)

r

where denotes the non-pointer fields
∀x . x ∈ G(h2) ⟹ data(x, h1) = data(x, h2)

data

GC Correctness

GC Correctness

• Layer 3 is in Low*, a low-level explicit memory subset of F*

• Explicitly reason about lifetime and aliasing

• Tedious (Low* does not use separation logic) but mechanical

• Low* programs are memory-safe by construction

• Can be extracted to C using KaRaMel

• Our Idea is to have 1:1 correspondence between the functions in layer 2

• Tail-recursive functions loops

• Invariants on tail-recursive functions loop invariants

• Mark Stack is a list Mark stack is a fixed-sized buffer

• Assumed to be the size of the heap (limitation)

→

→

→

Layer 3 — Imperative GC

Layer 3 — Extracted Sweep

Verification effort

Performance

N
or

m
al

is
ed

 ti
m

e

0

1

2

3

4

5

6

Bina
ryT

ree
s (

13
.01

)

Cou
ntC

ha
ng

e (
3.6

1)

Fan
nk

uc
hR

ed
ux

 (5
.79

)

Fas
ta

(10
.52

)

Quic
ks

ort
 (3

.91
)

Nbo
die

s (
1.6

2)

Man
de

lbr
ot

(6.
33

)

Spe
ctr

aln
orm

 (7
.22

)

Knu
cle

oti
de

 (2
5.3

4)

Cpd
f (6

.57
)

Yojs
on

 (1
.76

)

Baseline (OCaml 4.14.1) Verified GC BDW GC

• Extended to support coalescing during sweep

• No two adjacent free/blue objects after sweep

• Removes fragmentation

• In the paper,

• Specification sketches for incremental and copying collectors

• Not implemented fully

Extensions

• Mark stack is assumed to be the size of the heap

• Mark stack overflow handling is tricky!

• Allocator is still unverified

• No support for weak references, ephemerons, finalisers

• Even specifying their correctness is challenging

• OCaml 5 is multicore but the verified GC is sequential only

• Need a framework with concurrent separation logic (?)

• Although specifications are extensible, proof burden still very large

• Transplant ideas to reusable GC framework such as MMTk (?)

Limitations and Future Work

• A verified stop-the-world mark-and-sweep
GC for OCaml

• Written in F* and its subset Low*, proof-
oriented programming languages

• Extracted to memory-safe C and integrated
with OCaml 4.14.1 (non-multicore)

• Competitive performance with vanilla OCaml

• All the artifacts have been open-sourced

Summary

Journal of Automated Reasoning, 2025
https://github.com/prismlab/verified_ocaml_gc

https://github.com/prismlab/verified_ocaml_gc

