
“KC” Sivaramakrishnan

Why OCaml?

• Building functional systems using OCaml

• We work on

‣ OCaml platform — Compiler, Build system (dune), package manager (opam),

documentation tools (odoc), editor support (LSP, merlin)

‣ OCaml community — ocaml.org, CI for package repository, running conferences &
events, managing community infrastructure

‣ OCaml consulting — helping commercial users with OCaml, training

‣ Research — formal verification, blockchain forensics, Unikernels support for space &
IoT

http://ocaml.org

Why in 2024?

Language
• Algebraic data types and pattern matching

• Functions as a core primitive and data

• Parametric polymorphism

• Static types

• Type inference

Demo: Predicate langauge & evaluator

Staying ahead of the curve
• Algebraic data types and pattern matching

‣ Released in Python 3.10 (2021)

‣ Released in Java 17 (2021)

• Functions as a core primitive and data

‣ Released in Java 8 (2014)

• Parametric polymorphism

‣ Release in Go 1.18 (2022)

• Strong static types

‣ TypeScript (JavaScript); Hack (PHP); Pyright, Pyre (Python)
(2010s)

• Type inference

‣ Local type inference for `var` in Java and `auto` in C++ (2010s)

Compiler
• Is fast and produces fast native code (x86, ARM, RISC-V, Power, …)

‣ Static typing ensures efficient code is generated

• Has a bytecode interpreter

‣ REPL

‣ Demo: dune utop

• OCaml can be compiled to JavaScript (js_of_ocaml, ReasonML) and Wasm
(wasm_of_ocaml)

‣ First GCed language to target the Wasm GC proposal

‣ Demo: OCaml playground

Build System — Dune
• Super fast, featureful

• Demo: Irmin

‣ cloc

‣ time dune build

‣ Pattern matching — proof.ml:169

‣ dune build --watch

- merge.mli:19

Memory Safety & Security

Memory Safety & Security

Memory Safety & Security

Memory Safety & Security

Memory Safety & Security
• OCaml is a type-safe language

‣ Type safety ⇒ Memory safety

• Java, Python, JavaScript, Rust are also memory safe

• OCaml’s has a great dynamic range compared to these languages

‣ From small scripts, to Web, to long running services, to compilers, to embedded

systems (Unikernels), to …

• OCaml vs Rust for memory-safety

‣ OCaml has a GC (covers 95% of cases), for the rest use Rust

‣ Pausetimes of < single-digit ms

Memory Safety & Security

Memory Safety & Security

Why not in 2024?

Ecosystem is small

… but very high quality and growing

Community is small

Industry Projects

… with some high profile users

Windows is a second-class citizen

Windows is a second-class citizen

Interop remains challenging
• True for most languages, but necessary for OCaml adoption

• OCaml to C works best today

‣ Wasm, JS, Python + respective build systems remains a challenge

Make OCaml succeed by
playing well with others

Fin

